
Mem. Fae. Eng., Kyoto Univ. Vol. 53, No. 1 (1991) 

A New Monte Carlo Method for 
Quantum Spin Systems 

-Technical Details of the Method -

by 

Shinji KAnowAKI* and Akira UEnAt 

(Received August 21, 1990) 

Abstract 

A simple Monte Carlo method to evaluate the partition function of finite quantum 
spin systems, which was proposed in the previous paper1), was applied to obtain accurate 
values for thermodynamic quantities down to rather low temperatures for one and two 
dimensional systems. In the present paper some technical details and comments on the 
method are given. 

1. Introduction 

1 

The high temperature expansion method (HTEM)2> gives us exact results for 

thermodynamic quantities at high temperatures in the sense that the first ten to twenty 

coefficients of the cumulant expansions are exactly evaluated. The HTEM has been 

applied to various lattice systems.2> Since, however, the coefficients so far evaluated 

are limited to a bit higher than the twentieth term after much unremitting endeavor, 

it is too insufficient to examine the thermodynamic properties at lower temperatures. 

In order to supply this deficiency, a Monte Carlo method for the spin-1/2 quantum 

Heisenberg system was originally proposed by Handscomb3> more than twenty years 

ago. This method is based on the high temperature expansion of the partition func

tion, and introduces an importance-sampling method similar to the Metropolis meth

od. Recently the practical computing scheme of Handscomb's method was improved 

by Lyklema.'> Subsequently, the method was modified by Chakravarty and Stein5> so 

as to be applicable to the spin-1/2 quantum XY-spin system in one dimension, and also 

by Lee et al6> to the antiferromagnetic quantum Heisenberg spin systems for linear, 

square and triangle lattices, respectively. Furthermore, Lee et al.'s method was ap-
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plied to calculate the correlation length for square lattice systems by Manousakis and 

Salvador7>. All of these methods use an importance-sampling technique and avoid 

evaluating the partition function directly. On the contrary we have developed a new 

approach1> within a framework ofHTEM, in which the partition function is evaluated 

numerically accurately as well as directly with use of the Monte Carlo method. The 

method is to evaluate the values of the moment-expansion coefficients up to terms of 

order as high as tens to hundreds of thousands and was found to yield unexpectedly 

precise values of thermodynamic quantities for the spin 1 /2 quantum Heisenberg 

systems at rather low temperatures. In the present paper we will give some technical 

details of the method. 

In the next section a brief summary of some mathematical formulas used in our 

method are given for the convenience of readers. The Monte Carlo (MC) sampling 

for the expansion coefficients is explained in §3. Especially, an algorithm for the cycle 

descomposition of permutation is described in detail. Subsequently, how to estimate 

traces is described. In §4 powerful interpolation method for evaluating many ex

pansion coefficients is introduced. Some technical problems which arise in an appli

cation of our method are described in §5, and some discussions are made in §6. 

2. Review of the required Formulas 

1. Hamiltonian 

We consider the spin-1/2 isotropic Heisenberg system of N spins. The Hamil

tonian is given by 

(1) 

where a is the Pauli spin operator, J(>O) the coupling constant, µ the magnetic mo

ment, and H the external magnetic field in the z-direction. The summation in the 

first term is taken over the nearest neighbour spin pair i, j. The periodic boundary 

condition is assumed. Using the well-known Dirac identity8> a;•G;=2(ij)-l where 

(i j) is the permutation operator called transposition, which interchanges the spin 

states at sites i and j, and shifting the zero of the energy - ( 1 /2) J Nb, Hamiltonian 

( 1) is rewitten as 

(2) 

Here the suffix b in (ib jb) is a bond-number which joints the sites ib and jb and the 

summantion ~b is carried over the total number, Nb, of the nearest neighbour 
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bonds. H0 represents the second term ofEq. (1). 

2. Partition function and it's high temperature expansion coefficients 

The partition function can be expanded as 

°" a 
Z =Tr(exp(-.1£/kT)) =~_Li--,, 

r=O r! 

