
Mem. Fae. Eng., Kyoto Univ. Vol. 52, No. 3 (1990) 

Theoretical Analysis of Supersonic Gas-Particle 

Two-Phase Flow and Its Application 

to Relatively Complicated Flow Fields 

by 

Natsuo HATTA*, Hitoshi FunMoTo*, Ryuji Ism1** 

and Jun-ichi KoKAoo*** 

(Received February 20, 1990) 

Abstract 

This paper describes supersonic flows of a gas-particle two-phase mixture 
in considerably complicated situations. For the flow field of gas-particle mix
tures such that the gas-phase and the particle-phase interact with each other, 
the model is constructed by incorporating the particle-trajectory method into 
the system of gas-phase equations in the two-fluid model. First, the one-phase 
and two-phase flows of round underexpanded jets exhausted from a sonic 
nozzle are investigated in detail. The one-phase results are compared with the 
experimental ones in order to confirm whether the present scheme is reliable or 
otherwise. For the two-phase results, the particles with the same velocity and 
temperature as those of the gas-phase are injected at the nozzle exit plane, and 
the effect of the presence of the particles on the flow field is examined by 
comparing these two-phase results with the one-phase ones. Second, the results 
of the numerical experiments in which underexpanded sonic round jets impinge 
on a flat plate normal to the jet axis are presented and analyzed for both the 
one-phase and two-phase cases. For the one-phase flow, periodic unstable 
oscillations have been found to give fairly good agreement with the experimen
tal results. Third, supersonic gas-particle two-phase flows around a sphere are 
simulated in view of the numerical experiments. The instability in the particle 
motion near the stagnation region in the shock layer is discussed in detail. A 
few new findings are also described throughout the present paper. 

1. Introduction 

115 

A number of processes in iron and steelmaking industries positively intro

duce the utilization of the two-phase or multi-phase flows. Therefore, we have 

investigated the numerical analyses of the gas-particle mixture flows in a nozzle 
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for a few years, and obtained some new findings. First, a system of equations 

governing the steady quasi-one-dimensional nozzle flow of a gas-particle mix

ture, described by Zucrow and Hoffmanll, has been extended to the case where a 

continuous distribution of particle size is present. Then, we have solved the 

system of modified equations in view of the numerical experiments and dem

onstrated how the phase non-equilibrium phenomena are observed in the sub

sonic nozzle flows2l. Therein, the case has been treated where a gas containing 

a suspended condensed liquid-phase is initially stored in a considerably large 

reservoir, and the gas-particle mixture directly flows through a nozzle. At the 

reservoir the gas velocity as well as the particle velocity is regarded as zero. 

That is to say, this fact corresponds to the condition that the sectional area of 

the nozzle is infinite at the nozzle entrance. Hence, a numerical procedure such 

that all the particles are in velocity and thermal equilibrium with the gas-phase 

only near the reservoir has been introduced to the numerical experiments. In 

short, it follows that the non-equilibrium flow is treated as a perturbation from 

an equilibrium reference flow. Here, one of the most important problems is that 

the pressure at the reservoir is not permitted to be so high that the gas velocity 

is beyond the sonic state, because the system of equations described in Ref. ( 2) 

is singular in the transonic region. 

Hence, we have rewritten an equation to evaluate the gas velocity into 

another type of equation so that it may cover the whole gas velocity from the 

subsonic to the supersonic velocities through the throat of a converging-diverg

ing nozzle3
l. That is, the equation has been rewritten in the form including the 

term of pressure gradient along the whole nozzle axis instead of the term of the 

varied nozzle cross-sectional area along the axis. Here, we note that the 

governing equations to determine all of the flow properties, except the aforemen

tioned gas velocity, are the same as the previous case (see Ref. 2 ). Therefore, it 

is necessary to give the pressure gradient along the axis as one known parame

ter. Thereby, the nozzle configuration can uniquely be determined in consistency 

with the given pressure gradient. 

Thereafter, for the prescribed nozzle configuration also, the numerical analy

sis of the supersonic nozzle flows of the two-phase gas-particle mixtures has 

been investigated from a practical point of view4l. In this situation, the specified 

area method is employed upstream as well as downstream from the transonic 

region, and the specified pressure method is employed in the transonic region. 

At a glance, it seems that this is not tedious in the numerical treatment. 

However, the case can occur where the pressure gradient to be assumed in the 

transonic region is not suitable to the perturbation from the results evaluated by 
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the specified pressure method, and an unfortunate gap appears between the 

calculated nozzle sectional area and the previously prescribed area. Therefore, a 

reasonable numerical model to avoid such a problem has been proposed from an 

analytical point of view. 

As has been mentioned above, a theoretical or analytical procedure to eval

uate all of the flow properties of the gas-particle mixtures in a nozzle has been 

nearly completed, although the flow is limited to the quasi-one-dimensional 

system. 

Next, what is considered to be more important is to understand the flow 

pattern of the gas-particle two-phase flows exhausted from a nozzle. That is, 

the numerical analysis of the gas-particle two-phase flows, not only in a nozzle 

but also in a free jet region, is of great technical importance for various 

engineering applications. However, the numerical analysis of this problem is 

difficult as regards a few aspects. First, a multi-dimensional system such as 

two-- or three-dimensional, cylindrical coordinate ones must be adopted for the 

computational domain. Therefore, a long computational time is required. 

Second, the gas-phase and the particle-phase are treated not as the same media, 

but as different media. Third, there is an ambiguity in the magnitude of the 

computational domain as well as the selection of the boundary conditions. 

This paper is concerned with a numerical analysis of gas-particle two-phase 

flows in relatively complicated flow fields. 

Consider a particle located at an upstream point of the flow field of a gas

phase, whose initial states are perfectly known. There is a technique to follow 

the later motion of the particle, which is commonly called the particle trajectory 

method. The numerical model for dilute gas-particle flows is constructed by 

incorporating the above trajectory method into the system of gas-phase equa

tions in the two-fluid model. Here, we consider gas-particle mixtures such that 

the gas-phase and particle-phase interact with each other. 

In general, even when one can regard the particle cloud in a flowing medium 

as very dilute, it is necessary to take the average values over an appropriate 

volume in order to define properties such as velocity, temperature and density of 

the particle cloud. In this sense, the particle velocity is generally specified by 

two quantities, the mean velocity, Qp and the fluctuating velocity, Llqp. For the 

motion of the particle-phase, one of the most important physical values is the 

mean square of the measured value of the fluctuation denoted by (Llqi). The 

product of (Llqi) and the particle-phase density just corresponds to the pressure 

for the gas-phase case from the point of view of the behaviour of the particle

phase. In order to see a global view of the motion of the particle cloud, we 
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define a parameter described by I ijp I /(Llq;) 112• The particle-trajectory method 

may be accepted on the premise that the motion of each particle is perfectly 

deterministic. Thus, when the condition that I ijp I /(Llq;) 112
- 00 is satisfied, the 

particle-trajectory method can be applied in a natural as well as an appropriate 

fashion. We now consider a characteristic of the flow field of the particle-phase 

on the above condition. The fact that the fluctuation of the particle velocity is 

negligibly small leads to the situation that in a dilute particle cloud there is no 

analog to pressure, and the particle information is not transmitted by particle

particle collisions but only along particle trajectories. That is to say, an impor

tant difference between a continuum and a dilute particle cloud is the mecha

nism for information transfer. In a continuum, information is transmitted by 

pressure waves, namely through molecular (actually particle-particle) interaction. 

Next, we will consider the above condition from another angle. It is well

known in the gasdynamics that the mean square of velocity in a random motion 

of gas molecule gives the temperature of the gas phase, and in turn the root of 

the temperature is proportional to the speed of sound. Assuming the similarity 

of such a fact, the condition that I ijp I /(Llq;) 112
- 00 suggests that the particle 

cloud is highly supersonic in a dilute gas-particle flow, and therefore is highly 

compressible. In fact, many dilute gas-particle flows are observed to be very 

similar to the supersonic flow of the gas phase. That is, in the flow fields of 

mixtures, the region where particles are not present at all, or on the contrary, 

the region where they extraordinarily aggregate themselves is formed in a very 

easy way. From such a point of view, it is important to point out that the 

particle cloud may be regarded as a continuum even in the limit of infinite 

dilution5l. 

In short, we may consider that the flow field of the particle-phase has two 

characteristics contradictory to each other. One is a discrete feature due to the 

fact that there is no analog to pressure (or pressure waves). The other is a 

continuum feature owing to the fact that the particle flow field is highly 

compressible. 

Again, for the case where velocity fluctuations of the particle cloud are 

negligible or not present in the flow field at all, the particle-phase properties can 

easily be evaluated by following some appropriate and representative particles 

along each particle trajectory in a Lagrangian fashion. 

Once again, we will consider the diluteness of the particle-phase from a 

quantitative point of view. It is commonly accepted that the material density /imp 

of an usual solid or liquid particle is larger by a magnitude of order of 103 than 

that of a gas {J. We define the ratio, 11, of the mass of the particle-phase to that 
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of the gas-phase per unit volume as v=npmp!'(l-Ep){) =ep0mp!'(l-Ep){)-::::::.Ep0mp/P, 

where n,,. mp and Ep denote the number density, the mass of a particle of fp in 

radius and the volume fraction occupied by the particle-phase per unit volume, 

respectively. Thus, we have ep=vp/{)mp- When a particle of fp is injected into a 

uniform space involving the particle cloud of the mean particle spacing lp, the 

particle mean free path XP travelled between particle-particle collisions is ex

pressed by the order of Tp!'e'ff. Thus, Xp!l:::::: ([p!'l)/e'ff, where l indicates a 

characteristic \ength of the flow field. Therefore, if [p!'l=0(e'ff), then Xp!'l= 

0(1). In this case, the gas-particle mixture may be regarded as dilute, and the 

direct collisions between particles can be neglected. For usual dusty gas flows, 

the order of 1,1 is unity (1,1=0(1)). Therefore, ep=0(l0-3
). That is to say, if 1,1= 

0(1), [p!'l =0(lo-2
) is a sufficient condition for the particle-phase to be dilute, 

and the behaviour of the particle-phase can uniquely be determined. 

