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Abstract 

This paper derives the solutions to the Wiener filtering and stationary LQG prob­
lem for a discrete-time system by applying the state-space techniques developed for H2 I 
Hm optimal controls. As mathematical preliminaries, we collect useful operations for 
the transfer function matrices. We also provide a new proof for the inner-outer factor­
ization algorithm that appears in the discrete-time H2 optimization. 

1 . Introduction 

259 

This paper, a continuation of Part I [7], considers state-space solutions to the 

discrete-time Wiener filtering and stationary LQG problem via the H2 optimization tech­

nique. It has been shown [2H5] that the general discrete-time Ha (a=2 or oo) control 

problem is reduced to a model matching problem. The objective is to find a stable 

transfer function Q ( z ) such that 

J=II T1 (z) -Tz(z) Q ( z) T3 ( z) ll«=minimum (1.1) 

where T1 ( z ) , T2 ( z ) , T3 ( z ) are stable matrix functions. 

For a= 2, the H2 norm of a transfer function matrix G ( z) that is analytic on the 

unit circle is defined by 

IIG(z)ll~=-2
1

. f tr[ G*(z)G(z)]~ 
7CJ J lzl=I Z 

(1.2) 

where the asterisk denotes the conjugate transpose 

(1.3) 

Moreover, for a= 2, the solution is particularly simple. In fact, let T2 (z ) and T3 
(z) respectively be factored as (see Section 2.2) 

T2 ( z ) = T2, ( z ) T 2o ( z ) , T21 : inner, T20 : outer 

* Department of Applied Mathematics and Physics, Faculty of Engineering, Kyoto University, 
Kyoto 606, Japan. 



260 Tohru KATAYAMA 

and 

T3 ( Z ) = T 'Jco ( z ) T3ci ( z ) , T3ci : co-inner, T3co : co-outer 

Then the optimal solution Q ( z ) is given by [ 11] 

Q(z) =Ti;/ (z) [ T2~ (z) T1 (z) T3~; (z )J+T:i;;! (z) (1.4) 

where [ • ] + denotes the stable part of a matix function by partial fraction expansion. 

We apply the formula (1.4) and state-space techniques to derive solutions to the 

Wiener filtering and stationary LQG problem. Unlike the continuous-time case, [ • ] + 

may be defined in two ways depending on whether the constant terms are included in it 

or not. We therefore present strictly causal and causal solutions to both the Wiener 

filtering and stationary LQG problems. 

The organization of this paper is as follows. In Section 2, we introduce discrete­

time transfer function matrices, collect useful operations for the transfer function ma­

trices, and present an inner-outer factorization algorithm for a stable function. Section 3 

treats the discrete-time Wiener filtering problem. We first present a classical solution 

based on the spectal factorization and additive decomposition, and then derive the strict­

ly causal and causal solutions using the state-space technique. Section 4 is concerned 

with the stationary LQG problem, for which the strictly causal and causal solutions are 

derived by using inner-outer and co-inner-outer factorizations of the transfer matrices 

appearing in the model matching problem. Concluding remarks are given in Section 5. 

Appendices include proofs. 

2 . Mathematical Preliminaries 

We present some preliminary results for the transfer matrices and an algorithm of 

inner-outer factorization for discrete-time systems. 

2. 1 Transfer Functions 

The state-space realization of a real-rational transfer function is represented by 

G(z)=[ ~I~]: =D+C(zl-A)-1B (2.1) 

where A, B, C, D are constant matrices of dimensions n x n, n x m, p x n, p x m, respec­

tively. Let RH':; be the class of stable, strictly causal transfer functions of the form 
~ 

G (z) = I;CNBz-< 1+11 , I zi >max I A; (A) I (2.2) 
l=O lS.iS.n 

where A is stable, and A; (A) denotes the eigenvalues of A The complementary space 

RH": is the class of antistable, proper transfer functions represented by 

G (z) =D-z-1C (z- 1J-A-1)-1A-1B 
~ 

=D-I;CA-1Bz'- 1
, izl<min IA; (A) I (2.3) 

l=O 1S.iS.n 
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where we assume that the constant term belongs to RH::. We see that if G (z) ERH::, 

then A must be invertibe. 

It should be noted that although the constant terms are included in RH::, it is 

possible to define RH; as the class of stable, proper (not necessarily strictly causal) 

transfer functions. Then, the complementary space RH:: must be the class of antistable 

transfer functions with strictly positive powers of z. 

The following are useful formulae for the operations on transfer function matrices 

[21 [ 4]. 

