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Abstract 

This paper derives solutions to the multivariable Wiener filtering and the 
stationary LQG problems using the H2 optimal control theory and the state
space technique. Inner-outer factorization and spectral factorization results 
arising in H2/Hoo optimal controls are also derived by the state-space technique. 

1 . Introduction 

Motivated by the work of Wilson [11], this paper develops solutions to the 

multivariable Wiener filtering and the stationary LQG problems by applying the 

state-space technique for the model matching problem developed by Doyle [ 3 -

4 ], and Francis [ 6]. It has been shown that the general Ha(a= 2 or 00) control 

problem is reduced to the model matching problem of finding a stable transfer 

function Q(s) such that 

]= IIT1Cs)-T2 (s)Q(s)Ts(s)lla=minimum (l. l) 

where T1 (s), Ti(s), Ts(s) are also stable. For a= 2, the norm of a matrix 

function G(s) with no poles on the imaginary axis is defined by 

1 Ii"' IIG(s)ll~=-
2

. . tr[G*(s)G(s)]ds 
1CJ -100 

(l .2) 

where G*(s): =Gr(-s), and where ( • )T denotes the transpose. 

Let Ti(s) and T3(s) be factored as (see Section 2.2) 

(1.3) 

and 

(l.4) 
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Then the optimal solution Q(s) is given by [ 5 ], [ 9] 

Q(s) = Tio1(s) [Ti; (s)T1 (s)Tt;(s)] + Ti:!(s) (1.5) 

where [ •] + denotes the stable part of a matrix function by partial fraction 

expansion. We employ the formula (1.5) to derive solutions to the Wiener 

filtering and the stationary LQG problems. 

As preliminary, we derive an inner-outer factorization by the state-space 

technique. We also develop an algorithm of spectral factorization arising from 

the Hoo optimization [ 6 ] . 

In Section 2 , we begin with a summary of the useful results of operations 

on transfer function matrices and present an inner-outer factorization of a stable 

transfer function. In Section 3 , we then proceed to a derivation of the solution 

of the Wiener filtering problem. We present a classical solution based on the 

spectral factorization and additive decomposition. For the case where the spec

tral densities are rational, the problem is embedded in the model matching 

problem to derive a state-space solution. In Section 4, the same technique is 

applied to the stationary LQG problem for which the optimal controller is 

derived by using inner-outer and co-inner-outer factorizations of transfer func

tions appearing in the model matching problem. Section 5 provides a new proof 

for the spectral factorization algorithm that arises from the Hoo optimization. 

2. Mathematical Preliminaries 

In this section, we summarize some useful results for continuous-time trans

fer function matrices and inner-outer factorization. 

2.1 Transfer Functions 

We consider proper, real-rational transfer function matrices described by the 

state-space representation 

(2.1) 

where A, B, C, D are constant matrices of dimensions nXn, nXm, pxn, pxm, 

respectively. A transfer function matrix G(s) is stable, if it is analytic in Re [s] 

:2: 0 ; namely, G(s) is stable if and only if the eigenvalues of A lie in the open 

left half-plane Re[s] < 0. 

Let RL 00 be the matrix functions of s which are bounded on the imaginary 

axis. Let RF'; be the class of stable, proper functions. Thus, if G(s) in RL 00 is 
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analytic in Re [s] z O, it belongs to RH:,. The complementary space Rlr'_ is the 

class of functions in RL 00 which are analytic in Re [s] < 0 . 

The following formulae collect useful operations on transfer function matri
ces [3], [4], [6]. 

(a) For a nonsingular T, 

[*] = [ T~TI T~B] (2.2) 

(b) Suppose that G(s) is square and D is nonsingular. Then, we get 

[*r = [ A-Bn-ic I Bn-i ] 
c n -n-ic n-i 

(2.3) 

(c) A product of transfer function matrices is expressed as 

l*l l*l [ A, 

BiC2 B,D,] 
Ai Bi A2 B2 _ O 

A2 B2 
Ci Di C2 D2 Ci 

DiC2 DiD2 
(2.4) 

[ A, 
0 

B, l = BiC2 Ai BiD2 

DiC2 Ci DiD2 

(d) For G* (s) : =C( -s), we get 

[*l=[~J 
(2.5) 

2.2 Inner-Outer Factorization 

A matrix function G(s) in RH:, is called inner if G* (s)G(s) =Im. Thus an 

inner function G(s) must be tall, namely, pz..m. A matrix function G(s) in RH:, 

is outer if G(s) has a right-inverse which is analytic in Re[s] >O. For a square 

G(s), if both G(s), G- 1(s) are in RH:,, then G(s) is outer. An inner-outer 

factorization of G(s) in RH:, is given by 

G(s) =G;(s)G0 (s), G;: inner, G0 : outer (2 .6) 

A matrix G(s) is co-inner or co-outer if Gr(s) is inner or outer, respectively. 