3 

(3) 

where k8 is the Boltzmann constant, T the temperature and -r stands for k8 T/J. The 

expansion coefficient a, is given by 

(4) 

and P(C,) can be written as 

(5) 

where (h) is an identical operator which maps a spin state at a site h on itself and 

hence is omitted hereafter. C, represents a sequence of r bond-numbers h1, b2, ···, 

b, which are selected with repetition from a set {l, 2, ···, N6}, and the summation 

is carried out over all possible Nt sequences C,'s. Any bond-number b-,. uniquely 

corresponds to the nearest neighbour pair i61 and j 61, where a site-number i61 is an 

integer between 1 and N. P(C,) represented by a product of transpositions becomes 

a permutation of order N, because it involves all of N integers from 1 to N. Ac

cording to the theory of the permutation group9>, a permutation can be decomposed 

into a product of independent cycles which have no common elements, as follows: 

Where, for example, the cycle (jd2···j11) stands for the cyclic permutation of the length 

/1, which mapsj2 -+ ji,j3 -+ j 2, ··•,j1-+ j,1• 

Now a trace A(C,) in Eq. (4) is given by 

.N 

A(C,) = IT {2cosh(lL)} .,,, , (7) 
/=1 

where L stands for µH/k8 Tand Y1 is the number of independent cycles oflength. The 

Y's must satisfy 

For zero-magnetic field Eq. (7) reduces to 

A(C,) = 21<c,) , 

(8) 

(9) 
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where k(C,) = ~f-1 111 is the total numbe1 of independent cycles. 

The expansion coefficients of Z, 8Z/8L and 82Z/8L2 required for evaluating ther

modynamic quantities are summarized as follows. For 

Z - ~ a, -, 
- ..:-.J 1:' ' 

r=O r! 

N 

a, = ~ A(C,), A(C,) = IT {2cosh(lL)} .,,1 
a, 1=1 

for 
N 

b, = ~ B(C,), B(C,) = A(C,) ~ l111tanh(lL) 
a, /=1 

and for 

d, = ~ D(C,), 
a, 

[

N N N ] 
D(C,) = A(C,) ti 111!2-ti (l tanh(lL))2+{~ !111 tanh(LL)2} . 

In the case of the zero-magnetic field, Eq. (15) recuces to 

N 

D(C,) = A(C,) ~ 111!
2

• 
/=1 

where 11's must satisfy Eq. (8). 

3. Thermodynamic quantities 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

The thermodynamic quantities are derived by differentiating the partition func

tion Z. Tht> entropy, internal energy and specific heat are given by 

_§_ = _!_znz +~ _!_ 8 z 
NkB N NZ 8r' 

(17) 

_§_ = r _!_ az _ _!_ !L 
NJ NZ 8r 2 2' 

(18) 

and 

cH = r
2 

[ 1 a2z + 2 1 az -( 1 -02)2
] , 

NJ N Z 8r r Z 8r Z 8r 
(19) 
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where q is the coordination number of the lattice sites. The magnetization and sus

ceptibility are given by 

M 1 1 az 
Nµ = NZ 8L ' (20) 

k8 Tx = _!__ [_!__ a2z -(_!__ az)2
] (2 l) 

Nµ2 N Z 8L2 Z 8L ' 

The susceptibility in the zero-magnetic field, X0, is given by 

(22) 

where D(C,)'s in the d, are given by Eq. (16). 

3. MC sampling for the expansion coefficients 

In the present paper, we consider the case of the zero-magnetic field for which 

the expansion coefficients a, and d, need to be evaluated. The procedure of the eva

luation consists of two parts. Firstly, M expansion coefficients, M being to be about 

ten, are evaluated by a crude Monte Carlo method, of which details of the sampling 

are described in this section. In the second part, the rest of the expansion coefficients 

are evaluated by interpolation with use of a formula of the Pade type rational func

tion, of which details are given in the next section. 