(a) For a nonsingular T, 

(2.4) 

(b) Suppose that G (z) is square and D is nonsingular. Then 

[ AI B]-1 = [ A-Bn-
1c f Bn-

1 
] 

cfD -n-1c n-1 
(2.5) 

( c) A cascade of two transfer matrices is given by 

= [ B~~2 ;1 B~~21 

D1C2 C1 D1C2 

(2.6) 

(d) Suppose that A is stable and nonsingular. Then G* (z) : = GT (z-1) is ex-

pressed as [ 5] 

(2.7) 

It should be noted that the properties (a), (b), (c) are the same as those of the 

continuous-time counterparts. For (d), since A-1 exists, we have 

G* (z) =DT +BT (z-1J-AT)-1CT 

=DT -zBT (zJ-A-T)-1A-TCT 

=DT -BT A-T -BT A-T (zl-A-T)-IA-TCT 

2. 2 Factorization Result 

We assume that A is stable and nonsingular, so that G* (z) is well defined. Thus 

we have 
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(2.8) 

where I': =D-CA-1B and L1: =I'TD. If G* (z) G (z) =Im, then G (z) is inner. Also, 

if G(z)G*(z) =Ip, then G(z) is co-inner. 

In the following, we present an algorithm for the inner-outer factorization for 

discrete-time stable transfer matrices. It should be noted that the co-inner-outer factor­

ization of G (z) is easily derived from inner-outer factorization of GT(z ). 

Assume that D TD and L1 are nonsingular. It follows from (2.8) that 

[ G* (z) G (z)] -
1= [ ~ I ~ ] (2.9) 

where 

- [ B ] B- ..1-1 
-A-TCTD 

C= -..1-1 [ rrc BT A-T] 

D=..1-1 

For convenience, we define 

E: =A-B(DTD)-IDTC 

};; =B(DTD)-1BT 

II: =CT[l-D(DTD)-1DT] C 

where it may be noted that I:, II are nonnegative definite. 

Lemma 2.1 
-

Suppose that E in nonsingular. Then A is expressed as 

Proof 

A proof is deferred in Appendix A. D 

(2.10a) 

(2.10b) 

(2.10c) 

(2.10d) 

(2.11) 

(2.12) 

Since J- 1
tfT J = te-1 for J = [ ~ I ~ ] , j{ of (2.12) is symplectic. Suppose that te 

has no eigenvalues on the unit circle. Then te has n eigenvalues inside the unit disk and 

n outside the unit disk. 

Let U= [ Uu Uiz] be an orthogonal matrix that transforms te of (2.12) into a real 
U21 U22 

Schur from: 
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[
E+l:E-TIJ -J;E-r][U11 U12 ]=[U11 U12][S11 S12] 

-E-T II E-T U21 U22 U21 U22 0 S22 

where Su is stable and S22 is antistable. 

Lemma 2.2 

Suppose that ( E, B ) is stabilizable and :te has no eigenvalues on the unit circle. 

Then, U11 is invertible, and X : = U21 U1~1 is nonnegative definite and satisfies the 

discrete-time ARE 

Moreover, 

E,: =E-B(DTD+BTXB )-1BTXE 

=E-J:E-T(X-II) 

=(l+l:X)-1E 

is stable. 

Proof 

A proof is found in [ 8 H 10 ]. D 

(2.13) 

(2.14a) 

(2.14b) 

(2.14c) 

The solution X given by Lemma 2.2 is referred to as the stabilizing solution, which 

is expressed as X=Ric:tf. Define 

K: =-(DTD+BTXB )-1(BTXA+DTC) 

Then, it is easy to see from (2.11) and (2.14) that E, is expressed as 

E,=A+BK 

Lemma 2.3 

By the basis change T= [ ~ ~ ], (2.9) is reduced to 

Proof 

A proof is given in Appendix B. D 

(2.15) 

(2.16) 

(2.17) 

By taking the inverse of (2.17), an alternative representation of G * ( z ) G ( z ) is 

obtained as 

G* (z) G (z) = I k'(A'X;+C'D)K A~' -A-'(A';B+C'D) ] (2.18) 

-JK BTA-T 

We observe from (2.8) that (2.18) has a factorization 
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(2.19) 

The following theorem gives a state-space realization for an inner-outer factoriza­

tion of a stable transfer function. 

Theorem 2.1 [5] 

Let G ( z ) : = [ ~ I ~ ] be a minimal realization with A stable. Let A and L1 = (Dr 

-BTA-TCT)D be invertible and DTD>O. Let X=Ric if, and K be given by (2.15). 

Then an inner-outer factorization of G ( z ) is 

G(z)=G;(z)G.(z) 

where the inner and outer functions are respectively given by 

G (z) - [ A+BK B ] v-1 
I - C+DK D 

G.(z)=V[ ~Kl~] 
and where 

V= (DrD+BrXB ) 112 

Proof 

A proof is given in Appendix C. D 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

It may be noted that the derivation of the inner-outer factorization of (2.20) is 

different from that of [ 5]. In fact, the above factorization algorithm is derived by noting 

that r-1AT has a real Schur form as in (2.17) and that the block diagonal elements of 

the A-matrix of G* (z) G (z) are not affected under the basis change by T= [~ ~ ]. 

Thus, even if A is not stable, we can obtain a canonical spectral factor G0 ( z ) satisfying 

c:(z)G0 (z) =G*(z)G(z) as noted in[7]. 