As mentioned above, it can often be observed that the particle cloud breaks 

up into a large number of subclouds and also particle-free regions appear in the 

flow field. When a flow is highly unsteady, disintegration of a particle cloud 

commonly produces some small subclouds. These subclouds can in tum coalesce 

or collide with each other in some different flow regions. Here, we should like to 

stress that the collisions between particle subclouds do not always result in the 

direct collision between particles in the clouds. According to our above discus

sion, particle-particle collisions are negligible even when collisions between par

ticle subclouds occur, if 1,1=0(1) and hence Ep is negligibly small. 

In the present model, the whole particle cloud is divided into a large number 

of small subclouds. It is assumed that all the particles belonging to each 

subcloud have the same velocity and temperature. The particle flow field is 

solved by selecting an appropriate and representative particle in each subcloud 

and by following the properties of the particle along the particle trajectory. On 

estimating the momentum and energy transfer rates from the particle-phase to 

the gas-phase, the contributions from the clouds take average values over a 

volume. The cross-sections of the subclouds and the averaging volume are 

determined so that the conditions that lf,«LJSp«Sp«:.£2 are satisfied, where LJSp 
and Sp are the cross-sectional areas of the clouds and the averaging volume, 

respectively. 

In the present paper, on the above premises, we wish to treat some sig

nificant and attractive problems concerning the flow fields of two-phase mix

tures from an analytical standpoint. 

First, the gas-phase jet flows exhausted from a sonic nozzle are investigated 

in detail. The results so obtained are compared with the experimental ones in 
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order to confirm whether the present scheme is reliable or otherwise. 

Successively, the particles with the same velocity as that of the gas-phase 

are injected at the nozzle exit, and the effect of the presence of particles on the 

flow field of the gas-phase is investigated by comparing these two-phase results 

with those of the previous one-phase ones. 

Also, an unstable flow field of a gas-only jet impinging on a disk whose 

diameter is taken to be equal to that of the nozzle exit is numerically in

vestigated. Next, in the jet flows the particles are injected into the gas-jet at 

fixed points on the nozzle exit plane. The particle cloud is divided into two 

groups ; one of which is the particle cloud impinging on the disk and elastically 

reflecting from it. The other is the particle cloud passing around the outer side 

of disk. The numerical results obtained in such a situation are described, 

focusing upon the instability of the flow field of the gas-phase and particle

phase before and behind the disk. 

Furthermore, a situation is treated where a two-phase mixture flowing in an 

equilibrium state approaches a semi-spherical body and interacts with it. Simi

larly to the disk case, the particle cloud is divided into the particle group 

impinging' on the body surface and elastically reflecting from it, and into the 

group passing through without any impingement on the sphere. Such superson

ic gas-particle two-phase flows around the spherical body are simulated, and the 

effects of the presence of particles on the flow field in the shock layer are 

inspected by comparing the two-phase results with the single-phase ones in 

detail. 

2. System of governing equations 

The theoretical flow model for dilute gas-particle flows is constructed in a 

two-dimensional (i, y) coordinate system on several usual assumptions, although 

a few important assumptions among them introduced into the present analysis 

have been mentioned in the previous introduction. Again, we wish to address 

them with other important assumptions. First, no phase transformations such as 

evaporation, condensation and sublimation take place. Second, the mass flow 

rate for both gas- and particle-phases is conserved in a system treated here. But 

the particles occupy negligible volume, that is, the ratio of the density of the gas 

-phase to that of the particle-phase is negligibly slight. Third, the mean particle 

spacing is sufficiently smaller than the smallest scale of the flow field ([pl£= 

0(Ef3
) ). Fourth, the motion of a gas carrying suspended particles obeys the two 

-dimensional Euler equations. Namely, the gas-phase is regarded as inviscid, 
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apart from the drag force exerted by all of the particles on the gas. Fifth, all of 

the particles are spherical in shape with a uniform diameter, incompressible and 

do not interact with each other. Sixth, the momentum and heat transfers from 

the particle-phase to the gas-phase are taken into consideration. Seventh, there 

is no internal temperature distribution in the radial direction of particles, and the 

particles, as well as the gas, have a constant specific heat. 

On the above premises, the system of equations governing two-phase gas

particle mixture flows will be derived in a separate form for the gas-phase and 

the particle-phase. Previously, we wish to state that the dimensional quantities 

are denoted by the overbar, and no overbar denotes the dimensionless quantities 

throughout the present paper. Again, the subscripts p and r denote particles and 

reference conditions, respectively. 

2.1 Particle-phase 

A particle cloud which is fed at an upstream boundary at a certain time rt is 

divided into a large number of subclouds with an appropriate cross-sectional 

area. Here, let it be assumed that the initial state of each subcloud is perfectly 

known. A particle located at the center of a subcloud will be called the 

representative particle, and the particle is numbered by subscripts k (k = 1, 2, 3, 

• • • • ). Denoting the coordinate, velocity and temperature of the k-th represent

ative particle at a given time l(>lt) by (ipk(l), Ypk(l)), (ilpk(l), flpk(l)) and Tpk 

(l), respectively, we have the system of equations of motion obeying the 

Newton law in the following form: 

dip __ 
dl -Up (1) 

dyp - -
dl -Vp (2) 

dilp -A c- -) dl - Pu-up (3) 

~P =Ap(fl-vp) (4) 

Again, a particle energy equation can be derived by taking it into account 

that the heat transfer between the gas and the particle affects only the particle 

enthalpy hp through the surface area of the particle ( = 4 nr'f,) in the form of 

(5) 
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in which (xpk(l), Ypk(l) ), (upk(l), Vpk(l)) and Tpk(l) are abbreviated simply to (x,,. 

Yp), (u,,. iip) and TP in Eqs. ( 1) to ( 5 ), respectively. Also, u, v and T indicate 

the velocity components in the x- and y-directions and the temperature of the 

gas-phase at (x,,. Jp), respectively. .Ap and Bp are given by 

(6) 

respectively. Here, Pr is the Prandtl number of the gas-phase. The parameters, 

fp and g,,. are defined by 

Cn 
C and gP 

D, Stokes 

Nu 
NUs1okes 

(7) 

in which Cn and Nu represent the drag coefficient and the Nusselt number (Nu 

=ti.(2fp)/i. a; the heat transfer coefficient, ic; the thermal conductivity of the 

gas), respectively. The subscript, Stokes, denotes the Stokes flow regime(i. e., Re 

< 1, Re; the particle Reynolds number). Cpg is the specific heat of the gas-phase 

at a constant pressure. Also, the gas viscosity µ, is given by 

(8) 

where the exponent o is a constant. 

In general, Eqs. ( 1 ) to ( 5) are simply rewritten in the following vector form 

of 

dEpk -I 
dl - pk 

in which 

Xp 

Yp 

E= p Up 

Vp 

iip 

(k = 1 , 2 , 3 , · · ·) (9) 

Up 

Vp 

and I= p Ap(u-up) (10) 

Ap(v-vp) 

Bp(T-Tp) 

One should bear in mind that the above equations are applicable to follow

ing the behaviour of a particle of fp in radius. Therefore, in principle, the 

particle flow field should be solved by following all the particles using the above 

equations. However, there are too many particles in the flow field to do this. 
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Then we consider a large but tractable number of small subclouds. Now, one 

remaining task is how to evaluate the numerical treatment of the particle 

number Npk contained in the k-th subcloud. In practice, when a cloud is injected 
into a flow field at a time rt at a point (xpk(rt), Ypk(rt)) (k=I, 2, 3, ···), Npk 

remains unvariable on a two-dimensional computational plane at a given time l 

(>l~ at a position (xpk(l), Ypk(l)) for the case where the flow system is selected 

in the form of the Cartesian coordinate. However, the case of the axisymmetric 
flow system must be different from the foregoing case. The particle cloud in the 

physical space forms a ring cloud when the flow is axisymmetric. So the 

number of particles contained in the k-th subcloud is given by 2 HYp~p,.. Thus, 
we have 

or 

(11) 

where the cross denotes the conditions of the particles in the k-th subcloud at 
the injecting point. 

2.2 Gas-phase 
The Euler equations for the two-dimensional (or axisymmetric) inviscid flow 

consist of the energy equation, the continuity equation and the momentum 

equation. For the sake of simplicity, we first consider the single-phase (gas

only) flow. The total energy, e, per unit volume of the gas can be represented 
by the addition of the internal energy, pi (i=Cvgf, Cvg; specific heat at constant 

volume), to the kinetic energy as 

e =pi+~ (ii+ti) =[JCvgf + ~ (1i+v2
) 

=-P-+ i5 (ii+vz) 
r-1 2 

in which p is the pressure of the gas. 

(12) 

So that, the energy equation can be written on the basis of the conservation 
law by 

or 
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:~ + :x {u(e+p)} +; {v(e+p)} +i~ (e+p)=O (13) 

in which j= 1 if the flow system is axisymmetric. If otherwise, j= 0 (for the 

two-dimensional Cartesian coordinate system). 

Next, the continuity equation can be expressed in the form of 

(14) 

Again, the momentum equations are given by 

..E._r,,..-)+...E_r,,..-2)+ ap +...E_r,,..--)+ ·.lr,,..--)=O ar \µU ax \µU ax ay \µUV J y \µUV 

and 

..E._r,,..-)+...E_r,,..--)+...E_r,,..-2)+ ap + ·.lr,,..-2)=0 ar \µV ax \µUV ay \µV ay J y \µV 

Or 

(15) 

and 

..E._r ,,..-) +...E_r,,.. - -) +...E_r ,,..-2+,..) + -.lr ,,..-2) =O at \µV ax \µUV ay \µV p J y \µV (16) 

In the above Eqs. (14) to (16), j= 1 , if the axisymmetric flow system is treated. 

If otherwise, j = 0. 