3.1. MC sampling 

The a, and d, for M specified r's, say, r2, r1, ... , rM in increasing order, are eval

uated with a crude Monte Carlo method. That is, to evaluate the coefficient of the 

r-th term we chose r integers bi,b2, ···, b, randonly with repetition from the set {1,2, 

•··, Nb} and construct P(C,) as given by Eq. (5) and then compute A(C,). Repeat

ing the procedure N, times, we obtain the mean value, A,, of A(C,) (=a,/N'b) and 

hence the MC value, a,, of a,. They are given by 

A,=~ A(C,)/N,, 
JCO 

(23a) 

and 

a,= N'i,A,, (23b) 

where ~Mc stands for the summantion over N, Monte Cairo samples. In a similar 

way D, and d, are obtained. Computational details are given in the following sub-
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sections. 

3.2. Cycle Decomposition of Permutation 

Let us suppose that the Nb bonds are already numbered from 1 to Nb and the bond 

numbered b,. connects the nearest neighbour sites ib,, and }b,,· Then P(Cr) as a pro

duct of the transpositions given in Eq. (5) is constructed simply by choosing r integers 

b1, b2, ···, br randomly with repetition from the set {l, 2, ···, Nb}. On coding the 

computer program for the cycle decomposition of P(Cr) it is convenient to use two 

linear arrays. One of them is an array SI for site ib,,, and another one an array SJ 

for site }b,,• The subscript of both arrays corresponds to the bond-number b,, of the 

spin and the numbers of spin sites ib,, and }b,, are stored in SI and SJ arrays, respec

tively. That is, 

where values of ib" and}b,, are dependent on the lattice structure under consideration. 

These arrays are always looked on as a reference table. As an example, a numbering 

of nearest neighbour sites and bonds between them on the 3 X 3 square lattice with the 

periodic boundary is shown in Fig. 1 and Table 1. 

Fig I. An example of the numbering of bonds and sites on 3 X 3 square lattice. 

Table I. A look-up table for numbering bond b,, and it's nearest neighbour 
spin sites i6,, and}b1, on 3 X 3 square lattice. 

h,, 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

SI 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 

SJ 2 3 5 6 4 8 9 7 4 5 6 7 8 9 2 3 
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3.2.1. Algorithms 

Now we decompose P(Cr) which is specified by r integers bu b2, ···, br into the 

produce of independent cycles as on the right hand side of Eq. (6). However, selec

ting a P(Cr) and decomposing it into independent cycles can be made simultaneously 

in the computer program. In this respect it should be noticed that an operator 

(i6,,j6,,) acts to interchange spin states at sites i6,, and j 6,,, and P(Cr) is a permutation of 

order N. The simple algorithm for the cycle decomposition is derived from this fact. 

First, we initialize an array PCR of size Nto PCR(i)+-i (i=l, ···, N). Then we re

peat r times the following transpositions 

where TMP is a temporary variable, and i6,, and j 6,, which are the numbers stored in 

SI(b,,) and SJ(b,,), respectively, represent the nearest neighbour sites corresponding to 

a randomly selected bond number b,,. After 1 epeating the procedure r times, we ob

tain the permutation P(Cr) in the form 

(24) 

where k;(i=l, ···, N) is stored on the array PCR with the subscript i, that is, k;= 

PCR(i). This is a very favorable property, because the operator P(Cr) can be de

composed into independent cycles by only r times interchange. As a result the oper

ator P(Cr) is scanned once for all. 10> An example is given in the next subsection. 

3.2.2. An Example 

As an example for a randomly selected sequence Cr=(l, 9, 9, 8, 11, 16, 3, 14, 4, 

2) with r=lO a decomposition of P(Cr)=(l2) (97) 97) 89) (25) (71) 31) (58) (45) (23) 

into independent cycles is illustrated in Table II in the case of N = 3 x 3. The cor

respondence between the bond number and the site numbers is shown in Fig. 1. In 

the case (a) of Table II, the permutation G ~ ! : ! : ; ~ :) is pro

duced by operating the transpositions from left to right. In the case (b), the per-

. (1 2 3 4 5 6 7 mutat10n 
8 7 1 5 3 6 2 

8 9). d db . h .. 1s pro uce y operating t e transpos1t10ns 
9 4 

from right to left. In order to obtain the traces only the number of independent 

cycles and their lengths are required. The direction of the operation of the transposi

tions is irrelevent. The cyclically decomposed form of P(Cr) in case (a) is given by 