Thus a co-inner-outer factorization is given by 

G(s) =GcoCs)Gci(s), Gc0 : co-outer, Gci: co-inner (2. 7) 

It is easy to see that a co-inner-outer factorization of G(s) is derived from an 

inner-outer factorization of GT(s). 
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Now we consider an inner-outer factorization of a stable transfer matrix. 

Suppose that G(s) is stable and G(jw) is of maximum column rank for all Os 

ws 00 • Let a minimal realization of G(s) be given by (2.1). Define L1: =DrD 

and a Hamiltonian matrix 

(2.8) 

It should be noted that .tf equals the A-matrix of [G* (s)G(s)J- 1
• Moreover, let 

the algebraic Riccati equation (ARE) associated with the Hamiltonian .tf be 

(A -BL1- 1DTC) rx + X(A -B,tr 1DTC) - XBL1- 1BTX 

+crc-crnL1-1DTC=O 

Theorem 2.1 

(2.9) 

Let G (s) = [~I~] be a minimal realization with A stable and L1=DTD>O. 

Then an inner-outer factorization of G(s) is given by (2.6) with 

[
A+BK 

G,(s)= C+DK 
BLJ-V2] 

where K=-L1- 1(BrX+DrC) and L1=L1T12L1112• 

(2.10) 

(2 .11) 

Proof: Although a proof is found in [ 6 ], we provide a different proof. 
Using (2.4), 

[ -N 1-;~r] [~c DB] a• (s) G (s) = BT cTn 

0 

(2 .12) 

Thus from (2.3), we get 

[G• (s) G (s) J - 1 = [ ~ I ~ J (2 .13) 
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where A =Jf and 

(2.14) 

From hypotheses, Jf of (2.8) has no eigenvalues on the imaginary axis, and 

(A-BL1- 1Drc, BL1- 1BT) is controllable. Hence, the ARE of (2.9) has a unique 

positive definite solution X and A+ BK is stable [ 6]. Introducing the basis 

change T= [~ ~ ], we get 

(2.15) 

(2 .16) 

(2.17) 

Hence, from (2.13) and (2.15) - (2.17), we have 

c• (s) G (s) = _ _ [ 
r- 1.Jr I r- 1

jj ]-
1 

CT D 

A+BK -BLJ-lBT u·r 0 -(A+BK)T KT 

K -LJ-lBT LJ~l 

A 0 x!~] -KTLJK -AT 

-L1K BT 
(2 .18) 

We observe from (2.18) and (2.12) that (2.18) has a factorization of the from 

c· Cs) G(s) = [~ I BJ· [A I B] 
~~ 

[- AT - ZT] [~] 
= BT LJT/2 Z I LJV2 
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A 0 

Comparing (2.12) and (2.19) gives 

B 
-zr LJV2 

L1 
(2 .19) 

(2.20) 

We can also show that G0 (s) of (2.10) is an outer function. An inner function is 

therefore obtained by G;(s) =G(s)G;; 1(s), which is given by (2.11). This com

pletes the proof of Theorem 2.1. D 
In the above proof, we utilized the fact that r- 1.A: T has a block upper 

triangular form with A+BK stable and -(A+BK)r antistable and that T= 

[~ ~] does not change the diagonal block elements A and -Ar of the A-matrix 

of G* (s)G(s). The present method of proof can also be applied to the derivation 

of a spectral factor G0 (s) such that c: (s)G0 (s) =G* (s)G(s), even if A is not 

stable. 

In fact, we assume that A is not stable, but has no eigenvalues on the 

imaginary axis. We define the ARE associated with the transpose of the A

matrix, a Hamiltoninan matrix, of (2.19) as 

AP+PAr-pzrzP=O (2. 21) 

Let the stabilizing solution of (2.21) be P with Ap: =A-Pzrz stable. Then we 

can show that the application of T= [ 10 -rJ to (2.19) gives 

AP O BP j 
G* Cs) G(s) = _-_z_rz __ -_A_i-+--_z_r A L1_v_, 

L)T/Z z Bi LJ 

(2.22) 

where Bp: =B-Pzr L1 112• Since (2.22) has the same form as (2.18) or (2.19), it can 

be factored as in (2.19). Actually, the outer function is given by 

where 

Ap=A-PKrL1K 

Bp=B+PKT L1 

(2. 23) 

(2.24) 
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3. Multivariable Wiener Filtering Problem 

In this section, we consider the multivariable Wiener filtering problem. First 

we describe the optimal Wiener filtering problem and present its solution based 

on the spectral factorization and additive decomposition [ l J, [ 7 ]. Then for the 

case where the spectral density matrices are rational, we embed the Wiener 

filtering problem in the standard model matching problem. The optimal solution 

is derived by applying the formula (1.5) and the state-space technique [ 3 J, [ 6]. 

