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Abstract 

The perturbation, in the direction of the crack extension, of the dastostatic hypersin
gular integral operator for crack problems is calculated rigorously. A variational form 
including this perturbation is written in terms of the energy release rate. The obtained 
result is applied to Griffith's crack extension. 

1. Introduction 

49 

The equilibrium of a linear elastic body with a crack is described by a boundary 

value problem on a domain !Jc~. Here, the undeformed shape JJ is expressed 

in the form of JJ=G\C, where Ge~ is a domain with a smooth boundary I', and 

Ca surface with a smooth boundary. The undeformed shape C of the crack lies on 

the smooth boundaryS ofa domain G0 such that C0cG. This body is fixed on a part 

of I' named I'D whose closure r O is a surface with a boundary, and the surface force 

is given on the remainder r N=r\r D· Also, the body force is neglected. Then 

the displacement vector u is given as the minimizer of the potential energy functional 

defined over the space 

V(JJ) = {vEH1(JJ)3 Iv= 0 on I'0} 

where g is the density of the surface force, and 

ao(v, v) = L a(v)e(v) dx. 
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In this equation, e(v) is the small strain tensor given by, 

e(v) = (e;;(v)), e;;(v) = (D;v;+D;v;)/2, 

and the stress tensor a(v) is expressed by Hooke's law: 

a(v) = (a;;(v)), t1;i(v) = C;;u6k1(v), 

Here, the elements C;;kl of Hooke's tensor are constants such that 

C;m = C;;u ' cijkl = CmJ . 

The space H 1(tJ) consists of square integrable functions on tJ whose first distri

butional derivatives are also square integrable, that is, 

~)f(x) l2dx+t LID;J(x) l2 dx<oo iffEH1(JJ). 

and]=(.fi.,fz,fa) EH1(!J)3 ifJ;EH1(!J), i= l, 2, 3. Here, D;f=8f/8x;, and the sum

mation convention is used throughout this paper. 

A hypersingular operator H appears in the boundary integral equation derived 

from the crack problem stated just above; this integral equation has been obtained 

in references 1), 3) and 9). In this paper, we shall consider a smooth crack extension 

C(t) and calculate the derivative <JH{C(t)} of H with respect to C(t). The variational 

form including the kernel <JH{C(t)} is then expressed in terms of the energy release rate. 

Our result has a certain similarity to the anti-plane result in reference 4), which has 

been obtained in connection with crack shape determination problems. Finally, 

the obtained result is applied to a simple two-dimensional example, in which the 

variational form is expressed by stress intensity factors. 

To simplify the statements and the proofs, we omit the functional spaces for surface 

forces, for the domain of Hand for the domain taken by the limit of <JH{C(t)}, etc. 

For a mathematical proof, refer to reference 7). 

2, Hypersingular operator 

We first introduce the fundamental solution U;;, i,j=l, 2, 3, defined by 
➔ ➔ 

-D•";A(U;) = <i(x)<i;;, U; = (U;1, U;2, U;3). 

Setting '};w;(x)=t1;k(U;)(x) and T(n)(x)=(T;;(n))(x)=(-'};;k;;(x)n.), we get 

a ;;(u) (x) = ~ r '};;;;m(x-y)am1(u(y) )n1(y)dS, 

-~r C,;uD,., Tmk(n(y))(x-y)um(y)dS, 

+t C;;k1D,.,Tmk(n(y))(x-y)[um](y)dS, 

(2.1) 
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for xEIJ, where [f] j+ -1- is the difference between the limitf- from the inside 

of G0 and the limitj+ from the outside, and n(y) the unit outward normal atyE8G0 

or at yEI'. There exists a number e0>0 such that the map 

F0 : (x, t)-+x+tn(x), n(x): the unit outward normal to 8G0 

is one-to-one and smooth from S X (-e0, e0) into G. By U(S), we denote its image 

by F0, that is, 

Taking limits in (2.1), we have for each x0ES, 

lim o(u)(x0 +en)n = lim o(u)(x0 +en)n. 
r++o r+-o 

(2.2) 

This result, when o(u) is smooth up toS, is known as the Liapunov-Tauber theorem in 

elasticity (See reference 2), p. 319.). But, in fracture mechanics, the singularities 

of o(u) at the edge 8C cS of the crack are essential and the coefficients of this singular 

term are called stress intensity factors. Using the result in Becache, Nedelec and 