3 . Discrete-Time Wiener Filtering 

A discrete-time multivariable Wiener filtering problem is treated in this section. 

First, we formulate the problem and present the solution based on the spectral factoriza­

tion and additive decomposition [6]. Then, we derive the state-space solution by convert­

ing the Wiener filtering problem into a model matching problem. 

3. 1 Wiener Filtering 
Suppose that we are given the observed signal y ( t ) which 1s the sum of the 
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desired signal () (t ) and the noise lJ (t ) , namely 

y(t)=fJ(t)+1J(t) (3.1) 

where y (t ), (} ( t), lJ ( t), t=O, ± 1, •··, are P-dimensional zero mean second-order jointly 

sationary processes. We assume that (} ( t) and lJ ( t) are uncorrelated. Let the covar­

iance functions of y(t), fJ(t), IJ(t) be given by R1111 (f), Ree(f), Rw(f), respectively. 

Then it follows from (3.1) that 

R.,(f)=ReeU)+R,,(f), f=O, ±1, ··· 
where Rap ( f) : = E { a ( t+f) f3T ( t)}, and E { • } denotes the mathematical expecta­

tion. Thus the spectral density matrices satisfy 

S1111 ( z ) = See ( z ) + Sw ( z ) (3.2) 

The Wiener filtering problem is to find the least-squares (LS) estimate of the de­

sired signal fJ(t) based on the past observations Y': = {y(f), f=t-1, t-2, ···}. This 

is called the one-step prediction problem, because Y' includes the data up to time t-1 to 

estimate the desired signal (} ( t ) . If we denote the LS estimate by () ( t ) , then the 

problem is to design the causal filter W(z) =l";:.w,z-1 such that 

J = E {II (} ( t ) - () ( t ) 112} = minimum 

where the LS estimate is given by 

- m 

(} (t) = ~W,y (t-f) 
l=O 

(3.3) 

It may be noted that W0 = 0 since W ( z) E RH;. But, if we include y (t) in the data set 

Y', then we have the optimal filtering problem [ 1). We also derive the solution for the 

case of Wo~O. 

Suppose that the spectral density function S1111 ( z ) is analytic on the unit circle, and 

has a canonical factorization 

S,, ( z ) = 0, ( z ) 0: ( z-1
) 

where 0, ( z ) is a p x p outer function, namely, '1>, ( z ) , 0;1 
( z ) are analytic in lzl ~ 1. It 

is well known [ 1 ], [ 6] that the transfer function of the optimal filter is given by 

W(z) = [ See (z) a>;T(z-1
)] +0;1(z) (3.4) 

where [ See (z) 0;T(z-1
)] + is the matrix function belonging to RH; by partial fraction 

expansion. 

We now assume that the observation noise lJ ( t) is a white noise with Sw ( z ) = R 

and that See ( z ) -+ 0 as z-+ oo. We see from (3.2) that 

See (z) 0;T(z-1
) = [ S1111 (z) -R] 0;T(z-1

) 

= a>, ( z) - R0;T ( z- 1) (3.5) 

where 0, ( z) is stable and R0;T(z-1
) is antistable, and S1111 (z)-+ R as z-+ oo. Unlike 

the continuous-time case, the spectral factor 0, (z) does not tend to R 112 as z-+ oo, but 

0,(z)-+A, 0:(z- 1)-+A-1R, z-+oo 

where A : = 0, ( oo), and A is assumed to be nonsingular. Subtracting the constant term 
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A from q,, ( z ) , we get an additive decomposition 

s88 ( Z) q,;T( z-1) = [ q,, ( Z) -A] + [ A-Rq,;T (z-1)] 

where q,, (z) -AERH; and A-Rq,;T(z-1
) ERH:::. Thus we have 

[ s88 (z) q,;T(z-1
)] +=q,. (z )-A 

Substituting (3.6) into (3.4) yields the optimal transfer function 

W(z) =lp-Aq,;1 (z) 

(3.6) 

(3.7) 

We see that W(z) is strictly proper, so that Wo=O. This expression is the same as that 

of the continuous-time Wiener filter [7]. 

It should be noted that if we include the current observed signal y ( t ) in the data 

set Y1, then we should modify the additive decomposition so that [ S88 (z) q,;r(z- 1
)] + 

contains all the constant terms in the r.h.s. of (3.5). In fact, from (2.3), the contant term 

in the antistable function q,;r ( z-1
) is obtained by 

limq,;\z- 1) =q,;r(oo) =A-T 
z-o 

Thus 

[ q,BB(z)q,;\z-1)] +=qJ.(z)-RA-T (3.8) 

It follows from (3.4) and (3.8) that the optimal transfer function of the filtering problem 

is given by 

w ( Z ) = [ q,, ( Z) - RA-T] q,; 1 
( Z) 

=lp-RA-rq,;1 (z) (3.9) 

It may be noted that W0 = W(oo) =lp-R (AAT)-1:;i=0. 