3.1 Problem Statement and Classical Solution 
Suppose that we observe the signal y(t) which is the sum of the desired 

signal 0(t) and the noise v(t) ; namely, 

y(t) =0(t) +v(t) (3.1) 

where y(t), 0(t), v(t), - oo < t< oo are p-dimensional zero-mean second order 

jointly stationary processes. It is assumed that the signal 0(t) and the noise v(t) 

are uncorrelated. Let the spectral density matrices of y(t), 0(t), and v(t) be 

given by Syy(s), S116 (s), and SwCs), respectively. Then we have 

(3.2) 

The Wiener filtering problem is to find the least-squares estimate (LSE) of 

the desired signal 0(t) based on the past observations ¥1= {y(r), -oo<r<t}. As 

shown in Fig. 1, if we denote the LSE by 0(t), the problem is to find the 

v( t) 0(t) 

e(t) + + y(t) ~---, e(t) _ l+ e(t) 
H(s) 1-----< 1----

Fig. 1 Wiener filtering problem 

causal filter H(s) =!£ {h(t)} minimizing the mean square error 

J=E{ll0(t)-0(t) 11
2
} (3.3) 

where E { •} denotes the mathematical expectation, and the LSE 0(t) is given 

by 

0(t) = f~ h(r)y(t-r)dr 
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We now assume that the spectral density matrix Syy(s) has the canonical 

spectral factorization 

(3.4) 

The canonical factor <Py(s) is a p xp outer function and is unique up to the right 

multiplication by an orthogonal matrix [12]. 

Theorem 3.1 

The transfer function matrix H(s) of the optimal Wiener filter is given by 

(3.5) 

where <P;r(s): =(<P;'(s))r_ 

Proof: A proof is given in [ 1 ], [ 7 ], [ 8]. D 
We assume further that 1,1(t) is a white noise with SwCs) =R, positive definite, 

and that S/J(ls)-+ 0 as s-00 • Then it follows that [ 1] 

(3.6) 

and 

(3. 7) 

where L is a nonsingular matrix such that LL T = R. From (3.4) and (3.6), 

(3.8) 

and hence 

(3.9) 

It follows from (3.7) that the r. h. s. of (3.9) is decomposed into the sum of the 

stable function <Py(s) and the antistable function -R<P;r(-s), where both func

tions tend to the non-zero constant matrix L as s-00 • Adding and subtracting 

this constant matrix to the r. h. s. of (3.9) yield 

(3.10) 

This is an additive decomposition for which each term in the r. h. s. vanishes at 

s= 00 , so that the stable part is given by [ 7] 

(3 .11) 

Theorem 3.2 

The transfer function of the optimal Wiener filter is given by 



Solutions to Wiener Filtering and Stationary LQG Problems via H2 Control 227 
Theory-Part I: Continuous-Time System 

H(s) =lp-Lq,; 1(s) (3.12) 

Proof: A proof is immediate from (3.5) and (3.11). D 
The above derivation of the optimal Wiener filter is due to Barrett [ 1] and 

Shaked [ 8]. In the following, we wish to derive the same result for the case 
where the spectral density functions are rational by using the optimal H2 control 
theory, after converting the problem into a standard model matching problem 
[3], [4], [6]. 

3.2 Standard Model Matching Problem 
In this section, we assume that the desired signal 0(t) has a rational spectral 

density matrix, so that it is generated by a state-space model 

:i(t) =Ax(t) +Gf(t), A: stable 
0(t) =Cx(t) 

(3.13) 

(3.14) 

where x(t) is the n x 1 state vector, f(t) is the q x 1 white noise with a mean zero 
and covariance matrix lq, and A, G, C are nxn, nXq, pxn constant matrices, 
respectively. We assume that (A, G, C) is minimal. Define qJ(s): =(s/-A)- 1

• 

The spectral density matrix S,,,,(s) is then given by 

We see from Fig. 1 that, in s-domain, 

e(s) =0(s)-0(s) =CqJ(s)Gf(s)-0(s) 

y(s) =0(s) + v(s) =CqJ(s)Gf(s) + LTJ(s) 

0(s) =H(s)y(s) 

where v(s) =LTJ(s), and where TJ is a white noise with N(O, Ip). 