(1 3 5 4 9 8)(2 7)(6) and in the case (b) by (189 4 5 3)(2 7)(6) respectively. In the 

case (a) the decomposition is carried out as follows. First we see the most left integer 
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Table II. In case ofN=3wx3, r=lO, a decomposing P(C,)=(12) (97) 
(97) (89) (25) (71) (31) (58) (45) (23) for a randomly selected 
sequence C=(l, 9, 9, 8, 11, 16, 3, 14, 4, 2) into independent 
cycles is irustlated. Case (a) is given by scanning P(C,) from 
left to right. In the other hand case (b) does in the vice versa. 

Case (a) 

step transposition PCR 

0-th (1 2) 1 2 3 4 5 6 7 8 9 

1-st (9 7) 2 3 4 5 6 7 8 9 

2-nd (9 7) 2 3 9 5 6 9 8 7 

3-rd (8 9) 2 3 4 5 6 7 8 9 

4-th (2 5) 2 3 4 5 6 7 9 8 

5-th (7 1) 2 5 3 4 6 7 9 8 

6-th (3 1) 7 5 3 4 6 2 9 8 

7-th (5 8) 3 5 7 4 1 6 2 9 8 

8-th (4 5) 3 5 7 4 9 6 1 2 8 

9-th (2 3) 3 5 7 9 4 6 2 8 

10-th 3 7 5 9 4 6 2 8 

P(C,) = G 2 3 4 5 6 7 8 
:) = (1 3 5 4 9 8) (2 7) (6) 

7 5 9 4 6 2 

Case (b) 

step transposition PCR 

0-th (2 3) 2 3 4 5 6 7 8 9 

1-st (4 5) 3 2 4 5 6 7 8 9 

2-nd (5 8) 3 2 5 4 6 9 8 7 

3-rd (3 1) 1 3 2 5 8 6 7 4 9 

4-th (7 1) 2 3 5 8 6 7 4 9 

5-th (2 5) 7 3 5 3 6 2 4 9 

6-th (8 9) 7 8 5 3 6 2 4 9 

7-th (9 7) 7 8 5 3 6 2 9 4 

8-th (9 7) 7 8 5 3 6 4 9 2 

9-th (1 2) 7 8 5 3 6 2 9 4 

10-th 8 7 5 3 6 2 9 4 

P(C,) = G 2 3 4 5 6 7 8 !) = (1 8 9 4 5 3) (2 7) (6) 
7 5 3 6 2 9 

1 in the upper line and then the integer 3 right below in the lower line. We then 

look for the same integer 3 in the upper line and see the integer 5 right below in the 

lower line. Again, we look for the same integer 5 in the upper line and see the in-
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teger 4 right below in the lower line. We repeat the same procedure until we en

counter the integer 1 in the lower line. At this point we obtain a 6-cycle ( 1 3 5 4 9 

8). Next, we look for the most left integer in the upper, except for the members of 

this cycle, and find the integer 2. We start from this integer, repeat the above

mentioned procedure and obtain a 2-cycle (27). Finally we obtain a 1-cycle (6). 

Now we describe the detailed algorithm for this transformation. The permuta-

. ( 1 2 3 .. • N) b 'd ifi d r. 11 Th . . . h lin tion can e 1 ent e as 10 ows. e integer z m t e upper e 
k1 k2 k3 ... kN 

of the permutation corresponds to the subscript i of the array PCR, and the integer k1 

in the lower line corresponds to the contents of the array, PCR(i). Using the infor

mation of the array we carry out the same procedure as the above-mentioned example. 

It's algorithm is shown as follows, where the length ofthej-th cycle is stored in CYCL

(J), the number of the cycles in NCYCL. 

Step 1. [Initialize.] Set I - 1. Set J - 1. 
Step 2. START - I, LEN - I, IDX - I and EL - PCR(IDX). 
Step 3. [Is START equal to EL?] 

If yes, go to step 4. 