Now, we consider the gas-particle interaction terms in gas-particle two

phase mixture flows. Here, the following space-averaged quantity, 

(17) 

is defined. The above summation is taken over the cloud whose centers (xp,,, Ypk) 

belong to the averaging domain Sp. Thus, ]p gives the number density ftp at the 

center of the domain Sp- The components of force exerted by the gas on all of 

the particles per unit volume are given by 

- 1 - - } Fp,=mp Sp mp,,Apk(u-upk) 

- 1 - -
Fpy=mpsLNp,,Apk(v-vpk) 

p 

(18) 
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Also, the total rate of heat QP transferred from the gas to all of the particles per 
unit volume yields 

(19) 

and the total rate of work Wp done per unit volume of gas on all of the particles 

Wp=Fpxil+FpyV-mp J l'Np~pk[(il-ilpk)2+ (v-vpk)2] 
p 

(20) 

Therefore, in the two-fluid model, the momentum equations for the gas
phase should be rewritten into 

(21) 

and 

_q_r,,.-) +-~-_r" - -) +_§__r,,.-2+n) + ·l.r ,,.-2) +F- =O a'{ v,V OX \_/JUV f}y v,V l' J y v,V PY (22) 

Furthermore, the energy equation for the gas-phase should also be described 
by taking into account the total rate of energy transferred per unit volume of 
gas to all of the particles. This becomes 

(23) 

Rewriting the system of the above equations for a gas-phase interacting 
with a particle-phase in the vector form, it follows that 

(24) 

in which 
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In addition, the above system is supplemented by 

fJ=pRT 

t 2=rRT 

(25) 

(26) 

(27) 

in which c, R and r denote the speed of sound, gas constant (R=Cpg-Cvg) and 

ratio of specific heats (r=CpglCvg), respectively. 

2.3 Transformation to non-dimensional equations 

Up to this point we have completed the system of equations governing the 

two-phase mixture flows on the dimensional space. Here, we wish to emphasize 

that in our calculation, the dimensionless variables and parameters are intro

duced, and the governing equations to be solved will be expressed by dimension

less quantities. It is physically important to rewrite the dimensional equations 

into dimensionless ones and to solve them in such a way as to realize the 

similarity of the flow pattern as well as the general validity. The main di

mensionless variables introduced into the system of governing equations are 

defined as 

r .x 
y=!, p= p - fJ 

t= Lier ' x= [,, Pr' p- Pr' 

ii, v 1' t (28) u=--:--, v=-:-, T=f, c=-=--, 
Cr Cr r Cr 

-.& y =li ii, _!}p_ Tp=k u=~ Xp- [, ' P L, p - Vp- - ' Cr Cr Tr 

where £ is the characteristic length of the flow system. One should keep in 

mind that the subscripts p and r, as mentioned already, denote particles and 

reference conditions, respectively. For example, tr is the speed of sound at a 

reference condition. Also, the velocity components of a particle located at (xp, 

Yp) or (xp, Yp) are denoted by up and Vp or up and Vp, respectively. 

In addition to Eq. (28), for later convenience, we wish to define the follow

ing non-dimensional parameters ; 
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I', =Pmp 11 =& 
P Pr ' r Pr 

(Cpp: Specific heat of particle material) 

(29) 

(30) 

Here, tA is called the aerodynamic response time of a particle, assuming the 

Stokes drag law, and tF the characteristic time of the flow system. These are 

defined by 

(31) 

in which the gas viscosity [1, is given by 

jl=µ;I' (see Eq.(8)) (32) 

where the exponent o is taken to be 0.6. 

We first consider the non-dimensionalization of Eqs. ( 9) and (10). Obvious

ly, Eq. ( 9) becomes 

(33) 

Therefore, for Eq. ( 1) and Eq. ( 2 ), the following relations are easily obtained 

from Eq. (28) 

dxp _ 
dt -Up 

dyp =v 
dt P 

(34) 

(35) 

Next, we make Eqs. ( 3) and ( 4 ) non-dimensional by taking Eq. ( 6 ) into 

consideration. 

!!:_(- ) _ _! jj,fp ( - ) 'rF 
dt C,Up - 2 Pmpfj, Cr U Up • 

(see Eq.(31)) 

so that 

dup -A ( ) dt - Pu-up (36) 
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dvp -A ( ) dt - P v-vp (37) 

in which 

(38) 

Also, taking into consideration the relation that hp=GppTp and Eq. ( 6 ), 

rewriting Eq. ( 5 ), we have 

so that 

dTp ( 9/1 ) 2 _ _&_ ( T ) 
dt = ');. ~ • 3<F. Pr0 T- p 

=mp p 

1- i _1£.p_c·- )- c-) 
3 (tAitF) Pr0 T Tp -Bp T Tp 

in which 

3I'rPr0 

(39) 

(40) 

Accordingly, the system of non-dimensional equations for Eqs. ( 9) and (10) 

is given by 

in 

dEpk -J 
dt - Pk 

which 

Xp 

Yp 

E-p- Up 

Vp 

Tp 

Up 

Vp 

and Ip= Ap(u-up) 

Ap(v-vp) 

Bp(T-Tp) 

(41) 

(42) 

Next, we transform the system of equations for the gas-phase given in Eqs. 

(24) and (25) into the system of non-dimensional equations. First, we wish to 

define the following non-dimensional quantities for later convenience, 

(43) 

in which flp is the number density anp mp= (4/3) nfj,Pmp-
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First, the non-dimensionalization for e, fJ and c (see Eqs. (12), (26) and (27)) 

is given by 

P 1(2 2)-e 
e r(r-1) +zP u +v =rPr 

p=pT 
c=Tv2 

- -

(44) 

(45) 

(46) 

Next, we rewrite Fpx and Fpy shown in Eq. (18), Qp in Eq. (19) and WP in Eq. 

(20) using Eqs. ( 6 ), (28), (40) and (43). 

_ llrPr ..,717 1 , ( ) 
=er-$ 4J.Vpk---Jpk U-Upk 

p "A 
(47) 

F- - llr Pr '\'J\T l , ( ) 
py=Cr-s 4J.Vpk ---Jpk V-Vpk 

p "A 
(48) 

and 

Q;- _ llrPr 18µ 
0 

1_ 
0 

gpkCpg - ( _ ) 
p- s INpk - c2- )2 3 Pr Tr T Tpk 

p Pmp rp 

(49) 

and 

W;- _ -2 llrPr { '<'717 ~( _ ) + '<'717 ~( _ )} 
p-Cr $ U,:_,1vpk - U Upk V4J.Vpk _ V Vpk 

p CA CA 

-2 llrPr '<'717 ~[( )2+ ( )2] -c, -
5 

=•pk _ u-upk v-vpk 
p "A 

_-2- ~[{ '<'717 ~( _ )+ '<'717 ~( _ )} -CrPr $ U4J.Vpk - U Upk V4J.Vpk _ V Vpk 
p CA "A 

(50) 

According to Eq. (28), the non-dimensional continuity equation becomes 
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Cr a r" ) + 1 a r" _ ) + 1 a r" _ ) + . 1 r" - ) 0 
l fitVJrP l ax \JJrPCrU l ay \PrPCrV J Ly \JJrPCrV = 

so that 

(51) 

Combining Eq. (21) and Eq. (47) and introducing Eqs. (28) and (38), we have 

Cr a r" _ ) + 1 a r" -2 2 +[J,P) + 1 a r" -2 ) l fit\JJrPCrU l ax \JJrPCrU l i}y \JJrPCrUV 

+ .1 1 {;; -2 )+- VrPr t"'J\T 1 + ( )-o JL- -\JJrPCrUV c,-s ""1.Vpk---Jpk u-upk -
y P TA 

or 

- - a (p ) + _ _ a (p 2+ Pr P) + _ _ a (p ) PrCr-at U PrCr-0 U ---:----=z PrC,-a UV 
X Pr Cr Y 

+ ---l_(p )+--~t"'J\T ~( - )-O JPrCr UV CrPr S ""1.Vpk - /- U Upk -
· Y p CAf cF 

so that 

a a a 
at(pu) + ax (pu

2
+p/r) +ay(puv) 

+jl_(puv) + Svr lNp,Apk(u-upk) =O 
y p 

(52) 

Similarly, we have 

a a a 
at(pv) + ax (puv) + ay (pv

2
+P/r) 

+jl_(pv2
) + 

5
vr lNp,Apk(v-vpk) =O 

y p 
(53) 

Next, combining Eqs. (23), (44), (49) and (50), introducing Eqs. (28), (38) 

and (40), and noting that c;p,ltF=rfJ,c,/l, we have 

Cr ae + 1 a {- ( )} 1 a {- ( )} l rPrfit l ax c,.u rfJ,e+fJ,p + l ay c,v rfJ,e+fJ,p 

+ . Cr v ( ) c; VrPr t"'J\T B 0 (T T ) JL- - rfJre+[J,P +---:- • -s ""1.Vpk pk-=-1 - pk 
Y cF p r 



Theoretical Analysis of Supersonic Gas-Particle Two-Phase Flow 131 
and Its Application to Relatively Complicated Flow Fields 

+c~ l.lsrPr [ {umpk ~(u-upk) +vmpk ~(v-vpk)} 
p ~ ~ 

-mPk ~{(u-upk)2+ (v-vpk)2} J =O 
"A 

Rearranging the above equation yields 

ae a a .v 
at+ ax {u(e+p/r)} + ay {v(e+P/r)} +1Y(e+P/r) 

+ ;: mp,,J3pk r~I (T-Tpk)+ ;: [{ump.0pk(u-upk) 

=O (54) 

Therefore, the system of non-dimensional equations for the gas-phase inter

acting with the particle-phase is given in the vector form by 

(55) 

in which 

[P] lpu ] lpv ] pu pu2+P/r puv 
Q= , F= , G= , 

pv puv pv2+P/r 

e u(e+P/r) v(e+P/r) 

(56) 

Here, Fp» Fpy, QP and Wp are defined by 

(57) 
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(58) 

(59) 

(60) 

Also, it should be borne in mind that j= l, if the flow system is axi

symmetric, and that j= 0 for the case where a two-dimensional Cartesian coor

dinate system is treated. 

Finally, we note that Cv and Nu appearing in Eq. ( 7 ) are used on the basis 

of the Henderson correlating equation2n and the empirical expression by Carlson 

and Hoglund22l, respectively. 

3. Numerical scheme 

3.1 Osher's scheme 

The Euler equations of gas-phase, described in Eqs. (55) and (56), are solved 

using a second-order accurate TVD (Total Variation Diminishing) scheme de
veloped by Chakravarthy and Osher6J-sl_ This is commonly called the Osher 

scheme. It is empirically well-known that the numerical quantities across a 

discontinuity exhibit a remarkable instability due to a false oscillatory property. 

A numerical overshooting or/and undershooting is commonly observed before 

and after the discontinuity. This scheme protect such numerical phenomena. 

This section describes the outline of the Osher scheme according to Chakr

avarthy and Osher. It is worthwhile to take single phase (gas-only) flows for 

examples to aid the reader in understanding the applicability of this scheme, 

although the purpose of this paper is to investigate the two-phase flows. 