In the next section, we derive the state-space solution to the discrete-time Wiener 

filtering problem for the case where the spectral density function S88 ( z ) is rational. 

3. 2 Model Matching Problem 

Consider the case where the desired signal (} ( t) has a rational spectral density, so 

that we can assume that (} ( t) is generated by a minimal state-space model 

x(t+l) =Ar(t) +G~(t) 

O(t) =Cx(t) 

(3.10) 

(3.11) 

where x ( t) is the n x 1 state vector, ~ ( t) is the q x 1 white noise vector with mean zero 

and covariance matrix lq, and A, G, C are n x n, n x q, p x n constant matrices, respective­

ly. We also assume that A is stable and nonsingular. 

Define q, (z) : = (zl-A )-1
. Then we see that in z-domain, 

- -
e ( z ) = (} ( z ) - (} ( z ) = cq, ( z ) G~ ( z ) - (} ( z ) 

y ( z ) = (} ( z ) + 1,1 ( z ) = cq, ( z ) G~ ( z ) + LTJ ( z ) (3.12) 

{}(z)=W(z)y(z) 

where 1,1 ( z) = LT} ( z ) , and TJ is a white noise vector with N (0, Ip), and L is nonsingular. 

According to the general framework of the model matching problem, (3.12) reduces 
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to (see Fig. 1) 

[ e ] = [ Pu P12 ] [ ~ ] 
y P21 Pz2 0 

-[~::::~ ~ -:·1[il 
and 

0= W(z)y 

where v : = [ ! ] . Also, the error signal is given by 

r--------------------, 

: ,--------~ : 
: ,---, _I 

{

~(z) : C~z)G S(z) + 
v(z)= : 

11( z l -, --+~ 

,., 
e(zl 

I 
I 
I 
I 
I 

L 

[P{z) ______________ _ 

W{z)----~ 

e(z) 

y(z) 

Fig. 1 Standard block diagram for Wiener filtering 

e ( z ) = [ P 11 ( z ) - W ( z ) P21 ( z ) ] v ( z ) 

(3.13) 

(3.14) 

(3.15) 

The discrete-time Wiener filtering problem 1s therefore transformed into a standard 

model matching problem minimizing 

J=IIP11 (z )-W(z )P21 (z )112 

For simplicity, we define T, (z) : =Pu (z) and T2 (z) : =P2i(z ). Let a co-inner­

outer factorization of T2 ( z ) be given by T2 ( z ) = T 2co ( z ) T 2ct ( z ) where T2,1 ( z ) is 

co-inner and T 2co ( z ) is co-outer. It therefore follows from (1.4) that the optimal filter 

W(z) is given by 

W(z) = [ T, (z) r;, (z)] +T~! (z) (3.16) 

3. 3 State-Space Solution 
It follows from (3.13) that realizations of T, ( z ) and T2 ( z) are respectively given 

by 

(3.17) 

and 
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(3.18) 

In order to obtain a co-inner-outer factorization of T2 (z ), we apply Theorem 2.1 to 

T, (' ) '~ l :: I :: I 
From (2.11), we get E=AT, l:=CT (LF)-1C, and Il=GGT. The ARE associated with 

T2 ( z ) T is therefore given by 

Y=AYAT -AYCT (LF +CYCT)-1CYAT +GGT 

Define 

H=-AYCT (LF +CYCT)-1 

V= (LF+CYCT) 112 

It then follows from (2.22) that 

Ar I er 
T'lo(z)T= [---+---) 

-VTHT VT 

so that 

[ A 1-HV] T2co (z) = C V 

Hence, a co-inner function is found to be 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

= [ ~ I ~ ] (3.24) 

where AH is assumed to be nonsingular. 

Define T= [ ~ ~ ) using the stabilizing solution of (3.19). Note also that the ARE 

of (3.19) is rewritten as 



Solutions to Wiener Filtering and Stationary LQG Prob/,em via H2 Control 269 
Theory - Part II: Discrete - Time System 

(-Y+GTG )Ai/ +AY=O 
It then follows that 

r-1AT= [ Air ~ ] 

-
CT= [ CY C] 

Hence, (3.24) becomes 

I 
Ai? 0 -Ai/CTv-r I 

T1(z)T::,,(2)= O A AYcrv-r 
----+------

CY C o 
=C (zl-A )-1AYcrv-r -CY(zl-Ai/)-1Ai/Crv-r (3.25) 

We see that the first term of the r.h.s. of (3.25) obviously belongs to RH';, since A is 

stable and Ai/ is antistable. Thus, if we insist that the filter is strictly causal, then 

[ A1-HV] [Ti(z)T::,,(z)]+= C O 

since AYCT ( wr)-1= -H. 