Otherwise, PCR(IDX) - 0. IDX- EL. LEN - LEN+ 1. 
EL- PCR(IDX). 

Repeat step 3. 

Step 4. PCR(IDX) - 0. CYCL(J) - LEN. J -J +I. I - I+l. 
Step 5. [Is I greater than N?] 

If yes, go to step 6. 

[Is PCR(I) equal to 0?l 

If no, go to step 2. Otherwise, I - I+ 1. 

Repeat step 5. 

Step 6. NCYCL-J-1. 
This procedure, however, is not easy to be vectorized on the computer. It's im

provement remains to be studied. 

3.2.3 How to evaluat.e Traces 

By the procedures given in the preceding subsections, for a given sequence C, we 

can obtain the number of independent cycles (including a trivial one), k(C,), and the 

lengths of their cycles, l's. 

As seen in Eqs.(9) and (23a), in order to obtain A,, only the total number of cy

cles, k(C,), for every randomly sampled C, is required. To obtain D, the sums of t2 
are necessary as seen in Eq.(16). For that purpose, executing the following prepro-
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cedure is convenien. We use an array KOR to sum up the frequency of k(Cr)· Equ

ating a subscript i of the arrays to k(Cr), a total number of independent cycles of a 

permutation P(Cr), the contents ofKCR(i) give the frequency of P(Cr)'s which have 

i(=k(Cr)) independent cycles among N, samples. On the other hand, we use an

other array SL2 with the same subscript i to sum up the value of ~f- 1 v,L2 which 

Table III. The numerical examples ofi(=k(C,)), KCR(i) and SL2(i) 

with N,= 105 samples in the case of r=5, 150 and 10,000, 
respecively, for N=I0 X 10 system. For details see the text. 

r KCR(i) SL2(i) 

95 94968 1.050649• 107 

5 97 4995 5.303880· 105 

99 37 3.774000·103 

6 1 8.304000• 103 

8 9 5.528600· 10• 

10 68 3.531260· 105 

12 382 1.725730· 106 

14 1280 4.991066• 106 

16 3396 1.163996 • 107 

18 7053 2.089823• 107 

20 11560 2.951696• 107 

22 15451 3.405946°107 

24 17151 3.296241 • 1 Q7 
150 26 15647 2.597454• 107 

28 12035 1.738982• 107 

30 7926 1.007998• 107 

32 4415 4.931330· 106 

34 2194 2.163426· 106 

36 938 8.213300• 105 

38 340 2.728040• 105 

40 117 7.843800· 10' 

42 26 1.544600• 10• 

44 7 3.458000· 103 

46 4 2.206000· 103 

2 10227 8.281278°107 

4 38555 2.196572°108 

6 35487 1.521444• 1 QB 

10000 
8 12991 4.330956• 107 

10 2451 6.585172• 106 

12 273 6.034400· 105 

14 15 2.681600· 105 

16 1 1.272000· 10' 
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is assigned to NU2. That is, SL2(i) give the sum of NU2 for P(Cr)'s which have 

i=k(Cr) independent cycles among N, samples. We note that for any two operators, 

P(Cr) and P(C:), NU2 for both operators do not always take the same value even 

though k(C,) =k(C:). In the computer program given by Listing 1, the following is 

done with use of both arrays. 

KCR(i) - KCR(i) +1 and SL2(i) - SL2(i) +NU2, (i=l, ···, N), 

where the array KOR is declared as type INTEGER and array SL2 and variable 

NU2 as type REAL in the listing. Numerical examples are shown in Table Ill where 

for N=lO X 10 i(=k(C,)), KCR(i) and SL2(i) for r=5,150 and 10,000, respectively, 

are given for N,= 105. For example, for i=24 in the case of r= 150, KCR(i) = 17151 

gives the frequency of P(C,)'s having k(C,) =24. SL2(i) =3.296241 • 107 is the sum 

ofNU2, :2W. 1 111l
2 in Eq.(16), having KCR(i)=l7151 among N,=105

• On obtaining 

A, we have to evaluate k(C,)-th power of two in Eq.(9) for all of N, samples. Using 

the above-mentioned frequency we can obtain A, by evaluatting only the power of two 

for distinct k(C,)'s. That is, 

A,= - 1-}] KCR(i) •2;, 
N, I 

In the numerical example of r= 150 in Table III, A, is obtained by evaluating only 