In the scheme, the computational domain is divided into a number of small 

cells and the physical variables are defined at the cell center. Figure 1 indicates 

the cell arrangement in the x-direction and the flux difference between the cell 

interface and the centroidal grid point. One should bear in mind that for a two

or three-dimensional system, the one-dimensional Riemann problem with its 

simple solution is applied separately to each dimension. Thereby, independent 

discretizations of the flux derivatives in each spatial dimension are determined. 

Then, the terms are added up for the overall discretization. In this sense, we 

first consider only the flux in the x-direction. Thus, the first-order accurate flux 

at a cell interface j + 1 / 2 (see Figure 1 ) is given by two kinds of forms as 

follows, 
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I F( oj-11 F( oj I 

D. y ~~- X 

D.X /2 

Fig. 1 Cell arrangement in the x-direction and flux 
difference between cell interface and centroidal 
grid point. 

(n=1~4) 

F-n _ 1 (Fn+Fn '<'-'Fin+ + '<'-'Fin- ) 
j+l/2--2 j j+I - ~ j+l/2 ~ j+l/2 

I I 
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(61) 

(62) 

(63) 

in which Q/or Qi+ 1) denotes the dependent variable which corresponds to the 

component of the vector, Q, expressed in Eq. (56). Again, Fn(Q) (or Fn(Qi+ 1)) is 

the flux determined by Q/or Qi+ 1) (FP=Fn(Qi)) and corresponds to the compo

nent of the vector, F, in Eq. (56). m is the number of eigenvalues of the 

Jacobian matrix to be mentioned later. Also, the superscript+ (or-) denotes the 

positive wave speed (or the negative one). 

Next, we consider the spatial accuracy of the flux derivative when a semi

discrete approximation to iJQ/iJt+iJF/fJx= 0 is given by 

(64) 

the Taylor series as 
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df1--;,.112 = F;+ ,12 - F; (see Eq.(61)) 

= L1x ( aF) + (L1x)
2 
( a

2
F) +O((L1x)3) 

2 ax; 8 ax2 ; 
(65) 

(see Eq. (62)) 

(66) 

so that 

F =F+(~)( aF) + (L1x)2 ( a2F) +O((L1 )3) 
i+ I/2 1 2 ax i 8 ax2 i X 

(67) 

Thereby 

(68) 

It is clear that the above approximation to the flux F;±v2 is first-order accurate, 

while (aF/ax); is second-order accurate. Again, the flux difference across the i-th 

wave, df1!v2 which appears in Eq. (63), can be obtained by solving a local 

Riemann problem with the left state s; and the right state s;+i• 

According to the Riemann solver by Roe9l, dependent variables s;+ 112 at each 

cell interface can be obtained using the two neighbouring cell states Cs; and s;+ 1) 

as 

S;+ 1/2 (69) 

Here, s represents p, u, v and h(=h/c;=p/((r- l)p) + (u2+v2)/2=c2/(r- l) + (u2+ 

v2)/2) (see Eqs. (45) and (46)). 

The approximate Riemann solver by Roe is based upon the linearized gov

erning equation aQ/at+A;+vziJQ/ax= 0, where A is the Jacobian matrix (A;+vz= 

(aF/aQ);+ 112). Here, it should be borne in mind that the description of the 

scheme is limited to the two-dimensional Cartesian coordinate system, unless 

otherwise mentioned. Therefore, x- and y-axes to each cell interface are orthog

onal with each other. Essentially, we have the two Jacobian matrices A 1 =aF/aQ 
and A2=iJG/aQ. But, using the generalized metrices nx and ny which define the 

x- and y---components normal to the cell interface, the generalized Jacobian 
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matrix can be expressed by A=nxA 1+nyA.z. Thus, A=A 1Cnx= 1 and ny= 0) in 

the x-direction because there is no contribution from the y-direction term. Of 
course, the same holds for the y-direction. In fact, the Jacobian matrix in the 

present situation can be expressed in the form of 

A= 

in which 

0 

nxI' 2 U -2-q.-u 

nvI' 2 U 2 q -v 

I'Uq2- reU 
p 

I'=r-l 

U+nxCl-I)u 

V+n/1-I)u. U+n/1-I)v 

0 

rU 

(70) 

(71) 

Also, the above matrix takes real eigenvalues in the form of the wave speed 
given by 

).
1=u-cJn;+n; 

,._2=U 

).3=U 
(72) 

For these eigenvalues we have the two matrices L and R of the left and right 
eigenvectors as 
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C 

_l 
~-fl 
C X 

-2 _£_fl 
C y 

q2 C 
--0+-
2c r 

in which 

r -fl ---u 
X C 

r 
-fl +--u 

y C 

C 

r 
fly+--u 

C 

r fl ---u 
X C 

~-fl 
C y 

.£+fl 
C X 

1 
C 

~+fl 
C y 

_£_fl 
C X 

2 q2 
L+v --v 
2c 2c 

r 
-fl --v 

y C 

r 
flx+-V 

C 

r 
-fl +-v 

X C 

r 
fl --v 

y C 

C 

~+fl 
C X 

.£+fl 
C y 

2 
L+O+.£ 
2c r 

r 
C 

r 
C 

r 
C 

r 
C 

(73) 

(74) 

(75) 

Now, we can easily derive on the basis of the orthogonality between L and 

R that 

dFi+v2=Ai+vzCQi+l -Qi) 

= (RAR-1)i+vzCQi+1-Qi) 

= (RAL)j+112CQj+l-Qj) 

A=diag (,l_i), i=l~4 

(76) 

Here, diag (,l_i) denotes a diagonal matrix with diagonal elements A;. Note that A 

=RAL. Thus, we have 
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l
dF

1
~112] ll}+112 dQ] [A}+v2 a}+v2] 

dF/+112 =(RA)· l]+112dQ =K A]+112aJ+v2 
dF3 ,+112 l3 dQ ,+112 3 3 

1+ 112 1+ 112 A1+ 112 a1+ 112 

dF/+112 lJ+112 dQ lJ+v2 aJ+v2 

in which 

Thus, Eq. (77) can be rewritten in the simple form of 

l
dF/)_ 1/2 +dFR 1/2 + dF/! 1/2 + dFj~ 1/2] 

dF/)_ 112 + dF/,J. 112 +dF/J.112 +dF/:.112 

= dF/J-112 +dF/'}. 112 + dF/'J.112 +dF/J. 112 

dF/)_ 112 + dF/'J- 112 + dF/J_ 112 + dF/J. 112 
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(77) 

(78) 

(79) 

(80) 

in which _,in(i= 1 ~ 4 ; n= 1 ~ 4) corresponds to the element of the matrix 

given in Eq. (74) with the subscript J+ 1/2, and dFj~ 112 =(Anan_,i•)1+112, and 

Here, 

a}+112= -✓pi P1+1 L101+v2+ L1P1+v?!r/c1+112 l 
aJ+112=✓P1 P1+1 L1 ll1+112- L1P1+v?!r/c1+112+ L1P1+1ffeJ+112 

aJ+v2= -✓pi P1+1 L1 ll1+112- L1P1+v?!rlc1+112+ L1P1+1ffeJ+v2 

aJ+112=✓P1P1+ 1 L10J+v2+ L1P1+v?!r/c1+v2 

L101+v2= 01+1-0jl 
L1ll1+112- llj+I- trj 
L1P1+v2=P1+1-P1 

L1P1+v2=P1+1-P1 

(81) 

(82) 
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Now, we wish to note that dF/~ 112 (i= 1 ~ 4 ; n= 1 ~ 4 ), which appears in 

Eq. (80), corresponds to the state changes across each simple wave. In short, the 

states at each cell interface can be calculated by Eq. (80). Furthermore, these 

flux differences may be redefined by introducing the concept of upwind differ

encing as 

(83) 

and 

(84) 

with the positive and negative parts of the eigenvalues. From Eqs. (83) and (84) 

we can determine the numerical flux function expressed in Eq. (63). 

Again, the Roe scheme has the possibility to catch an expansion shock as 

well as the ordinary shocks, as Roe9> and Chakravarthy10> have pointed out. To 

avoid such a numerical situation, Matsuda et a1.1n have followed the procedure 

developed by Chakravarthy, and proposed the following countermeasure for Ai+ 

and Ai-: If at sonic expansion 

(85) 

then A/+ 112 and AJ~ 112 in Eqs. (83) and (84) are required to be replaced by 

(86) 

(87) 

The second-order Osher scheme treated here has no explicit artificial viscos

ity to suppress the unlimited flux difference across discontinuous waves such as 

shock wave, slip line, and contact surface. Thus, Chakravarthy and Osher have 

started with a one-parameter family of semi-discrete schemes with numerical 

flux, 

F~n -F~n 0-TJ) (" dFin- ) Cl +TJ) (" dFin- ) 
J+vz- J+vz- 4 7' J+3/2 - 4 7' 1+112 

(88) 

and to obtain a higher-order TVD scheme, they have modified the last four 
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terms on the right hand side by utilizing flux limiters as 

with 

and 

An -p~n (1-77) (" d-Fin- ) (1 +77) (" d""pin- ) I'j+l/2- i+l/2- 4 7' i+3/2 - 4 7' i+l/2 

+ (1 +77) (" ifrin+ ) + (1-77) (" dFin+ ) 
4 7' J+l/2 4 7' 1-1/2 

d!/:312 =minmod[dF/:312 , wdF/:112] 

dF/:112 =minmod[dF/:112 , wdFi~312] 
d-pin+ - . d [dFin+ dFin+ ] i+ 112 -m1nmo i+I/2, w i-t/2 
d"'pm+ - . d [dFin+ dFin+ ] i-112 -mmmo j-112, w i+t/2 

(89) 

(90a) 

(90b) 

(90c) 

(90d) 

(91) 

Also, it is noted that minmod [a, b] = 0, if ab< 0 and minmod [a, b] =a, if I a I 
< I b I . Otherwise, minmod [a, b] = b. Here, the spatial order of accuracy is 

determined by the value of 77 : 

77= -1 

77=0 

77= 1/3 

fully upwind scheme 

Fromm Scheme 

third-order upwind-biased scheme 

Eq. (89) is the Osher scheme to determine the numerical flux atj+l/2. Using 

the numerical solution for the Riemann problem obtained separately in each 

dimension, the dependent variables Q7, k(t+ Lit) can be computed by 

Q'J. k(t+Llt)=Q'J. k(t)- j! (PP+112-P/'-112)- ji (Pk+l/2-Pk-1/2) (92) 

Thereby, all of the dependent variables Q= [p, pu, pv, e] T can be evaluated at t+ 

Llt(Llt: time step). It the Osher scheme, the above Riemann problems are solved 

at every cell involved in a computational domain at every time step. 