(3 .15) 

(3.16) 

According to the general framework of the model matching problem [ 3], 
[ 4 ], [ 6 ], (3.16) is rewritten as (see Fig. 2) 

and 

where 

e(s) =P11v(s) +P1zO(s) 

y(s) =P21v(s) + P2z0Cs) 

0(s) =H(s)y(s) 

[
f(s)] 

v(s) = TJ(s) , 

(3.17) 

(3 .18) 

(3 .19) 
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,----------------1 

I ..---~ I 
1 

C4l(s)G e(s) + -,....,J ___ e(s) 
v(s)={ ~(s) 

"l( s) ----+-, 
I 
I 
I 

~(s) 
I 

I L I 
I P( s) .___ _ __. I 
[ ________________ J 

y(s) 

H(s) 1-------' 

Fig. 2 Standard block diagram for Wiener filtering 

P11 = [C<P(s)G OJ, 

P21 = [C<P(s)G L], 

Moreover, the error e(s) is expressed as 

e(s) = [P11 (s)-H(s)P21 (s)]v(s) 

(3.20) 

(3.21) 

Thus the optimal Wiener filtering problem reduces to a standard model matching 

problem that minimizes the H2 norm of the transfer function from v(s) to e(s), 

namely, 

]= IIP11Cs)-H(s)P21 (s) ll2=minimum. (3. 22) 

It may be noted in (3.20) that a doubly coprime factorization of P 22 is not 

necessary, since P 22 = 0 in the present problem. 

For simplicity, we define T1(s): =P11 (s) and Tz(s): =P21 (s). Let T2(s)=T2= 
(s) T Zci(s) be a co-inner-outer factorization of T2(s), where Tz= is co-outer and 

T 2ci is co-inner. It follows from (1.5) that the optimal filter H(s) is expressed as 

(3.23) 

In the following, we derive the optimal filter transfer function by computing 

the r. h. s. of (3.23) via the state-space technique. 

3.3 Solution to Wiener Filtering Problem 

We see that realizations of T 1 (s) and Tz(s) are respectively given by 

T, (s) = [ ~ I ~ ~ J (3.24) 
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and 

(3.25) 

Since Tz(jw) is of maximum row rank for O sw s 00 , a co-inner-outer factoriza

tion of Tz(s) is easily obtained by Theorem 2.1. It follows from (2.8) that the 

Hamiltonian matrix associated with the inner-outer factorization of Tz(s) r is 

given by 

(3.26) 

Also, from (2.9), the ARE associated with :If is given by 

(3.27) 

It is well known that since (A, G, C) is minimal, the ARE of (3.27) has a 

unique positive definite solution Y, and A- YCTR- 1C is stable. Thus it follows 

from (2.10) that an co-outer function of Tz(s) is given by 

(3.28) 

where Tz(s)Tz(-s)T=T2co(s)T2co(-s)r, so that a co-inner function is obtained as 

= [ 
A-YCTR-'C 

YCTR-
1

] [~] 

-L-'C L- 1 C O L 

A-YCTR-'C YCrR-'C 0 YCTL-T 

0 A G 0 
-L-'C L-'c 0 1. 

(3.29) 

By the basis change T= [ i iJ. we get 

(3.30) 

Hence, from (3.24) and (3.30), 
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A 

0 
C 0 

Introducing the basis change T= [ i 1;] yields 

A O YCTL-T 

T1(s)Ti,,(s)= 0 -N+CTR- 1CY -CTL-T 
---------+----
c CY 0 

=C(sl-A)-'YCL-r 

-CY(sl+A 7-CR- 1cY)- 1c7L -T 

(3.31) 

(3.32) 

Since the first term in the r. h. s. of (3.32) is stable, but the second term is 

antistable, the stable part of T, (s) Tt(s) is given by 

(3.33) 

It follows from (3.23), (3.28) and (3.33) that the optimal transfer function is 

given by 

(3.34) 

(3.35) 

This is the transfer function of the well-known steady-state Kalman filter, and is 

exactly the transfer function of the Wiener filter [ 7]. It may be also noted that 
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the expression (3.34) is directly obtained from (3.12) and (3.28). 