21 A(C,)'s. On the other hand, we can obtain D, by multiplying these twenty one 

A(C,)'s by the corresponding values of SL2, respectively. That is, 

4. The Interpolation Method 

In the previous section, we have given a full detail of the method for evaluating 

the expansion coefficients. It is however time consuming to evaluate even first some 

hundreds of terms for a large N by this method. So, as the next step, the rest of the 

coefficients of r less than rM are evaluated by the interpolation with use of A,
1 
and D,

1 

(i=l, 2, ···, M). Since logA,/N(=y,) is founds to be a monotonically decreasing 

function ofr/N=(=x,), we assume, a rational function, that is, 

(25) 

to interpolate A, for any r less than or equal to rM, where a 0=l and m+n+l =M. M 
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constants a 1, ···, {:J,,, are determined by numerically solving linear simultaneous equa

tions 

tll ,. 

~ f:J;x:, -y,, ~ a;x:, = 0, 
s==O ,=O 

k=l, 2, ···, M. (26) 

Anyway, this interpolation formula is found to be very powerful, because only less than 

ten coefficients suffice to obtain some hundreds of thousands of interpolated expansion 

coefficients. This reduces computing time tremendously. But since a great many 

coefficients are needed to evaluate precise thermodynamic quantities, a mass of the 

magnetic disk area is needed to save the coefficients. In order to save for the used 

disk area, we should save at least an UNFORMATTED output-file. Futhermore, 

using interpolated coefficients up to very high terms for the larger system size, ther

modynamic quantities can be evaluated rather precisely down to comparatively 

low temperatures. Thermodynamic quantities are obtained by using Eqs. (17) to 

(22). In order to obtain precise quantities, the lower the i-, the more terms are ne

eded. That is, r becomes larger. As seen in Eq. (10), for small i- and large r, the 

values of a,i--'/r!'s are so large that they cannot be repesented by the existing floating

point data types. In order to overcome this difficulty, we introduced an implementa

tion of the following type of data and used it for obtaining the results in II. That is, 

to handle a very large number as a floating-point number, a variable, say AE, of type 

REAL is used for a mantissa and a variable, say AE, of type INTEGER for an ex

ponent. We define that the decimal point is at the left-hand end of the mantissa and 

the leading digit in its mantissa is always non-zero, except for number zero. On 

converting to this form by using common logarithms, the excess of the exponent has 

to be added to AE for the exponent part. For examplt", a number 295.1696· 1017151 

becomes AM+-0.2951696, AE+-17154. In accord with this form, numbers with the 

exponent in the range of -2,147,483,648 to +2,147,483,6487 as decimal floating

point numbers can be handled on any machine. A full computer program (including 

these arithmetic subroutines) will be given elsewhere. 11l A similar implementain was 

recently published independently by O.Portilho.12l 

5. Comments on the method 

In this section, some technical problems on using this method are described. Let 

the r.Max•th term be the term giving the maximum value among a,i--'/r! (see Eq. (10)) 

for given i-. We find empirically that r.Max is roughly by N6/2i- for i- greater than 1.0 

and N6/i- for i- lesi: than 1.0. From this fact, in order to obtain accurate values of 
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thermodynamic quantities of the finite system at temperatures higher than -r*, rM has 

to be chosen greater than Nb/i-*. Another check on rM is provided by examining how 

close A,.JC is to N+l(=A .. ) (see Appendix in I.). Fortunately, the A,.JC whose value is 
close to N + 1 can be evaluated with comparatively small sampling times. On the 

other hand A1 is exactly given by 2N-l. Therefore two integers rr, r2, .. ·, rM of the 

interpolating expansion coefficients A,
1

, A,1, ... , A,.JC, that is r1 and rM, are chosen in this 

way. The integers r's of the rest of the coefficients have to be chosen carefully so that 

the A,'s obtained by the interpolation decrease monotonous as r increases. We em

pirically found that if one uses more than ten coefficients as interpolating data, .Y, in 

Eq.(25) has a tendency to have a pole. Therefore, in order to avoid this, it is recom

mended to select two sets of these coefficients, i.e., one for -r higher than 1.0 and an
other for sufficiently low temperatures (also see Section 3 in II). Next, concerning 

statistical accuracy of the MC values A, and D, we have to check the convergence of 

these MC values as a function of sampling times N, as shown in Fig. 1 in I and Figs. 

