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Abstract

The perturbation, in the direction of the crack extension, of the elastostatic hypersin-
gular integral operator for crack problems is calculated rigorously. A variational form
including this perturbation is written in terms of the energy release rate. The obtained
result is applied to Griffith’s crack extension.

1. Introduction

The equilibrium of a linear elastic body with a crack is described by a boundary
value problem on a domain @CR%. Here, the undeformed shape 2 is expressed
in the form of =G\, where GCR® is a domain with a smooth boundary I’, and
C a surface with a smooth boundary. The undeformed shape C of the crack lies on
the smooth boundary S of a domain G, such that G,CG. This body is fixed on a part
of I' named I', whose closure I';, is a surface with a boundary, and the surface force
is given on the remainder I'y=I"\I",. Also, the body force is neglected. Then
the displacement vector % is given as the minimizer of the potential energy functional

> - l —> b -
Ea38) = —aal9)—| g3 (1)
2 'y
defined over the space

V(9) = HEHYQ)*|? = 0 on I'p}

where g is the density of the surface force, and

ag(3,3) = Sa o (3)e(3) da.
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In this equation, &(7) is the small strain tensor given by,
(@) = (e4(8)) ,  €:;() = (Diw;+Dj)[2,

and the stress tensor o (?) is expressed by Hooke’s law:
o(?) = (0,;)) ,  04() = Cijuen(@) .

Here, the elements C;;; of Hooke’s tensor are constants such that
Cmt = ij s le = Cm; .

The space H'(2) consists of square integrable functions on £ whose first distri-

butional derivatives are also square integrable, that is,
3
[ sy | 1D Pas<on it fem@) .

andf:(fl,j;,f;)EHl(Q)3 if e HY(2), i=1,2,3. Here, D, f=03f]0x;, and the sum-
mation convention is used throughout this paper.

A hypersingular operator H appears in the boundary integral equation derived
from the crack problem stated just above; this integral equation has been obtained
in references 1), 3) and 9). In this paper, we shall consider a smooth crack extension
C(t) and calculate the derivative 0H(c )y of H with respect to C(t). The variational
form including the kernel 8H{e (7)) is then expressed in terms of the energy release rate.
Our result has a certain similarity to the anti-plane result in reference 4), which has
been obtained in connection with crack shape determination problems. Finally,
the obtained result is applied to a simple two-dimensional example, in which the
variational form is expressed by stress intensity factors.

To simplify the statements and the proofs, we omit the functional spaces for surface
forces, for the domain of H and for the domain taken by the limit of dHe 4, etc.

For a mathematical proof, refer to reference 7).
2. Hypersingular operator

We first introduce the fundamental solution Uy, i, j=1, 2, 3, defined by
~Dyou(Uy) = 8(x)8;;, Uj = (Up, Up, Ujs) .
Setting Ei,,;j(x)=ai,,(l7j) (%) and T () (x) =(T;;(%)) (%) = (— Z s j(*) ), we get

04@® = | Zimr)omGONn0)S,
—{, CmDe TGN r—um( )5, @)

+{, CimDs, Taa G =) ()35,
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for x& 9, where [f]=f*—/f" is the difference between the limit f~ from the inside
of Gy and the limit f* from the outside, and 7() the unit outward normal at y&8G,
or at y&I'., There exists a number ¢,>>0 such that the map

Fy: (x, t)—>x+-if(x), 7(x): the unit outward normal to 8G,

is one-to-one and smooth from S X (—¢, &) into G. By U(S), we denote its image
by F,, that is,

U(S) = Fy(SX (—¢, &) - (2.2)
Taking limits in (2.1), we have for each &S,

lim o (%) (% -+en)it = lim o (%) (x%,--€n)7 .