Nishimura1>, we can show that 

o;1(u(x) )n; = Jr T;,.(n.,.) (x-y)o,.1(u)n1(y) dS1 

-Jr C;;un;(x)D,,1 T.,.(n1) (x-y)u.,(y)dS1 

+L ciJiln;(x)D,,, T,,.k(n,)(x-y)[u.,](y)dS, 

for xES, in the distributional sense (refer to reference 7) for the details). For all 

smooth functions ;j, defined on S, we consider the following variational formula: 

<a(u)n, V,)s = f +(x)dS.,. f T(n,,)(x-y)o(u)n1 dS1 Js Jr (2.3) 

-L +(x)dS,, JI' a,,( T(n,) (x-y)u(y) )n,,dS,+<H[u],;;. >s ' 
where 

H[u](x) = 1s o.,.(T(n,)(x-y))n,,[u](y)dS, 

in the distributional sense, and 

<J.g)s = LJ•g dS 

(2.4) 

if the inner product J • g of two functions J and g defined on S is integrable. Otherwise 
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( •, • )s means the duality in functional analysis. The integral on the right hand side 

of (2.4) is hypersinglar, since 

a,.(T(n1)(x-y))ii,.~ 
1 

3 
as lx-yl-.O. 

lx-yl 

3. Crack extension 

We next consider the following class of crack extensions {C(t)} of C. 
DEFINITION 3.1. For T>O, a family {C(t)},eCo,Tl of surfaces of R.3 with a boundary is 

called a smooth crack extension of C if it satisfies the following conditions (3.1-3): 

• C(t) cS for all t E [O, T] . 

• C(O) = CcC(t) cC(t') ifO<t<t' < T. 

• For each tE [O, T], there exists a C 00-diffeomorphism 

(3.1) 

(3.2) 

(3.3) 

such that the map </J,: 8C x [O, T]-.S is of class C 00

• 

We now set .!d(t)=G\C(t), and consider the following problem: For the same 

surface force gas in (1.1), find the displacement vector u(t), that is given as the mini

mizer of the potential energy functional 

eact>(v;g) = _!J a(v)e(v)dx-f g•vdS 
2 Jac,, Jr5 

over the space 

The energy release rate g(g, {C(t)}) by the crack extension {C(t)} with respect to 

the parameter t is written as 

To describe the crack extension more precisely, we introduce a curvilinear co

ordinate system (CV ( 8C), (y1, y2, y3)) in a region U (S) defined in (2.2) as follows (see 

reference 5)). 

Yi(x) =X whenever Xis in ac. 
CV(8C) ns = {xEU(S) l-l<y2(x)<l,y3(x) = O}, 

CV(8C) nc = {xEU(S) l-l<y2(x)<O,ya(x) = O}. 

(3.4) 

(3.5) 
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With the inverse F of the mapping x-(y1(x\y2(x),y3(x)) from V(8C) onto 8C X ( -1, 

1) X (-e0, E0), we rewrite (3.5) as 

V(8C)nS=F(8Cx(-l, l)x{0}), 

V(8C) nc = F(8Cx (-1, 0) x {0}). 
(3.5) 

By the use of this local coordinate, the edge 8C ( t) of the crack C ( t) is written as in 

the following statement: There exists a family of smooth functions h(x, t) defined on 

8C x [O, T] such that 

Here, h(x, 0)=0. For a proof, refer to reference 5). 

Now consider a map 0 1 which plays a basic role in our calculation. For the 

construction of 0 1, we take a smooth function /320 such that 

supp (icq}(8C) and /3=1 on Q,, 

where Q, is an open neighborhood of 8C in R3 such that 

8C(t)cQ,for any tE[O, T] and Q.cV(8C). 

We now put 

Our construction of <I> 1 yields the following 

(3.6) 

(3.7) 

LEMMA 3.2. There exists a positive number f0 :=:;; T such that the family ef maps { 0 1} 1e[o,t0J 

satisfies the following: 

The map 0 1 : R 3-R3 is a c=-diffeomorphismfor each tE[O, t0]. 

0 1(C(t))=Cfor all tE[O, t0]. 

The map 0 1
: R3 X [0, t0) -R3 is smooth. 

(3.8) 

(3.9) 

(3.10) 

If we set uf ( x) = u ( <I> 1 ( x)) in !J (I), then the displacement vector u is transformed 

to the function uf(x) defined on !J(t). Irwin's formula is written as follows: 

THEOREM 3.3.6
) Under the same suiface force g on I' N as introduced in ( I. 1), the energy 

release rate with respect to t is written as 

(3.11) 

REMARK: Since o(u)n=O on C, [u1]=0 on S\C('r) and [u]=O on S\C, we can re-
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write (3.1-1) as 

(3.11') 

Combining (2.3) and (3.11 '), we get 

g(g;{C(t)}) = lim-
1 {f [u!-u](x)•7j(x)dS,.+(H[u], [uf-u])s}, 

H·+O 2, Js 

7j(x) = lr {T(n(x))(x-y)a(u.)n(y)-a,.(T(n.,)(x~y)u(y))n(x)}dS,. 