1, 2 and Table II in II. Especially, for r,-...,N and the large N this check is very impor

tant since large sampling times are required owing to a statistically large fluctuation 

arising from the fact that the P(C,) consists of cycles of various lengths, short to long. 

6. Discussion 

In the previous works1>, we showed unexpectedly precise numerical results for 

linear ring Heisenberg ferromagnets of l 0, 20, 30 and 128 spins and the square lattice 

Heise berg ferromagnet of 10 X 10, 20 x 20 and 30 X 30 spins making use of the detailed 

procedure described in this paper. Especially, in regard to the values of the suscep

tibility on linear systems of 128 spins it was shown in Table VIII in II that the agree

ment between our results and Baker et al.'s1
3) at high temperature and Takahashi's15> 

at low temperature were excellent. Also as seen from Table VII in II, for the sus

ceptibility for temperatures -r ~ 2.0, ours of the 10 X 10 spin system nicely agreed with 
Baker et al.'s14>. In a recent paper16> Takahashi showed that the agreement between 

his and our values of the thermodynamic quantities was rather good for the 10 X 10 
square lattice system at low temperature. However, for 20 X 20 and 30 X 30 spin sys

tems, the agreement between both was not so good. This seems partly due to the 

fact that the finiteness of the system was important for 2D ferromagnet. 16> However, 
it is true that the present simple approach with a crude Monte Carlo method provides 

unexpectedly precise results on thermodynamic quantities of finite systems of spin l /2 

isotropic Heisenberg ferromagnets for rather low temperatures. 

The present method so far being described consists of two parts. One is to eval-
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uate the expansion coefficient a, for several r's, and the other is to obtain the rest of the 

expansion coefficients with use of the rational polynomial interpolation. Concerning 

the former, the trace can be rather easily evaluated with use of the Dirac exchange 

operator in case of the Heisenberg system of spin l /2. A similar procedure can also 

be applied to model systems described by the Schrodinger exchange operator of the 

arbitrary spin S. For a system which has no permutation property, it is necessary to 

develop a method for computing the trace. Application of our method to XY-model 

is now being undertaken.17l 

Listing. 1 

C ******************** 
PROGRAM FR2D 

C ******************** 

PARAMETER (MS1=1024, MS2=2*MS1) 

INTEGER BK, N, NB, NBMN, NCYCL, NN, NMl, NS 

INTEGER I, IDX, II, 11, J, Jl 

INTEGER EL, R, TMP 

INTEGER CYCL (MSI), PCR(MSl), KCR (MSl), SI (MS2), SJ (MS2) 

REAL NU2, TL2, SL2 (MSl) 

Variables and constants for Portable Random Number Generators RAN2 

INTEGER IY, IDUM, IR (97) 

PARAMETER (M=714025, IA=l366, IC=l50889, PM=l.4005112E-6) 

The previous saved seeds in the file FR2D. RAN are restored kinto the shuffling 

array IR. 

OPEN (UNIT=3, FILE=' FR2D. RAN', STATUS=' OLD') 

READ (3,*) IY, IDUM 

READ (3,*) (IR(I), 1=1, 97) 

CLOSE (3) 

WRITE(*,*)' Input linear spin size N (N X N) :' 

READ(*,*) N 

NN=N*N 

NB=2*NN 
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NMl=N-1 

NBMN=NB-N 
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The look-up table of the nearest neighbour spin sites corresponding to bond
number b11 for Nx N square lattice with the periodic boundary condition is 

created. 