Theorem 3.1 

The optimal filter, or the one-step predictor, is given by 

W(z) =-C(zl-A-HC)-1H 

Proof 

It follows from (3.16), (3.22) and (3.26) that 

W(z) = [ ~ 1-:V] [ ~ 1-~V r 
_ [ A 1-HV 1-1 

-lp-V C V 

=Ip- [ A+CHCI ~] 

This completes the proof. D 

(3.26) 

(3.27) 

On the other hand, if we do not assume that the optimal filter is strictly causal, then 

the operator [ • ] + should include the constant terms as well as the strictly causal part 

in (3.25). As in Section 3.1, we see that the constant term equals cycrv-r, by taking z 

-+ 0 in the second term in the r.h.s. of (3.25). Thus we get 

[ Ti(z) r::,, (z)] += --1--------[AI -HV ] 
C cycrv-r 

(3.28) 

Theorem 3.2 

The optimal filter is given by 
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W(z) =Ip- (LU) ( vvr)-1 - (LU) ( vvr)- 1C (zl-A-HC )-1H 

Proof 

It follows from (3.22) and (3.28) that 

[AI -HV ] [ A 1-HV ]-l 
H(z)= C cycrv-T C V 

[ 
A 1-HV ]-

1 

=Ip+ [ cycrv-T -V] C V 

[ 
A+HC I H ] =Ip+ [ cycrv-T -V] -----+---

v-1c v-1 

=Ip+[ CYCT(VVT)-1 -lp] [~I~] 
Since CYCT (VVT)- 1-lp=- (LU) (VVT)- 1

, we have (3.29). D 

4 . Stationary LQG Problem 

(3.29) 

In this section, we deal with the stationary LQG problem for the discrete-time 

system via the technique employed in Section 3. The LQG problem is converted into a 

model matching problem based on a doubly coprime factorization, and then the optimal 

controller is derived by applying the inner-outer and co-inner-outer factorizations. 

4. 1 Problem Statement 

Let a discrete-time linear stochastic system be described by 

x(t+l) =Ax(t) +Bu(t) +G~(t) 

y ( t ) = Cx ( t ) + LTJ ( t ) (4.1) 

where x ( t) is the n x 1 state vector, u ( t) is the m x 1 control vector, y ( t) is the p x 1 

output observation vector, ~ ( t) is the q x 1 process noise, and TJ ( t) is the p x 1 observa­

tion noise. A, B, C, G, L are constant matrices of dimensions n x n, n x m, p x n, n x q, p 
xp, respectively. We assume that ~ (t) and T) (t) are stationary white Gaussian noises 

with means zero and the covariance matrices 

E{~(k )FU')} =lqou 

E { T) ( k ) T) T ( f)} = Ip Ou (4.2) 

where Ou is the Kronecker delta. It is also assumed that the initial state x (0) and noises 

~ ( t ) , T) ( t ) are independent. 

Let Q and R be n x n nonnegative definite and m x m positive definite matrices, 

respectively. Then the stationary LQG problem is to minimize the steady-state average 

cost 

(4.3) 

with respect to a causal controller. It is required that the closed-loop system is internal­

ly asymptotically stable. We assume for simplicity that the admissible controller is 
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strictly causal, although, as in Section 3.3, we can derive the optimal controller that is 

causal, but not strictly causal. We also assume that (A, B, Q 112), (A, G, C) are minim­

al, where Q=Q 712 Q 112. 

4. 2 Model Matching Problem 

We define 

e(t): = [ Q112x(t) ], v (t): = [ ~(t) ] 
R112u ( t) TJ ( t) 

Then, from (4.1) and (4.4), in z-domain, 

[ e ] = [ Pu P12 ] [ v ] 
y P21 P22 u 

I 
Q112<P(z) G 0 

= 0 0 

C<P(z) G L 

Q

112

<P(z)B] I~ l 
Rl/2 TJ 

C<P(z)B u 

where <P (z) : = (zl-A )-1 (see Fig. 2). 

I~ {z) 

v{ z)= l 
'l ( z) 

L P{z) _________________ _ 

K {z) 

Fig. 2 Block diagram for stationary LQG problem 

Let the admissible controller be given by K ( z ) . Then 

u=K(z)y 

It therefore follows from (4.5) and (4.6) that 

e= [ Pu+Pi2K(z) (/-Pz2K(z ))-1P21] v 

(4.4) 

(4.5) 

y{z) 

(4.6) 

(4.7) 

Hence, by the Parseval Theorem, minimizing J of (4.3) is equivalent to minimizing the 

H2 norm 

2 1 J; dz llellz=-
2

. e*(z)e(z)-
'JCJ lzl=l Z 
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with respect to K ( z ) . Since the covariance matrix of v ( t) is identity, the stationary 

LQG control problem reduces to minimizing 

(4.8) 

Doubly coprime factorizations of discrete-time transfer matrices are the same as 

those of continuous-time transfer matrices, so that P 22 (z): = CtJ> ( z) Bis factored as [2], 

[4] 