3.2 Numerical procedure 

The numerical procedure of the Osher scheme described in the previous 

section is applied to a two-dimensional Cartesian coordinate system (or a one

dimensional system). We now consider the transformation of arbitrary coordi

nate systems. For convenience, we begin with 
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(see Eq.(55)) 

and consider a transformation of variables of the type 

So that 

f=Hx. y), 1J=1J(x, y) 

...L=...L of +...LE!L. 
ax of ax OTJ ax · 
...L=...L of +...L OTJ . 
f}y of ay OTJ ay · 

Thus, we have 

Ox=fj},+7Jj}n} 

oy-fj},+TJ/Jn 

in which J is a Jacobian of transformation defined as 

Again, obviously, the following relation holds true; 

a(!l)+a f fxF+LG)+a (.!b...F+!J..y_G) 
t J f\J J n J J 

=Qa1(} )+Fa.( 7 )+Ga.( J )+Fan( o/ )+Gan( y) 
By definition, it follows that 

(note ox=o/ox, e.g.) 

Accordingly, 

or 

f}f= } (TJ/Jx- 7]/}y) l 
an=} ( -ff}x+fj}y) 

Self-evidently, 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 

(99) 

(l00a) 

(l00b) 
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fx:fy~ fy= =Jx~ } 
TJx- - Jy, T}y- ]x, 
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(l0la) 

(l0lb) 

(102) 

Here, combining Eqs. (101 b) and (102) with the right hand side of Eq. (98) yields 

arr. a - o;,; 
at~+ of F+ifii""=0 

in which 

Q=-9_ 
J 

i'=m,,F+mp 

G=n,,F+nyG 

m - fx m =L_ x-y, Y J 

n =!b_ 
y J 

(103) 

(104) 

Furthermore, practically, for the cylindrical system of non-dimensional equa

tions for the gas-phase interacting with the particle phase, which is given by Eq. 

(55), H and Hp should also be transformed in connection with Eq. (94). In this 

case, the system of equations is given, instead of Eq. (103), by 

(105) 

and the following transformations, 
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il=~, Hp=y (106) 

are supplemented besides Eq. (104). 

Here, we should like to note that the axisymmetric term il and the gas

particle interaction term Hp are only additional terms in the equation of the two 

-dimensional gas-only flow and bear no direct relation to the TVD scheme. 

In the present numerical procedure, the second-order accuracy in time is 

realized. We wish to describe briefly the prescription of the time-accuracy. 

Now, we introduce the discrete representation xi=x0+iLlx and tN=t0 +NL1t, and 

suppose that Q1/ is some approximation to Q(xi, tN). Then, we expand Q(xi, tN+ 

Llt/ 2 ) at the half time step into the following two kinds of Taylor series, 

Thereby, the flow quantities Q1!+V2 at the half time step tN+t/2 can be evaluated 

by ( Q1! + Q1! + 1) / 2 . Again, it is clear that the accuracy of Q1/ + 112 corresponds to 

the order of (Llt) 2 
• Thus, Q1!+3/2 can be easily obtained by using Q1!+ 112. Finally, 

Q1!+1 is obtained in the form of 

(107) 

It should be stressed that throughout our numerical calculations to be 

mentioned later, the second-order accuracy in time is achieved by using Eq. 

(107). 

Again, the time interval Llt is controlled by the Courant-Friedrichs-Lewy 

(CFL) condition. We simply consider the condition by the von Neumann 

stability analysis. We suppose a linear equation consisting of only the convec

tion term such as aQ/at+UaQ/ax= 0 in which the gas velocity U is a positive 

constant. Applying the forward difference to the unsteady term and the back

ward difference to the convection term 

(108) 

in which E and /7 are the identity and backward operators, respectively, and /3( = 

U Llt/ Llx) is commonly called the Courant number. According to von Neumann, 

he has put Q1/=exp(k1NLlt) • exp[kd(iLlx)] (j=-/=T) in the form of the Fourier 

series. Here, k 1 and k 2 are generally both the complex constants. Thus, 
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(E-f3P)Q'/=exp(kiNL1t) [1-/3{1-exp(-kJL1x)} ]exp[kJ(iL1x)] 

=exp(k1L1t)exp(k1N L1t)exp[kJ(iL1x)] 

exp(k1L1t) = 1-/3{1-exp(-kJL1x)} =A 

As a result, the condition for the accumulative error not to increase as N-HX) is 

prescribed by I A I < 1. That is, 0 </3-S, 1. This means that Q can jump no 
more beyond one spatial mesh size ( = L1x) per time step L1t. 

Practically, the integration time step L1t obeys 

L1t=/3 • Min{Min(L1x, L1y)/(c+Ju2+v2
)} (109) 

for every cell. In the present calculation, /3= 0.4 is selected. 

4. Numerical experiments 

4.1 One-phase and two-phase jets exhausted from a sonic nozzle ( I ) 
We begin with the one-phase jet flow problem. The Mach number of the jet 

at the nozzle exit is fixed to be Mi= 1. The jet begins to blow at t= 0 (N= 0) 
from an axisymmetric nozzle with 0.01 m in diameter at the exit. Again, we 
assume that a uniform ambient gas is at rest over the whole computational 
domain at t= 0. 

In the present work, the characteristic length of the flow field £ is repre
sented by the exit diameter of the nozzle ([J= 1 cm), and the reference conditions 
correspond to the reservoir conditions. The ratio of Po to Poo( =Pr/Poo) is, in 
principle, fixed to be 5.8(/>oo = 1.0 X 105 Pa) and the temperature ratio f r/7' oo is 
fixed to be unity Cf 00 = 300 K), where the subscripts, 0 and 00 , denote the 
reservoir and ambient conditions. Again, the gas flow from the reservoir to the 
nozzle exit is assumed to be isentropic. Hence, the gas pressure, Pft at the nozzle 
exit is obtained through an isentropic relationship from the stagnation condi
tions; 

[ 
r-1 u2]-r/(r-1) 

Pi=Po 1 +-2-1v11 (110) 

Also, in the two-phase jet flows to be mentioned later, the so-called mist 
composed of air and water-particles will be treated as the representation of gas 
-particle two-phase mixtures. The physical constants of the gas and the parti
cles adopted are listed in Table 1 . For the present case of one-phase jet flows, 
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Table. 1 Physical constants of gas and particles. 

Gas (Air) 

r =1.4 

C"'= 1004 J/(kg• k) 

To =300 K 

Pr=0.7 

ii =2.07x10-s Pa·s 
(at To) 

Pm, =1000 kg/rrf 

C,, =4187 J/(kg•K) 

i\=10 µm 

the gas condition is assumed to be the same as shown in Table 1 . Therefore, the 

condition that Mi= 1 gives the pressure ratio Pi/[J0= 0.528. That is, Pi/Poo= 
3.062. 

The computational domain is divided into 150 X 100 meshes (or cells) in the 

x- and y-directions, respectively. The nozzle axis is taken along the x-axis and 

the radial direction along the y-axis (see Figure 2 ). Again, the mesh size, L1x 

( = L1y) is selected at 0.05. 

Here, we wish briefly to mention the boundary condition of the com

putational domain in the present calculation. As Matsuda et al.12l have pointed 

out, because the Osher scheme has no explicit artificial viscosity to cut down 

unphysical disturbances, the numerical results are rather sensitive to the choice 

of the boundary condition imposed on the numerical boundaries, which may 

produce or reflect unrealistic damage to the main flow. According to their 

results obtained by several boundary conditions, it follows that the imposition of 

the ambient gas condition to the upstream boundary BC, the downstream one DE 

and the side one CD gives a best-fit to the realistic phenomena encountered in 

the experimental results (see Figure 2 ). 

As has been mentioned already, the physical variables are defined at the cell 

center in the cell method. So that, we must take two additional cells just outside 

the interior cells contacting the boundaries so that the fluxes just on the 

boundaries may be calculated by solving a Riemann problem between the state 

in the additional cell and the state in the cell just inside the boundary. In short, 

the Riemann problems must be solved at every cell and at every time step 

strictly (see Eq. (89)). 

In the above ambient gas condition, the additional cells are filled with an 

ambient gas. 

The symmetric condition is applicable to the jet axis, AE (see Figure 2 ). 

This is the condition that only the velocity component (v in the present situa-
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c1-----------------.o 

BL/ Nozzle exit plane 

A: Symmetric ~---· E x. 

Fig. 2 Computational domain. Note that it is 
divided into 150 X 100 meshes in the x
and y-direction, respectively (/::,x=l::,.y= 
0.05). 
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tion) normal to the jet axis is opposite through the boundary AE, and the other 
physical quantities such as p, u, e are taken to be equal between the interior and 
exterior cells next to the axis AE. This symmetric condition is applicable to a 
solid wall surface, also when the gas flow around an object is treated. 

The jet condition is applied to the jet exit plane AB. This is the condition 
that p, u, v and e of the jet at the nozzle exit are input to the exterior cells 
contacting with the jet exit boundary. 