DO 110 BK=l, NB 

IF(BK.LE.NN)THEN 
IF (MOD (BK, N). EQ. 0) THEN 

SI(BK)=BK 

SJ(BK)=BK-NMl 
ELSE 

SI(BK)=BK 

SJ(BK)=BK+l 
ENDIF 

ELSE 

IF (BK. GT. NBMN) THEN 

SI(BK)=BK-NN 

SJ(BK) =BK-NBMN 

ELSE 

SI(BK) =BK-NN 

SJ(BK)=SI(BK)+N 
ENDIF 

ENDIF 

110 CONTINUE 

200 WRITE(*,*) 'Input a term and# of samples.' 
READ(*,*) R, NS 

For every k(C,) of Eq. (9) and the sum of l2 of Eq. (16) to obtain the MC values 
A, and D, per N, samples are produced. 

DO 210 I=l, NS 

The array PCR for the permutation operator P(C,) is initialized. 

DO 220 Il=l, NN 

PCR(Il)=Il 
220 CONTINUE 
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In the following DO loop, an operator P(C,), is produced and simultaneously in 

decomposed in the form of the left hand side of Eq. ( 6) in the text. 

DO 230J=l, R 

The Portable Random Number Generator RAM2 by Press et al. is used as an 

inline code. See the following textbook for the particulars. 

W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes 

(Cambridge University Press, Cambridge, 1987) Chapter 7, page 197. 

L= 1 +(97*IY)/M 
IF(L.GT.97.OR.L.LT.l)PAUSE 

IY=IR(L) 

IDUM=MOD(IA*1DUM+IC, M) 

IR(L)=IDUM 

BK=l +INT(NB*(IY*RM)) 
TMP=PCR(SI(BK)) 

PCR(SI(BK))=PCR(SJ(BK)) 
PCR(SJ(BK))=TMP 

230 CONTINUE 

The operator P(C,) is decomposed into independent cycles in the right hand 

side of Eq. (6) and k(C,) and the sum of 12 for each C, is obtained. 

11=1 

Jl=l 
240 START=Il 

LEN=l 

IDX=Il 
EL=PCR(IDX) 

242 IF (START.EQ.EL) GOTO 244 

PCR(IDX)=0 

IDX=EL 

LEN=LEN+l 

EL=PCR(IDX) 
GOTO 242 

244 PCR(IDX) =0 

CYCL(Jl)=LEN 



Jl Jl +1 
11=11+1 
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246 IF (11.GT.NN) GOTO 248 

IF (PCR(l1).NE.O) GOTO 240 

11=11+1 
GOTO 246 

248 NCYCL Jl-1 

NU2=0.0D0 
DO 250]1=1, NCYCL 

TL2=CYCL(Jl) 

MU2=NU + TL2*TL2 
250 CONTINUE 

KCR(NCYCL) =KCR(NCYCL) + 1 

SL2(NCYCL) =SL2(NCYCL) +NU2 
210 CONTINUE 
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The frequency based on grouping by k(C,)'s for every P(C,) and the sum of each 

group by the sum of l2 are produced. 

OPEN (UNIT=l, FILE='FR2D.DAT', ACCESS='APPEND', STATUS 

='OLD') 

WRITE(*,*) NN,R,NS 

WRITE(l,*) NN,R,NS 

DO 2601=1, NN 
IF (KCR(I).EQ.O) GOTO 260 

WRITE(*,'(2110,E14.7)') I,KCR(I),SL2(1) 

WRITE(l,'(2110,E14.7)') I,KCR(I),SL2(1) 

260 CONTINUE 

The data per N, samples are delimited by a dummy k(C,) (=-1). 

WRITE(l,'(2110,E14. 7)')-1,0,0.0 
CLOSE(l) 

The contents of the array IR are saved for the file FR2D.RAN for the next time. 

OPEN (UNIT=3,FILE='FR2D.RAN',STATUS='NEW') 

WRITE(3,*) IY,IDUM 

WRITE(3,*) (IR(I), I= 1,97) 
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CLOSE (3) 

END 

Shinji K.AoowAKI and Akira UEDA 
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