¢ +0 e -0
This result, when o (#) is smooth up to S, is known as the Liapunov-Tauber theorem in
clasticity (See reference 2), p. 319.). But, in fracture mechanics, the singularities
of o(u) at the edge 8C CS of the crack are essential and the coefficients of this singular

term are called stress intensity factors. Using the result in Becache, Nedelec and
Nishimura®?, we can show that

0@y = | Toalfi) —p)om () 45,
|, Conmi ) D, TG (s—)um( s,

+{, Comni D, Taa ) (v (w1 ()5,

for x&S, in the distributional sense (refer to reference 7) for the details). For all
smooth functions v defined on S, we consider the following variational formula:

<a@, s = | $a5, | TG0y, s,
) @3
—| Fws. | 0T ) (r—0)i(0)udS, +<HIEL, s

where
HE() = | o.(T ) -1, 24)

in the distributional sense, and

-

revs=|fzds

if the inner product j? -% of two functions f and g defined on S is integrable. Otherwise
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{+,+>s means the duality in functional analysis. The integral on the right hand side
of (2.4) is hypersinglar, since

- - 1
o.(T(n,) (x—y))"z"’m as |[x—y|—0.

3. Crack extension

We next consider the following class of crack extensions {C(¢)} of C.
Derinrrion 3.1. For T>0, a family {C(¢)} e, 71 of surfaces of R® with a boundary is
called a smooth crack extension of C if it satisfies the following conditions (3.1-3):
<C@)CS forall te [0, T]. (3.1)
cC0)=Ccl)cCi)foi<t'<T. (3.2)
- For each t &[0, T], there exists a C*-diffeomorphism
¢,: 8C—3C(¢t) (3.3)

such that the map ¢,: 8C X [0, T}—S is of class C*.

We now set 2(¢)=G\C(¢t), and consider the following problem: For the same
surface force g as in (1.1), find the displacement vector #(¢), that is given as the mini-
mizer of the potential energy functional

>N _l_ > - . —».-y
Ear®:8) == a@e@ae—{ g-ias

over the space

V(2(t)) = HEHY2(£))*|# = 0 on I'p}.
The energy release rate (g, {C(t)}) by the crack extension {C(¢)} with respect to
the parameter ¢ is written as

9@ ACOY) = lim - 1Eafis B) —Can G(e) D}

To describe the crack extension more precisely, we introduce a curvilinear co-
ordinate system (U(8C), (31, y2, 73)) in a region U(S) defined in (2.2) as follows (see
reference 5)).

91(x) =x whenever x is in 8C. (3.4)

UV@C)NS = e U(S)| —1< 35(%) <1, 35(x) = 0},

UBC)NC = e U(S)| —1< () <O, 35(x) = 0} (3.9)
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With the inverse F of the mapping x—> (3,(x), 3,(x), y3(x)) from U(8C) onto 8C x (—1,
1) X (—&g, &), we rewrite (3.5) as

V(BC)NS = F(OCx (—1, 1) x {0}) , 65
U@C)NC = FBCx (—1,0)x {0}) . "~

By the use of this local coordinate, the edge 8C(¢) of the crack C(t) is written as in

the following statement: There exists a family of smooth functions A(x, t) defined on
8C x [0, T] such that

0C(t) = {x€U(S) | »(x) €8C, yy(x) = h(31(x), t), y3(x) = O}.

Here, 4(x, 0)=0. For a proof, refer to reference 5).
Now consider a map @, which plays a basic role in our calculation. For the

construction of @,, we take a smooth function £>0 such that

supp FCU(8C) and f=1o0n Q , (3.6)
where Q is an open neighborhood of 8C in R? such that v

dC(t)c Q for any tE[0, T] and QCU(8C) .

We now put
,(x) — {F(_vl(x),_yz(x) —B(x)h(3,(%), 1), y3(x)), for x&U(8C), (5.7)
‘ %, for x€RB—V@C).