Now, we wish to present calculated results of the one-phase free jet. Figure 
3 indicates the density contours (N= 5000) for underexpanded choked free jets 
of the four cases wherep0 = 5.8 x 105 Pa(a), Ji0 =10.0X105 Pa(b), Ji0=15.0Xl05 Pa 
(c) and p0 =19.4Xl05 Pa(d). These calculations were continued till N= 10000 in 
order to check whether the global shock cell structures can reach a steady or 
converged stage with time (as N--00 ). We have confirmed that the flow field 
upstream from the Mach disk is stable and steady, and the characteristics of the 
first shock cell remain unvaried with time. However, the flow field downstream 
from the Mach disk is not time-independent but considerably unsteady. This 
situation is reproduced by the time history of the density distribution along the 
symmetric axis. Figure 4 shows the numerical results obtained for 8020 sN s 
10000 under the corresponding conditions mentioned above. Here, the time 
history is taken at every 20 time steps. This demonstrates that an almost steady 
flow field is constricted only to the region upstream from the Mach disk for the 
large N, while in the region downstream from the Mach disk, the density field is 
appreciably fluctuating or oscillatory, even for the large N. This situation is not 
always unlikely. At a high Reynolds number, the jet boundary is very unstable 
and therefore the jet usually experiences a self-sustained oscillation due to a 
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4
l _ 

One of the most important factors here is to examine whether or not the 
present numerical scheme is applicable to and valid for the calculation of the 
flow field of the relatively simple one- phase free jets. If no check is made for 
the scheme, the numerical results of the more complicated flow field do not 
always enable us to be convinced. Thus, a few points of characteristics of the 
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first shock cell structure calculated are compared with the experiments of Love 

et al. 15
l_ That is, the ratio of the distance Lm from the nozzle exit to the Mach 

disk to the diameter D of the nozzle exit, the ratio of the diameter of the Mach 

disk Dm to D, and the ratio of the wave length Lw to D are shown against PJ IP= 
in Figure 5 (a), and therein compared with the experimental results. The 

comparison gives excellent agreement between the calculated and the experimen-
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tal results. Next, the density distribution along the jet axis, which has been 

computed under the condition that the pressure ratio PclfJ== 19.4, is compared 

with the experimental results measured under the same condition by Kobayashi 

et al.16l. The comparison is shown in Figure 5 (b) and gives fairly good agree

ment between the two results. These two facts suggest that the present numer

ical scheme may well simulate various complicated flow fields, at least, the flow 

structure of a free jet. 

Now, we consider two-phase jet flows exhausted from a sonic jet. It is 

assumed here that in a nozzle the particle phase is in velocity and thermal 

equilibrium with the gas-phase. So, both the velocity and the temperature of 

particles at the nozzle exit are assumed to be equal to those of the gas. On this 

premise the particles are injected into the one-phase jet at fixed points on the 

nozzle exit plane at each time step after the final time step (N = 10000) in the 

one-phase solution. The case is selected where the pressure ratio is taken to be 

Pc/P= = 5.8. Therefore, when the particles are initially injected into a gas jet 

flow, the state of the density field of the gas is the same as in Figure 3 (a). 



Theoretical Analysis of Supersonic Gas-Particle Two-Phase Flow 151 
and Its Application to Relatively Complicated Flow Fields 

Concerning the positions where the particles are injected, we divide the nozzle 

radius equally into K parts and put the particle subclouds at the center of each 

part. So, in the present numerical experiment, it follows that K particle sub

clouds are injected into the flow field at each time step. Here, we consider the 

number of particles contained in a subcloud. The time interval L1t determined 

by the CFL condition for the gas-phase flow is also applicable to the particle-

phase analysis. Let us denote the axial and radial sizes of the k-th particle 

subcloud by 4x; and L1y!, respectively. These can be rewritten into 

L1x!= I up I • I L1t I =c, I up I • -~ L1t= I up I L1tl c, 
(111) 

by the definition of Eq. (28). Thus, the number ~f particles per unit length of a 

ring subcloud can be counted by 

Thus, as defined in Eq. (43) 

NJ,= I Up I L1t. L1y! 

or 

(see Eq. (11)) 

(112) 

(113) 

(114) 

The number of subclouds K injected into a flow field at each time step is 

always kept unvariable. In the present case, K= 25 is taken, and therefore Llyp= 

Lly/ 2.5. Therefore, although the condition that L1yp~L1y is not necessarily 

satisfied, it is automatically satisfied that I up I Llt is much smaller than the mesh 

size Llx. It may be considered that L1Sp = Llxp • Llyp is sufficiently small in 

comparison with the space-averaged area Sp= Llx • Lly. 

Now, we wish to show some characteristics of the jet flow of the gas-particle 

mixture for the loading ratio 11 = 0.3 and the particle radius fp = IO µm. Figure 6 

shows the comparison of the density contour of the two-phase mixture flows 

with the corresponding dust-free ones at several kinds of time steps. At the first 

glance, a significant discrepancy can not be observed between the two flows. It 

need not take so large a number of time steps to get a roughly time-converged 

solution after the injection of the particle subcloud into the flow field. One 

should bear in mind that the first step (N = 1 ) actually corresponds to N = 
10001, because the dust-free result obtained at N = 10000 is employed as the 
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initial flow condition. First, the location of the Mach disk of the two-phase 

results tends to move more remarkably than that of the one- phase results, 

although it is slight. Also, the jet boundary downstream from the Mach disk is 

somewhat unstable for both the one- phase and two- phase flows. 

Figure 7 shows the time history of the density distribution of two-phase 

flow along the symmetric axis for 2020 :s;: N ::;: 4000 at every 20 time steps. Ac

cording to this figure, the fluctuating motion of density in the jet core down

stream from the Mach disk seems to be suppressed in comparison with the one 

- phase result (see Figure 4 (a)) , although it is not so remarkable. Figure 8 

demonstrates the variation of the velocity vectors of particles along streaklines 

in the two-phase jet flows with time, at the time steps corresponding to the case 

of Figure 6. Although a partly unstable aspect can be observed, neither coales

cence nor intersection takes place in the whole flow field . Presumably, this may 

be based on the fact that the particle size is taken to be a little too large (fp = 

10 µm). Again, the flow field of particles is enlarged in the radial direction as the 

particles proceed downstream. 
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This section describes some characteristics in the flow field of the one-phase 

and two-phase jets impinging on a disk perpendicular to the jet axis. The 

computational conditions are almost the same as those of section 4.1, except that 

a disk stands in the flow field. The diameter and thickness of the disk are taken 

to be equal to the diameter and thickness of the disk are taken to be equal to 
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the diameter of the nozzle exit (JJ= 10 cm) and D/2, respectively. It is assumed 

that the disk stands at the distance of x( =x/D) = 3 from the nozzle exit. 

We begin with the comparison of the flow fields between the one-phase and 

two-phase cases. Figure 9 shows the comparison of the density contours be

tween the two cases at a few kinds of time steps. The flow field in the region 

upstream from the Mach disk is seen to be relatively stable. However, in the 
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region downstream from the Mach disk, in particular behind the disk, many 

small and large vortical structures are observed, and the jets interacting with the 

disk fluctuate in a very unstable state in comparison with the previous case 

where the disk is not present. Again, the jet boundaries, which can not clearly 

be discriminated, are enlarged in the radial direction after the impingement of 

the jet core on the disk. Such a tendency is understood to be more notable in 

the two-phase result than in the one-phase one. 

Figure 10 indicates the comparison of the time history of the density dis-
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tribution along the nozzle axis between the one-phase flow (a) and the two

phase one (b) for 20 :S:: N :S:: 2000. Note that the dust free result obtained at N = 
10000 is used as the initial condition. Although there is no significant difference 

in the fluctuating motion of the density of the jet core between the two cases 

only in the region behind the disk, the fluctuating motion of the density before 

the disk is suppressed by the presence of particles. This suggests that the 

presence of particles operates in such a way as to stabilize the flow field. This 

may be due to the fact that in the dusty jets, interactions between the gas- and 
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particle-phases tend to suppress the increase in the gas velocity, and the de

crease in the gas temperature. In short, a rapid and unstable change in the jet 

flow field tends to be relieved by the presence of particles. 

Figure 11 shows the velocity vectors of particles along the streaklines at 

several kinds of time steps. What is considered to be interesting here is that the 

particle cloud is divided into two groups: One group is the particle cloud 

impinging on the disk and elastically reflecting from it. The other is the particle 

cloud passing through and around the outer side of the disk. We find from 

Figure 11 that the particles impinging on the disk near the jet axis experience a 

few collisions with the body surface, before they flow out of the jet boundary. 

The number of collisions that a particle experiences depends upon the first 

impinging location of the particle. 

Figure 12 indicates the comparison of the velocity vector field of the two

phase flow with that of the one-phase flow at N = 2000. First, the effect of the 

presence of particles on the flow field is seen to be noticeable at a few points: 

First, the particle subclouds, which have impinged on the disk, are spread 

conically (see Figure 11 (b) ), and introduce the gas-phase in the direction of the 

particle movements. Second, there is a reverse flow of gas in the region 

downstream from the disk and the particle motion obeys the gas flow there. 

Third, although some vortical structures are generated by putting the disk in the 

flow field, the presence of particles tends to shift the locations of vortical 

structures and the number of the particle subcoulds is commonly dilute at/near 

the vortices. 

4.3 One-phase and two-phase supersonic flows around a spherical body 

First, in the present case, it should be noted that the computational domain 

of the gas-phase flow is different from that of the particle-phase one. In order 

to obtain the numerical solution of the gas-phase flow, the physical space (x, y) 

is transformed into a computational one (f, TJ) in the form of 

(115) 

In the present calculations, the flow field of the gas-phase is solved in the 

computational space (f, TJ), while the flow field of the particle-phase is treated in 

the original physical space (x, y). Figure 13 indicates the physical domain used 

here (a) and the transformed domain(b). The computational domain for the 

gas-phase flow to be solved consists of the symmetric axis AB, the outer 

boundary BC, the downstream boundary CD and the inner boundary DA corre-
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sponding to the sphere surface. This computational domain is divided into 100 X 

100 fan-shaped meshes which are equally cut in the radial and tangential 

directions. 

Therefore, the transformation of the (x, y) coordinate system to the (f, TJ) 

system needs to be performed according to the prescription mentioned in section 

3.2. Eq. (115) is equivalent to the relation of x=fcosTJ and y=fsinTJ. Thereby, 

the Jacobian] of the transformation is easily obtained by Eq. (102) as I /f. So 

that, the four parameters appearing in Eq. (104) are given by 

mx=f cos TJ, my=f sin TJ} 
nx=-sinTJ, ny=coSTJ 

(116) 
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For the one-phase flows, the dependent variable Q and the fluxes F, G are 

replaced by Q, i', and G (see Eq. (104)). For the axisymmetric two-phase flows, 

H and Hp must be transformed into i1 and ilp, respectively, according to Eq. 

(106). It is self-evident that the supersonic jet flow around a spherical body to 

be treated here is axisymmetric. In this sense, the numerical scheme utilized 

here is first constructed in the cylindrical coordinate system (x, y). Then it is 

transformed into the spherical coordinate system (f, 11) according to the above 

description. 

Particularly for the particle-phase, there is no problem in finding the numer

ical solutions to the system of equations described in Eqs. (41) and (42) in the 

cylindrical coordinate system (x, y). 