Since d<I>tfdt I t=o=/3Z, with 

- d Z(x) = -F( Y1(x), y 2(x)-h(y1 (x), t), y3(x)) I t=o, VxEq)(BC), 
dt . 

we obtain 

lim _!_ f [u!-u](x) -7j(x)dS,.. = - r [u] • (/3( z. P')7j(x) + ~(x)div(/3 Z) )dS,.. 
T++o , Js " Js 

Here; we note that 7J(x) is differentiable with respect toxin the usual sense. For any 

e > 0, however, we cal} take /3 and Tin (3.6) so that 

L [u]. (/3(Z · P')7j(x) +7j(x)div(/3 Z) )dS,. < e 

holds. .Hence we obtain 

(3.12) 

We now introduce 7Jl 1(x)=<I>,1(x) for xER3 and (P'fH[u])(x) =H[u](P"1(x)). A 

change of variables yields, 

(3.13) 

On the other hand, we have 

(3.14) 

Combining (3.12)-(3.14), we now have 

lim ]_(1fl!H[u]-H[u], [uJ)s = 2g(g; {C(t)} )-(H[u]divr .¥, [u])s, (3.15) 
' T.++0 t", 
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Since H[u] =0 on C and [u] 0 on S\C, the last term on the right hand side of (3.15) 

vanishes. 

The main result of this paper is the following 

TIIEOREM 3.4. Let g. and gb be surface forces gi,ven on I' N and u., ub the displacement 

vectors, respectively. If we set 

then it follows 

where 

in the distributional sense. 

PROOF: From (3.15), we get 

g(g.,+eg6 ; {C(t)} )-g(g.; {C(t)}) 

= __!__<DH{C(t)}[u,.+eub], [u.,+eub])s 
2 

Since (for a proof refer to reference 1)) 

<H[u.], [ub])s = <H[ub], [u.,])s, 

we have 

<H[u11 +eub], [u11 +eub])s = <H[u11], [u.])s 

+2e<H[u11], [u6])5 +e2<H[u6], [ub])s, 

Hence we use (3.12) and (3.15) to get 

__!__{g(g.+egb; {C(t)} )-g(g.; {C(t)} )} = <DH{C(t)}[u.], [ub]>s+O(e). 
e 

We complete the proof of the theorem by letting e-0. 

4. Two-dimensional case and Griffith's crack extension 

In-plane elastic deformations are described by a partial differential equation on 
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IJ CR: similar to the one discussed in Section two. In this case the undeformed 

shape C of the crack is a curve in R2• Results analogous to those given in the pre

ceding section hold in two-dimensional cases also. 

We now consider a simple crack extension called Griffith's crack extension. The 

crack has the form 

initially, and subsequently extends in a way described by 

Let G be a domain in R2 such that C (t) CG, for all O ~ t < T, and let the set {x I I x-p I 
~4T} be included in G, where P=(l, 0). Also, let f3(x) ~O be a smooth function 

defined on R2 such that /3(x)=l if Ix-pl ~2T, and f3(x)=0 if Ix-pl ~3T. In this 

case, we have the well known formula by Irwiri (see reference 8)): 

where K1(g), K 11(g) are the stress intensity factors under the surface force g, E is 

Young's modulus and II is Poisson's ratio. Since the stress intensity factors are linear 

with respect to loads, we have, for example, 

Therefore we obtain 

On other hand, the map </)t given in (3. 7) is written as 

The hypersingular operator H[u] is expressed as 

in the distributional sense, and formally 
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From Theorem 3.4, we derive the following formula: 

(OH{C(t)}l:ua]h 0), [ub]( ·, O))R1 

- 2
C
1 ;v) (K1Cia)K1Cib) +Kueia)Ku(gb)) . 

5. Conclusion 
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This paper has shown a mathematically rigorous way of computing the pertur

bation, in the direction of the crack extension, of the elastostatic hypersingular 

integral operator for crack problems. The analysis in this paper is expected to justify 

the engineering computation carried out in reference 4). Our Theorem 3.4, together 

with similar perturbation results in the normal direction of a crack, is expected to 

serve as a mathematical foundation for inverse problems related to the detection of 

cracks in engineering materials. 
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