4. Stationary LQG Problem 

In this section, we consider the stationary LQG problem via the H2 optimal 

control theory. The problem is transformed into a model matching problem by 

using a doubly coprime factorization, and the optimal controller is derived by 

applying an inner-outer and co-inner outer factorizations. 

4.1 Problem Statement 
Consider a linear stochastic system described by 

x(t) =Ax(t) +Bu(t) +GE(t) 

y(t) =Cx(t) +LTJ(t) (4.1) 

where x(t) is the n x 1 state vector, u(t) is the m X 1 control vector, y(t) is the p 

x l observation vector, f(t) is the q x 1 process noise, and TJ(t) is the p x 1 

observation noise. A, B, C, G, Lare constant matrices of dimensions nxn, nxm, 

pxn, nXq, pxp respectively. The noise processes E(t), TJ(t) are white Gaussian 

with means zero and 

E{E(t)fr(r)} =l,p(t-r) 

E{r](t)TJT(r)} =lpo(t-r) 

Moreover, x~ f(t), and TJ(t) are assumed to be independent. 

(4.2a) 

(4.2b) 

We consider the stationary LQG control problem that minimizes the steady

state average cost 

J=E{xr(t)Qx(t) +ur(t)Ru(t)}, t-+oo (4.3) 

where the closed-loop system is required to be internally asymptotically stable, 

and where Q"c. 0, R > 0. The admissible control u(t) can only depend on the 

past observations {y(r), r<t}. Also, we assume that (A, B, Q112), (A, G, C) are 

minimal, where Q112 is a matrix such that Q=QT12Q112• 

4.2 Model Matching Problem 

In order to rewrite the LQG control problem as a standard H2 control 

problem, we define 
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[ 
Qll

2
x(t) ] [ f(t) ] 

e(t) : = Rvzu(t) , v(t) : = TJ(t) 

It follows from (4.1) and (4.4) that, in s-domain, 

[ e(s)] = [P11 P12 ] [v(s)] 
y(s) P21 P22 u(s) 

0 

0 

L 

Q
1
12<J)B] [E(s)] 
R 112 TJ(s) 

C</JB u(s) 

where </J(s) = (sl-A)- 1
• The admissible control is expressed as 

(4.4) 

(4.5) 

u(s) =K(s)y(s) (4.6) 

where K(s) is an m xp rational transfer function in R]i+. Hence, a standard 

block diagram of the stationary LQG problem becomes as shown in Fig. 3. 

,----------------------------, 
I 

~( s )--+---I 

,C,I• l 
"l(s) 

u(s) 

e(s) 

>-----+-, ~ y(s) 
I P(5) I 
'-----------------------~ 

K(s) 

Fig. 3 Standard block diagram for stationary LQG 
problem 

From (4.5) and (4.6), we get 

(4. 7) 

We see from (4.4) that minimizing J of (4.3) is equivalent to minimizing 

1 Jjoo lle(s) 11~=-
2

. er( -s)e(s)ds 
1CJ -joo 

(4.8) 

with respect to K(s). The LQG control problem therefore reduces to minimizing 
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the H2 norm 

(4.9) 

A doubly coprime factorization of P 22 (s) =C<J>(s)B is given by [ 6 ], [ 9 J 

(4 .10) 

where 

(4.11) 

It has been shown that the set of all proper rational stabilizing controllers is 

parametrized as [ 3], [ 6 J, [13] 

K(s) = (Y2(s)-Mi(s)Q(s)) (Xi(s)-Ni(s)Q(s))- 1 

= (Xi(s)-Q(s)Ni(s))-'(Yi(s)-Q(s)Mi(s)) 

where Q(s) is a stable rational function. 

Now we define 

Ti (s) = P11 + P12M2 Y2P21 

T2Cs) =P12M2 

Ta(s) =M2P21 

(4.12) 

(4.13) 

Then T,(s), T2(s), Ta(s) are stable, and the performance index (4.9) is expressed 

as (1.1) with a= 2 [ 6]. Hence the solution Q(s) is given by (1.5). Moreover, if 

we choose F, H such that AF: =A+ BF, AH: =A+ HC are stable, then the state

space realizations of M'l, N'b M'b N'b x'b y'b x'b }\ are given by [ 6] 

(4.14) 

Thus it follows from (4.13) that (see Appendix) 
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AF -BF G 0 

T, Cs)= 
0 AH G HL 

Ql/2 0 0 0 
(4.15a) 

RV'F -RV'F 0 0 

AF 

R~] T,(s) = Ql/2 

RV2F 
(4.15b) 