A2 (z) =N2M2-1=Mi!N2 
where 

[ i~ -_Y2 ] [ ~2 ;2 ] = [ ~2 ;2 ] [ i~ -_Y2 ] = Ip+,,, 
- N2 M2 2 2 2 2 -N2 M2 

It is well known [ 2], [ 4] that the set of all proper rational stabilizing controllers is 

parametrized as 

K ( z) = [ Y2 ( z) -Md z) Q ( z)] [ Xi( z) -N2 ( z) Q ( z)] - 1 

- - -= [ X2 (z) -Q (z) N2 (z)] - 1 
[ Y2 (z) -Q ( z) M2 ( z) l (4.9) 

where Q (z) is an arbitrary transfer matrix belonging to RH;. Substituting (4.9) into 

(4.8) and rearranging the terms yield 

]=II Ti(z) -Ti(z) Q(z) T3 (z) lb (4.10) 

where 

T1 (z) =Pu+P12M2YiP21 

T2 (z) =P12M2 

T3(Z)=MiP21 
Now we choose F, H so that AF : =A+ BF, AH : =A+ HC are stable. Then, the 

state-space realizations of M2, N2, M2, N2, X2, Y2, X2, Y2 are given by [ 4 ], [ 11] 

(4.11) 
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it follows that 
AF -BF G 0 

0 AH G HL 
T1 (z) = Ql/2 0 0 0 

(4.12a) 

Rll2F -R 112F 0 0 

[ A, }J T2 (z) = Q112 (4.12b) 

Rll2F 

[ AH I G HL ] T3 (z) = C O L (4.12c) 

It may be noted that the derivations of (4.12) are the same as those of the continuous­

time counterparts [ 7]. 

4. 3 Solution to Discrete-Time LQG Problem 
In order to apply the formula (1.4), we need the inner-outer and co-inner-outer 

factorizations of T2 ( z ) and T3 ( z ) , respectively. 

From (4.12b), E, ~. II defined by (2.11) are given by 

E=A, ~=BR-1BT, Il=Q 

Thus the ARE associated with T2 ( z ) is given by 

X=AT XA-AT XB ( R+ BT XB )-1BXA + Q (4.13) 

Since (A, B, Q112) is minimal, (4.13) has the unique stabilizing solution X. Also, from 

(2.15), we get 

K2; =- (R+BTXB )-1 (BTXAF+RF) 

=-F- (R+BTXB )-1BTXA 

It therefore follows from Theorem 2.1 that 

(4.14) 

where, from (2.20), Vi : = ( R +BT XB ) 112
• Since X is the stabilizing solution, if we take 

F=- (R+BTXB )-1BTXA, then AF: =A+BF is stable. Thus the simplest form of the 

outer function is given by T20 ( z ) = Vi, so that the inner function is 

T21 (z) = [ ;;2 
: ] Vi-1 

R112p Rl/2 
(4.15) 

A co-inner-outer factorization of T3 (z) is obtained by applying Theorem 2.1 to 

T,(,)'~LA~ [ l 
It follows from (4.16) and (2.11) that 

E=AT, ~=CT (LLT)- 1C, Il=GGT 

(4.16) 
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so that the ARE associated with T3 ( z ) r is 

Y=AYAT -AYCT(LF +CYCT)-1CYAT +ccr (4.17) 

Note that (4.17) is the same as (3.19), which is employed for the state-space solution to 

the Wiener filtering problem. We see that since (A, G, C) is minimal, (4.17) has the 

unique stabilizing solution Y. Hence, from (2.15), we get 

K[; =-(LU+CYCT)-1(CYAi+LFHT) 
=-HT -(LU +CYCT)-1CYAT 

Thus, from Theorem 2.1, 

T3o(z)r=v/[ Air I er] 
-K3 Ip 

where 

V/ = (LU +CYCT) 112 

The co-outer function is therefore given by 

[ AH 1-K3] T3co(z)= C Im Vi 

(4.18) 

(4.19) 

Here, if we take H=-AYCT(LF +CYCT)-1 then AH; =A+HC is stable, because Y is 

the stabilizing solution. Thus, the simplest co-outer function is T3co(Z) = V3, and the 

corresponding co-inner function becomes 

T 3cl ( Z ) = T3~! ( Z ) T3 ( Z ) 

= v-• [ AH I c HL ] 3 
C O L 

(4.20) 

In the following, we evaluate T2~(z )T1(z )T3~1(z ), where F and Hare fixed as 

F=-(R+BrXB )-1Br.XA. and H=-AYCT(LU +CYC )-1. We see from (4.12a) and 

(4.15) that 

T2~T1= Q112 

R 112F 

BVi-1 * 

R'~v,-• I 
AF -BF G 0 

0 AH G HL 
Ql/2 0 0 

= Vi-T[ A;;:T I A;;:TQT/2 
-Br A;;:T-BTA;;:TQT/2 

A7FTRTl2 ] 
RT/2_BTA;;:TFT RT/2 

AF -BF G 0 

0 AH G HL 
X 

Ql/2 0 0 0 

R 112F -R•12F 0 0 

AF -BF 0 G 0 

=Vi-T 
0 AH 0 G HL 

A;;:T (Q+FTRF) -A;;:TFTRF A;;:T 
(4.21) 