The boundary conditions of the whole computational domain are constituted 

by the following. The symmetric condition is applied to the boundaries AB and 

AD (see Figure l3(a) ), and the uniform flow condition on the outer boundary 

BC. This corresponds to the condition that the additional cells outside of the 

boundary BC are filled with the gas of the interior cells next to the boundary in 

a uniform flow state. Also, the outflow condition is applied to the boundary CD. 

This is the condition that only an outflow from the computational domain to the 

exterior of the boundary CD is permitted and the opposite flow is not permissi

ble. 

Next, we wish to mention the initialization of the flow field in the com

putational domain. At t= 0 (N= 0 ), the particle subclouds located in front of 

the sphere are injected into the flow field of a uniform supersonic gas flow over 

the whole computational domain. The particle subclouds are located uniformly 
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on a circular plane of r0 in radius, perpendicular to the symmetric axis at x=xo 

(x0 >Rmin, Rmin; the radius of the sphere). We divide r0 of the circular plane 

equally into K parts and so put the subclouds at the center of each part. In the 

present situation, we put r0= 1.25, x0= 1.3, Rm;n= 1.0 and Rmax= 2.0 where Rmax 

denotes the distance from the center of the sphere to the outer boundary BC 

(say, the outer radius of the computational domain). Note that Rmax > (x5+ro) 112• 

Again, K = 100 is used in this calculation. The particles are injected into the flow 

field at the 100 fixed points on the circular plane at each time step. The state of 

the uniform gas of p= 1 and p= 1 flowing towards the sphere at the Mach 

number M= 3 (as v= 0) is input at all of the centroidal grid points at t= 0. 

Also the particles at the injection points are assumed to be in velocity and 

thermal equilibrium with the gas. 

In the present case, the characteristic length of the flow field £ is represented 

by the radius of the sphere CRm;n= 3 cm). The physical constants of the gas and 

particles adopted are the same as in Table 1 . The particle radius is assumed to 

be fp= lOµm uniformly and the loading ratio is taken to be 11= 0.3. 

Here, one should keep in mind that the time-converged one-phase solution is 

not used for the calculation of two-phase flows as an initial flow condition. The 

variation of the flow field from the above mentioned initial state to the steady 

state with time will be investigated for the two-phase flow. 

Although the purpose of this section is to investigate the two-phase flows, it 

is worthwhile to give a simple description of dust-free (gas-only) flows around 

a sphere. This is also necessary to check the validity and reliability of the 

present numerical scheme. 

The solutions for various Mach number M have demonstrated a satisfactory 

time-convergence of the flow field. The profiles of the pressure distribution 

along the sphere surface have been compared with the theoretical results by 

Belotserkovskii1n. It has been proved that this agrees well with the experiments. 

Figure 14 indicates the comparison of our numerical results with the theoretical 

ones. It follows from this figure that there is an excellent agreement between 

the two. 

Figure 15 shows the density contours of the one-phase flow around the 

sphere in the shock layer for 2000 S:: NS:: 10000 at every 2000 time steps. First, we 

can remark that the one-phase flows around the sphere are fairly stable and the 

bow shock tends to shift towards the sphere only in the early stage. Next, the 

flow field in the shock layer behind the bow shock can be said to become steady 

and stable in a relatively early period. 

Figure 16 shows the distribution of the velocity vectors of the gas flow over 
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the whole computational domain at N = 10000 . Outside of the bow shock, the 

velocity vector has no tangential component. Also, the velocity is accelerated 

along the sphere surface from the stagnation point to the top of the spherical 

body and is increased in magnitude at a larger radial distance from the sphere 

surface in the shock layer. 

Next, for the one- phase flow we wish to demonstrate the variation of the gas 

density along the body axis as well as on the sphere surface from the stagnation 

point to the top of the sphere with time. Figure 17 shows the time history of the 

density for 40 :S:: N :S:: 4000 at every 40 time steps. The bow shock existing almost 

in contact with the sphere surface in the initial flow field tends to shift the 

location towards the upstream side with time, and then the location of the bow 

shock is fixed at N = 2000 or so. In addition, weakly fluctuating waves, which 

are observed just behind the bow shock still beyond N = 2000, are annihilated 
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perfectly at N = 4000. This suggests that for one- phase flows around a sphere a 

time-converged solution may be obtained beyond N= 4000. 

Here, we show the numerical results of the two- phase flow around a sphere. 

Figure 18 indicates the contour of the constant gas density (a), the field of the 

velocity vectors of gas (b) and that of particles along the streaklines (c) at N = 
3000, 4000, 5000, 6000, 7000 and 12000. Here, one should bear in mind that the 

field of velocity vectors shown in Figure 18(c) is not along the trajectories of 

particular particles, but along the streaklines consisting of all of the injected 

particles according to the time series. The most important problem is to 

investigate whether or not the steady and stable flow field can be reached as N 

is infinitely increased. Comparing the density contour of this case with that of 

the single- phase result (see Figure 15), the former seems to be very unsteady, 

especially, in the stagnating region in the neighbourhood of the body axis in the 

shock layer even for the large time step N. The unsteady numerical result can 

also be accepted obviously from the field of the velocity vectors along the 

streaklines of particles. If the condition that the particles stick or are absorbed 

perfectly inelastically to the body surface is imposed on the numerical simula

tions, as soon as particles impinge on the body surface, the time- converged 



170 

y I ii 

y I ii 

Natsuo HATTA, Hitoshi FUJIMOTO, Ryuji lsttn and Jun-ichi KoKAoo 

1.5 

1.0 

0,5 

Sphere 

(a) N = 3000 

Bow shock 

0,0 ~~---~--~-
0,0 xiii 1.0 

2,0.-----r----.-,-------,---,--,----, 
(a) N = 4000 

0,5 

Sphere 

0,0 ~~---~--~-
0.0 x I ii 1.0 

0,0 x I ii 1.0 

0,0 

0,0 

0,0 

Ee:=.- (bl N = 3000 --+----€€€!=-
~EEEE--
~E ~.I=.=-
'~Eff ff 

+-<'--
~~.,j:= 

,ffff 
.._ +-

~ 

1.0 

1.0 

§£:=-.-(bl N = 5000 -------El=l=EE--
't:::::::t::::t=:=--~-
~E§Eff ~ 
:::::f:::~E~I=~ --~--~ 

~%ff 

...-; 

1.0 

0,0 

0,0 

0,0 

Fig. 18 For caption see next page. 

(c) N = 3000 

1.0 

( c) N = 4000 

1.0 

(c) N = 5000 

1.0 



Theoretical Analysis of Supersonic Gas-Particle Two-Phase Flow 
and Its Application to Relatively Complicated Flow Fields 

y I ii 

(al N = 6000 

1.5 

1. 0 

0,5 

Sphere 
0,0 ~~~~~~-~~~ 

0,0 x I ii 1.0 

(al N = 7000 

Bow shock 
1.5 

y/D 

1.0 

0,5 

Sphere 
0,0 '---'-----'---'--_,_-----"'--'--....C..~ 

0,0 x I ii 1.0 

2.0 
(al N = 12000 

1.5 

1.0 

0.5 

Sphere 

0,0 ~~~--'--_,_-----"~~~ 

0,0 1.0 0.0 

0.0 1.0 0,0 

171 

(cl N = 6000 

1.0 

(cl N = 7000 

1. 0 

(cl N = 12000 

o.o xiii 1.0 o.o 1.0 o.o 1.0 

Fig. 18 Indications of contour of constant gas density (a), field of gas velocity 
vectors (b) and field of velocity vectors of particles (c) for two-phase flow 
at several kinds of time steps. 



172 Natsuo HATTA, Hitoshi FUJIMOTO, Ryuji lsHn and Jun-ichi KoKADO 

solutions must presumably be obtained19l_ The present situation is different 

entirely from the foregoing case. On the assumption that the particles that 

impinge on the body surface are reflected perfectly elastically, the present nu

merical simulations have been performed, as has been. mentioned already. Also, 

it is assumed that only the velocity component normal to the body surface is 

reversed and the tangential component remains unvaried on the reflection condi

tion : The so-called specular reflection is conditioned. 

Practically, the particles that must impinge on the body surface are decel

erated by the gas in the shock layer and then reflected from the surface with a 

finite velocity. The particles impinging on the surface near the body axis 

experience a few elastic collisions with the sphere. The streaklines of particles, 

shown in Figure 18(c), are taken at 8 intervals of injection points including the 

first streakline of particles injected from the point next to the body axis. For a 

closer investigation, we consider the behavior of particles along the first streak

line for example. The particles impinging almost normally to the sphere surface 

are reflected also normally to it. The normal component of the velocity of the 

reflected particles decreases owing to the reverse flow of the gas and is missing 

somewhere. The particles are again moved downstream by the gas flow and the 

second impingement of the particles on the surface occurs. However, the veloc

ity of the particles reflected from the sphere can be considered to be small in 

magnitude. At the same time, these particles move only in an almost stagnant 

state near the sphere surface where the gas velocity also is small in magnitude, 

until the particles flow out of the stagnant region. As a result, it can be 

expected that the number density of the particles is increased near the body 

axis, and that the number density is distributed densely upstream and dilutely 

downstream along the sphere surface, as will be discussed later. Furthermore, 

the distribution of the number density does not remain unchanged even for the 

large time step N. 

The above mentioned tendency becomes weaker for the particles along the 

streaklines injected at positions farther from the body axis (see Figure 18(c)). 

Again, what is noticeable as another problem is that the particles rebounded 

from the sphere surface do not break the bow shock at all, at least, in the 

present situation. 

We wish to demonstrate the instability of the flow field near the body axis 

in the shock layer from a different point of view. Figure 19 indicates the time 

history of the density for the two-phase flow, corresponding to Figure 17, for 

5040 sN s 12000 at very 40 time steps. Obviously, the density field in the shock 

layer is unstable and unsteady. There also seems to be no periodicity in the 
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Fig. 19 Time history of density for two-phase flow corresponding to one-phase flow 
sho wn in Fig. 17 for 50405N512000 at every 40 time steps . 

unsteady behavior. The so-called stagnation point does not always take the 

maximum gas density, as encountered in the one- phase flow. Rather, the 

maximum density is seen to be in the middle part of the shock layer near the 

body axis, although it is unsteady and unstable. Furthermore, instability is also 

observed in a relatively small region upstream along the sphere surface near the 

stagnation point. 

5. Discussion and conclusion 

Up to this point, we have demonstrated very interesting numerical results 

for the various flow fields of the one- phase and two- phase cases, which have 

been obtained by the Osher scheme. 