[AH I G Ta(s)= C O ~] (4.15c) 

4.3 Solution to Stationary LQG Problem 

To apply the formula (1.5), we need the inner-outer and co-inner-outer 

factorizations of T2(s) and Ta(s), respectively. Since TlJw) is of full column 

rank for O :s;w:s;oo, an outer function such that T:,(s)T2o(s)=T:(s)Tis) is 

obtained from (2.10) : 

(4 .16) 

where X is a unique stabilizing solution of the ARE 

(4 .17) 

If we take F= - R-,srx, then AF: = A - BR-'Brx is stable, and the simplest form 

of the outer function is obtained as T20 (s) =R'12• We therefore get an inner 

function from (4.15 b) as 

AF BR-V' 

T,,(s)=T,(s)R-v2= Q'/2 0 (4.18) 

RV2 F 

Since T/jw) is of row full rank for O :s;w:s;oo, a co-inner-outer factorization 

of Ta(s) is also obtained from Theorem 2.1. Applying an inner-outer factoriza

tion to Ta(s) r, we have 

(4 .19) 
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where Y is a unique stabilizing solution of the ARE 

(4.20) 

If we set H= - YCT(LL1'r 1
, then (4.19) reduces to T 3co(s) =L. Hence, for H= -

YCT(LLT)- 1
, it follows from (4.15 c) that 

(4.21) 

where AH : =A-YCT(LLT)- 1C is stable. 

Now we compute T~(s)T1(s)T3ci(s) by using the above results. In the 

following, F and H are fixed as 

F=-R-lBTX. H=-YCT(LLT)-l 

It follows from (4.15 a) and (4.18) that 

[-N -QT/2 -WRT/2] 
Ti,T1 = R-T/2 ~T 0 Ip 

AF -BF 

0 AH 
QV2 0 

RV2F -R1/2F 

AF -BF 0 G 0 

0 AH 0 G HL 

-Q-FTRF FTRF -Ai 0 0 

R 1/2F -R 1/2F R-T/2 BT 0 0 

AF 0 -HG 0 -HL 

0 -Ai 0 -XG 0 

0 0 AH G HL 

0 R-T/2 BT -R 1/2F 0 0 

-Ai O -XG 

0 AH G 
R---T/2 BT -RV2 F 0 

(4 .22) 

G 0 
G HL 

0 0 

0 0 

(4.23a) 

(4.23) 

where (4.23 a) is derived by the basis change T= [ i J j]. Thus, from (4.18) 

and (4.23), we get 
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-Ai 0 -XG 

+l 
-AJ; -CTL-T 

Ti,T1T;,,= 0 AH G GT 0 
R-T/2 BT -RV'F 0 LTHT Ip 

-AJ; 0 0 -CTL-T 

-XGGT -Ai 0 0 
GGT+HLUHT 0 AH HL 

0 R-T/2 BT -Rv' F 0 

-AJ; 0 0 -CTL-T 

-XGGT -Ai 0 0 (4.24a) 

0 0 AH 0 
-RV'FY R-T/2 BT -RV'F 0 

-AJ; 0 
-C'L '] 

-XGGT -Ai .0 
-RV' FY R-T/2 BT 0 

(4.24) 

is obtained by the basis change T= [ {. 
0 ~l where (4.24 a) I 
0 

Since AH An are stable, the r. h. s. of (4.24) is antistable; hence we have 

(4 .25) 

It therefore follows from (1.5) that Q0p1 (s) = 0, so that from (4.12), the optimal 

controller is given by K0pi(s)=Yz(s)X2 1(s)=.X2 1(s)1\(s). Thus, from (4.14), 

Introducing the basis change T= [ _i ~] yields 
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AF+HC 0 !] 
(4.26) 

Kop,(s) = 0 AF 
-F F 

= - F(sl-A - BF-HC)- 1H 

This is the transfer function of the well-known optimal LQG controller, which 

consists of the stationary Kalman filter and noise-free regulator [ 4 ] , [ 8 ] . 

5 . Spectral Factorization 

In this section, digressing from H2 problems, we consider a spectral factoriza

tion appearing in the Hoo optimization [ 6]. Let a stable transfer function be 

given by a minimal realization 

G(s) = [ ~ I ~], A : stable 

The Hoo norm of G (s) is defined by [ 4 ], [ 6] 

IIG(s)lloo: =sup a[G(iw)J, o:s::w:s::oo 
w 

where a [ •] denotes the maximum singular value. 