0 0 

c. C2 c3 0 0 
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where 

C1=-BTA;.T (Q+FTRF) +RF 

C2=-RF+BTA;.TFTRF 

C3=-BTA;.T 

lntroducting the basis change 

T= [ i ~ ~ l 
-X I -X 

and using the ARE of (4.13), (4.21) becomes 

AF 0 -HC 0 

T2~T1= Vi-T 
0 A;.T 0 XG 

0 0 AH G 

0 -BTA;.T -BTXA 0 

AiiT 0 0 

=Vi-T XGGTAi? A;.T 0 

A31 0 AH 

-HL 

0 

HL 

0 

B1 

B2 

B3 

0 BTA;.T BTXA 0 

where 

A31=GTGAiiT +HLVHTAiiT 

B1=Ai/CT, B2=XGGTAiiTCT 

B3= GGT AiiT er -HLV + HLU fl T AiiT CT 

Again, by the basis change 

AH I G HL ]* 
v3-1c o v3-1L 

(4.22) 

(4.23) 
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T= I~ ~ ~ I 
Y O I 

and by the ARE of ( 4.17), we get 

Ai? 0 0 

T2iT1T3i= Vz-T 
XGGTAi? Aj;T 0 XGGTAi/CT Vi-T 

0 0 AH 0 

BT.KAY BTAj;T BTXA 0 

A.i? 0 A;;'C' l -v,-'[ XGG'AH' Aj;T XGGT:i/CT Vi-T 

BT.KAY BT Aj;T 

Since AH, AF are stable, the r.h.s. of this equation is antistable. Thus we get 

[ T2i ( z ) T1 ( z ) T ;; ( z ) ] + = 0 

so that, from (1.4), Qop1 ( z ) = 0. 

Theorem 4.1 

The transfer function of the optimal controller is given by 

K(z)= [; 1-oH J [~I~~ r 
=-F(zl-A-BF-HC )-1H 

Proof 

A proof is immediate from K(z)=Y2(z)X2-1(z). D 

(4.24) 

(4.25) 

It may be noted that ( 4.25) is the transfer matrix of the well-known optimal station­

ary LQG regulator for the discrete-time system. 

4. 4 Causal Optimal Controller 

The optimal controller of (4.25) is strictly causal, so that it consists of the noise-free 

regulator and the Kalman filter that produces the one-step predicted estimate. If we 

include constant terms in the causal part [•]+,then, by taking z-+ 0 in (4.24), we get 

[ T2iT1T:;] += Vz-T BT XAYCTVi-T 

Since T20 ( z) = Vi, T Jco ( z ) = Vi, we get from (1.4) 

Qopt (z) = ( V/Vz)- 1BTXAYCT ( ViV/)- 1 

= (R+BTXB )-1BTXAYCT (LF +CYCT)-1 

=FA-1H 

Theorem 4.2 

(4.26) 

The transfer function of the optimal controller, not strictly causal, is given by 

K(z) =-FA-1H-FA-1AH(zl-A-BF-HC-BFA-1HC )-1AFA-1H (4.27) 
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Proof 

It follows from (4.9), (4.11) and (4.26) that 

K(z) = [ Y2(z )-M2Q0Pt (z )] [ X2(z)-N2Qop1 (z))-1 

= [ AF 1H+BFA-1H ] [ AF 1H+BFA-1H 1-1 

-F -FA-1H -C Ip 

= [ AF 1H+BFA-1H ] [ AF+HC+BFA-1HC 1H+BFA-1H] 
-F -FA-1H C Ip 

I 
AF HC+BFA- 1HC 

=- 0 AF+HC+BFA-1HC 
H+BFA-

1
H] 

H+BFA- 1H 

-F FA- 1HC FA- 1H 

By the basis change T= [ ~ ~ ], we get 

K(z) =-[ ~ AF+HC:BFA-1HC H+B:A- 1H ] 

F F+FA-1HC FA-1H 

=-[ AF+HC+BFA-
1
HC 1H+BFA-

1
H] 

F+FA-1HC FA-1H 

This completes the proof. D 
It is not difficult to show that the above controller is formed by the noise-free 

optimal regulator and the Kalman filter that produces the filtered estimate [ 1]. 

5 . Conclusions 

We have developed solutions to the discrete-time Wiener filtering and stationary 

LQG problem by converting them to model matching problems and applying the H2 

control theory. Both strictly causal and causal solutions are derived based on the state­

space technique. It may be noted that the state-space technique developed for the model 

matching problem [ 2 ], [ 4] is very powerful in manipulating various transfer matrices. 

The derivation of the inner-outer factorization in Section 2 is applicable to the 

spectral factorization of 721-G*(z)G(z) that appears in H,. optimizations. This will 

be presented elsewhere. 