First, we discuss the truncation error of the scheme in the form obtained by 

replacing the dF and dF terms that occur in Eq. (89) with their corresponding 

unlimited dF values (see Eq. (88) ). 

Combining Eqs. (61) and (62) to Eq. (88) , we have 
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Substituting Eqs. (118) to (123) into Eq. (117) and arranging the result, we 

have 
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Therefore, the truncation error of the unlimited forms is given by the second 
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term in the right hand side of the above equation. It is interesting to note that 

the truncation error is independent of the particular upwind-scheme used, that 

is, independent of F. Furthermore, it should be added that rJ= 1 / 3 has been 

selected throughout this paper, and therefore all of the present calculations have 

been performed by the third-order accurate scheme. 

We discuss the numerical results of the free jets for the one-phase and two 

-phase cases as a very simple flow field. Although we have found that the 

single-phase results agree well with the experimental ones, in particular, for the 

characteristics of the first shock-cell structure, the flow field downstream from 

the Mach disk is observed to be fluctuating and oscillatory even for the large N, 

as shown in Figure 4. When the pressure ratio, Pr/Poo, is taken to be small, the 

variation of the propagating process of discontinuous and continuous waves with 

time can not clearly be emphasized, as observed in Figures 4(a) and 7. Hence, 

the time histories of the density distribution along the jet axis calculated under 

the condition that Pr/Poo= 5.8 are shown for 2001 :s;;N::; 2100 at every time step in 

Figure 20. For both the one-phase flow (a) and the two-phase one (b), the gas 

density distribution in the region downstream from the Mach disk is observed to 

change in such a manner as to propagate the nearly periodically appearing 

waves towards the downstream boundary. 

Figure 21 gives the comparison of the time history of the density distribution 

along the nozzle axis between the one-phase flow (a) and the two-phase one (b) 

for 2001 :s;;N::; 2100 at every time step, when the disk normal to the jet axis 

stands in the flow field. For the one-phase flow, there is observed a dome

shaped shock in front of the disk (see Figure 9) besides the normal shock at the 

Mach disk. At least, the pressure jump occurs there and the shock wave can be 

confirmed also from Figure 9. The most prominent feature is the strong oscillat

ing shock wave between the Mach disk and the circular plate (disk). The shock 

wave oscillates through a large amplitude, on the axis equal to about 0.25 D, 
about a mean standoff distances= 0.5 i5 from the disk. Thus, such an unstable 

flow field agrees fairly well with the experimental results by Powell18l. In the 

region downstream from the disk, there are density waves propagating down

stream and upstream, and the variation of the density distribution with time is 

somewhat periodic. 

Next, for the two-phase flow, the flow field in the region upstream from the 

disk normal to the jet axis is apparently more stable in comparison with the one 

-phase result. The most prominent feature is that there is no shock wave in 

front of the disk which can be evidently present in the one-phase flow field. 

Therefore, the density field is very stable between the Mach disk and the plate 



176 Natsuo HATTA, Hitoshi FUJIMOTO, Ryuji lsHII and Jun-ichi KoKADO 

u, 
C: 
Q) 

0.6 

0 .4 

0.6 

Cl 0,2 

1.0 2.0 

al one-phase f low 

3 .0 4.0 5,0 6,0 
x I D 

0.0 ~~~~~~~~~~~~~~~~~~~~~~ 
0.0 1.0 2.0 3,0 4,0 5,0 6.0 

x ID 

7.0 

7,0 

Fig. 20 Time history of density distribution along jet axis calculated under condition 
that po/poo= 5.8 for 2001-S:N-S:2100 at every time step: One-phase flow Ca) and 
two-phase flow (b) . 



Theoretical Analysis of Supersonic Gas-Particle Two- Phase Flow 
and Its Application to Relatively Complicated Flow Fields 

0.6 

N = 2100 + (10000) I Disk too 

~ 0,4 
u, 
C ., 
Cl 

0,2 

0.0 c.,_~~L...,_~~L.....~~E=""'---~-'-'-~~---'----'~~---'----'~~....1-'--' 

0,6 

~ 0 . 4 

u, 
C ., 
Cl 0,2 

0,0 1.0 2,0 3,0 4.0 5.0 6.0 7,0 
x I ii 

bl two-ohase flow 

N = 2001 + (10000) 
0.0 c:......~~..L..~~-L~~._E==ia.......__,_J~~~L.,_~~..1-.~~__,_.........., 

0.0 1.0 2.0 3,0 4.0 5.0 6.0 7,0 
x I ii 

177 

Fig. 21 Time history of density distribution along jet axis for one-phase flow Ca) 
and two-phase flow (b) interacting with a disk normal to jet axis. 



178 Natsuo HATTA, Hitoshi FUJIMOTO, Ryuji ISHII and Jun-ichi KoKADO 

owing to the presence of particles leading to the annihilation of the above 

mentioned dome-shaped shock wave. In the region downstream from the disk 

tail, a nearly periodically occuring wave is observed to propagate towards the 

disk tail. Again a local disturbance of the density observed at x( =x/D) ::::5.6 in 

Figure 21 (b) seems to be due to the access of the particle subcloud to the nozzle 

axis. 

Next, we discuss the effect of the loading ratio II on the flow field. We 

consider the case where the particle subclouds are injected into the one-phase 

flow field obtained at N = 10000. The computational conditions are the same as 

in section 4.2, except that 11= 1.0. Figure 22 indicates the density contour of the 

gas-phase (a) and the velocity vectors of the particles along the streaklines (b) 

at N= 1500. Comparing the case of 11= 1 with that of 11= 0.3 (see Figure 9 (c)), 

the predominant feature is that the jet boundary of the flow field is very unclear 

in the region downstream from the Mach disk for 11= 1. On the contrary, the 

increase in II tends to make the flight record of the subcloud injected at each 

position distinct, although there is a slightly unstable oscillatory motion of 

particles impinging on the disk surface. Presumably the basis that the particle

motion is more stable for 11= 1.0 than for 11= 0.3 may be due to the inertia effect 

(or mass effect). Further details concerning the effect of II on the flow field will 

be reported elsewhere. 

Now, we wish to give a closer consideration to the problem of the two-phase 

flow around a sphere. As has been pointed out already, the instability in the 

particle motion is observed to be present in a region near the body axis in the 

shock layer. Figure 23 indicates the distribution of particle subclouds injected at 

each time step in such a region at N= 5000, 7000 and 12000. It should be 

remarked in this figure that one particle cloud is represented by one point, and 

that therefore the points marked by a dot overlap and seem like a darker line in 

the region where the particle velocity beocmes smaller. Although all of the 

particles contained in the figure region impinge on the sphere surface, the 

distribution of particles injected near the body axis becomes complicated after 

the impingement. Also, the region concerned seems to stagnate by the aggrega

tion of the injected and rebounded particles. Figure 24 exhibits the distribution 

of the number of particle subclouds around the sphere surface in the shock layer 

at N= 5000, 7000 and 12000. We note that the value proportional to the number 

of particle clouds contained in each fan-shaped mesh which are divided by its 

area is here taken instead of the number density. As can be expected, the 

number density is distributed densely in the upstream region and dilutely in the 

downstream along the sphere in the shock layer. Again, the distribution does 
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not always remain unchanged and steady, in particular, in the upstream region. 

In short, the flow field of particles is unsteady as well as unstable. 

Figure 25 indicates the velocity vectors of particles along the streakline 

injected at the position next to the body axis at N = 12000. The particles are 
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selected at ten times the interval of time step .1t. The velocity of particles 

reflected from the sphere is considerably small in magnitude in comparison with 

the case of the first impingement. Again, the first streakline does not exhibit the 

expected pattern, especially after the second impingement of the particles on the 

sphere. In addition, the impinging points are understood to be varied with time 

by comparing each velocity vector direction with the streakline combining 

particle positions according to the time series (see Figure in Figure 25). The one 

remaining problem is whether or not the time-converged solution can be reached 
as N--+oo. 

In fact, the numerical simulation of the supersonic two-phase mixture flow 

takes a prohibitively long computing time. The reason is because a very large 

number of particle subclouds injected at the interval of .1t must be followed 

separately. As a result, the amount of computation increases to an extraordinary 

degree. We wish to add that the VP rate in our computer program is approxi

mately 0.999, and that the computing time per 5000 time steps takes nearly 10000 

sec. At least, at the present stage, it has to be stressed that the two-phase 
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results are not always sufficiently time-converged even for a large number of 
time steps N due to the discrete treatment of the particle-phase, if we assume N 

= 12000 to be a very large time step. At any rate, we think that it is necessary 

to solve the problem whether or not the time-converged solutions exist near the 
stagnation region. 

In closing, we reflect that a few important problems to be clarified in the 
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near future remain left for the supersonic gas-particle two-phase flows. 

First, for the flow fields of one-phase jets impinging on a disk perpendicular 

to the jet axis, the instability should be pursued focusing upon the pressure 

ratio, the disk size and the disk position. We intend to investigate in detail the 

change in the position of the Mach disk as well as the behavior of another 

strong oscillating shock wave existing between the Mach disk and the circular 

plate (disk) by comparing the numerical results obtained with the experimental 

ones. For the two-phase flows, we wish to clarify the effect of the presence of 

particles on the flow field for the two cases where the circular plate is present 

and absent. These numerical simulations will be performed by varying the mass 

loading ratio, the Mach number at the nozzle exit, the pressure ratio, the particle 

size, the size of the circular plate etc. as parameters. Also, we will simulate, from 

a more realistic point of view, the flow fields of two-phase flows in a free jet 

region as a perturbation from a non-equilibrium gas-liquid particle mixture flow 

at the nozzle exit. In this case, a system of equations governing the steady quasi 

-one-dimensional nozzle flow of a gas-particle mixture is treated on the basis of 
our previous investigations2l-4l.20l_ 

Second, for the two-phase flow around a sphere we intend to pursue the 

process of the instability in the particle motion near the stagnation region for N 

as large as possible. We consider that there are many factors leading to the 

instability in the particle motion. For example, when the particle size is very 

small, the rebounding distance after the impingement of particles on the body 

surface may presumedly be very slight owing to decreasing the inertia effect. In 

an extreme case the particles may be imagined to move closely along the sphere 

surface. At any rate, we wish to clarify the basis of the instability in the motion 

of particles injected at points nearer the body axis in the near future. 
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