(5.1) 

(5.2) 

Suppose that r is a scalar constant such that IIG(s)lloo<r. An outer function 

fJ(s) is called a spectral factor of fI-G*(s)G(s) if 

8* (s) B(s) =fJ-G* (s)G(s) (5 .3) 

In the following, we present a factorization algorithm for P(s): =r/-G*(s)G(s). 

The derivation of the algorithm is similar to that of Theorem 2.1. 

Referring to (2.12), 

(5.4) 

where we assume that ,d: =rl-DTD is positive definite. Define 

Then, from (5.4), 
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E 
p-'(s)= - fl 

(5.6) 

We see that A is a Hamiltonian matrix, so that it is denoted by 

(5. 7) 

We assume that .tf has no eigenvalues on the imaginary axis. Then, .tf has 

n eigenvalues in Re[s] <O and n in Re[s] >O. Hence there exists an orthogonal 

matrix U= [Uu U12 ] such that .tfU=US, where S= [Su s12 ] is a block upper 
U21 U22 0 S22 

triangular form with Su stable and S22 antistable. Thus we get 

EUu+LU21 =UuSu 

- null -ETU21 = U21Su 

Theorem 5.1 [ 3 ], [ 6 J 

(5.8a) 

(5.8b) 

Suppose that .tf of (5.7) has no eigenvalues on the imaginary axis, and (E, 

I:) is stabilizable. Then Uu is invertible, and X: = U21 Uu.1 is symmetric and 

satisfies the ARE 

ErX+XE+XIT+ll=O (5.9) 

Moreover, E+ IT is stable. 

Proof: For the proof we need some claims. 

Claim l : First we show that U[i U11 is symmetric. Taking the transpose of 

(5.8 b), and post-multiplying this by U11 yield 

(5.10) 

Substituting EU11 of (5.8 a) into (5.10) gives a Lyapunov equation for U[iU11 : 

We observe that the r. h. s. of (5.11) is symmetric. Thus U[iU11 is symmetric, 

since S 11 is stable. 

Claim 2: We claim that N: =ker Uu is Su-invariant. Take a nonzero zEN. 

Then, from (5.8 a), LU21z=UuS 11z. Pre-multiplying this by zru[i yields 

(5 .12) 
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But from Claim 1, the r. h. s. of this equation is zero, since it equals zru'[;U21Suz 

= 0. Thus, from (5.12), we have XU21z= 0, so that UuSuz= 0. This completes 

the proof of the claim. 

Claim 3: We show that Uu is invertible. Suppose that U11 is singular, so that 

N: =kerU11 is non-empty. Since N is invariant under Su, we get S 11N=NA with 

A stable. By using a Jordan form J, we get A=T- 1JT for some T. Hence, we 

have Su(NT-1) = (NT- 1
)], so that the first column of this relation gives 

It follows from (5.8b) and (5.13) that Eru21z1=-U21Suz1=-).1U21z1. Also, from 

(5.8a), XU21z1=U11Suz1= 0. Consequently, we have 

ErU21z1=C-l1)U21Z1, XU21z1=0, Re[-l1J>0 (5.14) 

Since (E, I:) is stabilizable, U21z1 = 0. But, since U11z1 = 0, and since [ g~;] is full 

rank, we have z1 = 0. This is a contradiction, so that Uu is invertible. 

We now prove Theorm 5.1. From Claim 1, U[iU11 =UfiU21. This implies that 

X = U21 Ur/= U1?U!i = xr, so that X is symmetric. Moreover, we see from (5.8) 

that 

E+XU21Uu1 =U11S11Uu1 

-II-ETU21Uu1 =U21SuUu1 

- (II+ Erx) CE+ rr)-1 = x 

(5 .15a) 

(5 .15b) 

(5 .16) 

This implies (5.9). Finally, from (5.15a), we see that E+lX=U11SuU01 is stable, 

since Su is stable. D 
It should be noted that ARE of (5.9) has many solutions, but the solution X 

with E+ lX stable is unique. 

We now turn to the derivation of the factorization algorithm. Introducing 

the basis change T= [~ ~ ]. we can easily show that 

(5 .17) 

(5 .18) 

(5.19) 

where 
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(5.20) 

and where K defined above satisfies E+ I:X=A +BK. Taking the inverse of (5.6) 

using (5.17) - (5.19) yields 

[ 
r-•Ar I T~'B J-• P(s)= CT 

A+BK }; B,cJ-1 -1 

0 -(A+BK)T -KT 

K LJ-1 BT LJ-1 

A 0 -~~] KTLJK -AT 

-L1K -BT 

We observe that (5.21) is factored as 

A 0 
ZTZ -AT 

The main theorem of this section is the following. 