Appendix A 

The proof of Lemma 2.1 is based on the use of the matrix inversion lemma. Define 

- [Au A21] A= _ _ Then from (2.10a) and (2.11), we get[5] 
A12 A22 
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Au=A-B (DTD-BTA-TeTD )- 1 (DT -BTA-TeT) e 

=E+B(DTD )- 1DTe 
-B (DTD )-1 [ 1-BTA-TeTD (DTD )-11 -I (DT -BT A-TeT) e 

=E+B <DTD )- 1 c I-BT A-rerD <DTD )- 11 -1 

x { c 1-BTA-rerD <DTD )-11 DT -DT +Br A-rer} e 

=E+B (DTD )-1 [ 1-BTA-TeTD (DTD )-11 -I 
xBTA-rer[ 1-D(DTD )-1DT] e 

=E+B (DTD )- 1BT [ AT -eTD (DTD )-IBT] -IJI 

=E+J:E-TJI 

A12=-B (DTD-BT A-TeTD) ""'1BTA-T 

= -B (DTD )-1BT[ AT -eTD (DTD )-1BT] -I 

=-J:E-T 

A21= -A-rere+A-rerec DTD-BT A-rerDJ - 1 <DT -BT A-rer) e 

= - [ A-T +A-TeTD (DTD-BT A-TeT)-IBT A-T] ere 

+A-TeTD[ DTD-BT A-TeTD]-1DTe 

=-[AT-eTD(DTD)-IBT1-1ere 

+ c AT -erD <DTD )-1BT] -1erD<DTD )-1Dre 

=-E-TeT[ 1-D(DTD )-IDT] e 

=-E-TJI 

A22=A-T +A-rerD <DTD-BT A-rerD )-1BT A-T 

= [ AT -eTD (DTD )-IBT] -I 

=E-T 

This completes the proof of Lemma 2.1. D 
Appendix B 

We see that, from (2.12), 

r-iAT= [ 1 o ] [E+xE-TJI -1:E-T] [ 1 o ] 
-X I -E-TJI E-T X I 

= [E+xE-T<JI-X) -1:E-T ] 

0 -XJ:E-T +E-T 

(Al) 

(A2) 

(A3) 

(A4) 

(Bl) 

where the (2,1)-block is zero from the discrete-time ARE of (2.13). It follows from 

(2.14b), (2.14c) and (2.16) that the (1,1)-block of (Bl) is given by E,=A+BK, and the 

(2,2)-block is E,-r. Also, from (2.10b), 

y-ijj_ [ I O ] [ B ].i:1-i 
-X I -A-TeTD 

BJ-I 

= [ _A-T(ATXB+eTD)L1-1] 
(B2) 
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and, from (2.10c), 

CT= -J-l [ rrc BTA-T] [1 ~ ] 
=-J-1[ rrc+BTA-TX BTA-T] 

We evaluate the (1,1)-block of (B3). Similarly to the derivation of (Al), 

(DTD )J-II'TC= (DTD) (DTD-BTA-TCTD )-1 (DT -BTA-TCT) C 

= [ J-BTA-TCTD(DTD)-1)-l(DT-BTA-TCT)C 

=DTC+ [ 1-BTA-TCTD(DTD )-11-1 

Also, 

X {DT -BTA-TCT - [ 1-BTA-TCTD (DTD )-11 DT} C 

=DTC- [ 1-BTA-TCTD(DTD )-11-1 

xBTA-TCT[ J-D(DTD )-1vr1 C 

=DTC-BTE-T[J 

<DTD )J-1Br A-rx= <DTD) [ vrv-Br A-rcrv1 -1BTA-rx 

=BTE-TX 

Thus combining (B4) and (B5) yields 

a:= (DTD)J- 1 (I'rc+BTA-TX) 

=DTC+BT E-T (X-II) 

But, from (2.13), (2.14a) and (2.15) 

E-T (X-II) =XE-XB (DTD+BTXB )-IBTXE 

=X(A+BK) 

Substituting (B7) into (B6) gives 

a=DrC+BrXA+BTXBK 

=- (DTD+BTXB )K+BTXBK 

=- (DTD)K 

Thus (B3) becomes 

CT= [ K -J-IBTA-T] 

This completes the proof of Lemma 2.3. D 
Appendix C 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 

It follows from the hypotheses of the theorem that 'ff: has no eigenvalues on the 

unit circle, so that Lemma 2.2 applies. It is easy to see that G0 ( z ) of (2.22) is outer, 

since A+BK is stable. Thus G, (z) is obtained as 

G; (z) =G (z)G;;1 (z) 

= [ ~ I ~ ] [ A +:K I B;~l ] 
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I 
A+BK o IBv-1

] 

= BK A _Bv-1 

DK C nv-1 

(Cl) 

Introducing the basis change T= [~ ~ ], (Cl) reduces to 

I A+BK O Bv-1 
] 

G;(z)= 0 A O =[1:!~!]v-1 

C+DK C nv-1 

This completes the proof of Theorem 2.1. D 
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