Theorem 5.2 

Let G(s) be given by (5.1). Suppose that 

P(jw) =rI-G* (jw)G(jw) >O, 0:S:w :S: oo 

Then, a spectral factor e(s) of (5.3) can be computed by 

e Cs)= [ -Ll~' K L1~' ] 

where L1 : =r2I-DrD, and K is given by 

and where X is the unique stabilizing solution of the ARE: 

(A +BS'DTC)TX + X(A +BS 1DTC) + XBL1-!BTX 

+crc+crDL1-lDTC=O 

(5.21) 

(5. 22) 

(5. 23) 

(5.24) 

(5.25) 

(5.26) 

Proof: The form of e(s) of (5.24) is immediate from (5.21) and (5.22). Also, 
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[Ac ID BB] (E, Z) = (A +BL1- 1DrC, BL1- 1B'I') is stabilizable, since CJD is minimal and 

L1 > 0 from (5. 23). Moreover, (5. 23) implies that the Hamiltonian matrix .Yf of 

(5. 7) has no eigenvalues on the imaginary axis. It fact, suppose that .Yf' has 

an eigenvalue on the imaginary axis. Then, from (5.4), 

(5. 27) 

or 

(5.28) 

We can show that Cw =I- 0. For, if Cw= 0, then A has an eigenvalue on the 

imaginary axis; but this contradicts the assumption that A is stable. Define 

v: =-L1- 1Cw=1- 0. From (5.4) and (5.27), we get P(j.A. 0)v=[L1+C(iAJ-A)- 1B]v= 

0, a contradiction. Hence the assumptions of Theorem 5.1 are fulfilled, so that 

the ARE of (5.26) has the unique stabilizing solution. This completes the proof 

of the theorem. D 

6 . Conclusions 

In this paper, for continuous-time systems, we have considered the multivari

able Wiener filtering and the stationary LQG problems and related inner-outer 

and spectral factorizations. By embedding these problems in the model matching 

problem, solutions to the Wiener filtering and LQG problems are derived by 

applying the H2 control theory and the state-space method. We have also 

provided a new proof for the spectral factorization that arises in the H= opt

imization problem. 

In Part II, we will develop parallel results for discrete-time systems. 

Appendix 

First we derive (4.15 c). It follows from (4.5) that 

P21(s)= [C<PG L] =[~I ~ ~] (Al) 

Thus, from (4.13), (4.14) and (A 1 ), 
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T, Cs)= [:: I ~ ][ ~ I ~ ~] 

= ;C :H ~ H~i 
C C O L 

By the basis change T= [ !_1 1]. 

T,(s)= ~ :H ~ :L j = [A; I~ :L] 
0 C O L 

Next we prove (4.15 b). We see from (4.5) that 

A 

A,(s)= Q'/2 

0 

so that from (4.13), (4.14) and (A 4 ), 

T, (s) = 

A 

Q'/2 

0 

AF 
BF 

0 

Rv'F 

AF 
0 

QI/' 

Rw F 

B 

0 

RV' 

0 B 

A B 

Ql/2 0 

0 R'/2 

0 B 

A 0 

Q'/2 0 

0 Rv, 

by the basis change T= [ ~ J ]. But this proves (4.15 b). 

Finally, it follows from (4.15 b) and (4.14) that 

(A2) 

(A3) 

(A4) 

(A5) 
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~[f:F R~ ][~][~] 
! l [ ~H :c ~ ~L] 

Rv,F Rv, -F O O 0 

0 

0 

-BF 

0 

0 

Rv, F -Rv, F 

Introducing the basis change 

T= [~ ~ 
0 0 

into (A 6 ) gives 

0 

0 

-J] -I 

I 

Ql/2 

-BF 

0 

0 

R 1
/2 F -R 1/2 F 

0 0 0 

HC O HL 

A G 0 

0 0 0 

0 0 0 

0 G 0 

0 G HL 

A G 0 
-Ql/2 Q 0 

0 0 0 

AF -BF G 0 

0 AH G HL 

Ql/2 0 Q Q 

R 1
/2F -Rv,F O 0 

A G 
Ql/2 Q 

0 0 

(A6) 

(A7) 

However, the second term of the r. h. s. of (A 7) equals Pll from (4.5). Thus we 
have (4.15 a), since T1(s) =7\(s) +Pll(s). 
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