Our construction of @, yields the following
LEMMA 3.2. There exists a positive number t, < T such that the family of maps {@,} telo,t,]
satisfies the following:

The map @,: R*—R® is a C=-diffeomorphism for each t [0, t,]. (3.8)
0,(C(1))=C for all 1[0, 4. (3.9)
The map @*: R3x [0, t,] —R3 is smooth. (3.10)

If we set ufF(x) =E(®,>(x)) in 2(t), then the displacement vector # is transformed
to the function #¥(x) defined on £(¢). Irwin’s formula is written as follows:
THEOREM 3.3.° Under the same surface force g on I'y as introduced in (1.1), the energy

release rate with respect to t is written as

Q3 {CM)}) = lim -

o ok
tim (o) 6. (3.11)

REMARK: Since o(i)i=0 on C, [i¥] =0 on S\C(r) and [#]=0 on S\C, we can re-
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write (3.11) as

a@; o =tim | o @mian,—ulds. @)
T>+0 97 JS . :

Combining (2.3) and (3.11"), we get

e con = tim {100 s, + <, G s,

T>+0 Q7

—

7(x) = &F{T(ﬁ(x))(x—J)O(ﬁ)ﬁ(J)—0,,('7?(?%) (x—p)u(p))n(x)}dS, .
Since dO,/dt|,.q= BZ, with

4

Z) = dt

F(31(x)s 32(%) —h(31(%), t)5 23(%)) | =05 vxeU(acl),

we obtain

—

tim [~ () (1S, = —| @1+ (8(Z- 7)) + 70 div(8Z))dS..

T>+0 T S

Here; we note that 7(x) is differentiable with respect to x in the usual sense. For any
€>0, however, we can take £ and T in (3.6) so that

[, G- (82 -pyi) i div(pZ))ds, <
b(l)lds.‘ Hence we obtain ’
lim L CH[R, [ —ils = 20 {C(0)). (3.12)

We now introduce ¥,(x)=07'(x) for x€R® and (¥TFH[4])(x) = H[d] (¥:(x)). A
change of variables yields,

HIu), [uf)ds = <TFH[u]det(PE,) |'(F¥ )i |, [d]Ds. (3.13)
On the other hand, we have
lim —I-(det(ViVT) [t(P¥)n] —1) = divp )?, X = S/ (3.14)
T>+0 T .
Combining (3.12)—(3.14), we now have

lim —<FH ()~ H), (i35 = 29(¢: {C(O) —<HTiMdivy ¥, []Ds. (3.19)

L T+0
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Since H[#] =0 on C and [4] =0on S\C, the last term on the right hand side of (3.15)
vanishes.

The main result of this paper is the following

THEOREM 3.4. Let g, and g, be surface forces given on I'y and u,, u, the displacement
vectors, respectively. If we set

84 (G 853 {CO) = lim — GGt CON—9Ee; LD}
then it follows

SHepplia], [41Ds = 82 (84, 25 {C(1)}),
where

SH(c([E] = lim (PHH[E) L]

in the distributional sense.
Proor: From (3.15), we get

Q(Gutets; OV — GG LCE})
= —;<6H{c<t)}ra,+ea,,], [ 63,15

_%Q?H{c O CAN AN

Since (for a proof refer to reference 1))

<H [aa]’ ﬁb])s = <H ﬁb]’ [§¢]>S3

we have

KH [y +eily), [t 4615105 = <H[&,), [@]Ds
+25<H [;za], ﬁb]>s +52<H [_125], [ﬁb]>S'
Hence we use (3.12) and (3.15) to get

—i—{g (&t+edss LN —G (s L)} = <CHyepplta), [B]>s+0(e).
We complete the proof of the theorem by letting é—0.

4. Two-dimensional case and Griffith’s crack extension

In-plane elastic deformations are described by a partial differential equation on
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@ CR? similar to the one discussed in Section two. In this case the undeformed
shape C of the crack is a curve in R%. Results analogous to those given in the pre-
ceding section hold in two-dimensional cases also.

We now consider a simple crack extension called Griffith’s crack extension. The

crack has the form
C= {0 eR|-I<n<}

initially, and subsequently extends in a way described by
C(t) = {(x, 0)ER| —I<x,<ZI+t}.

Let G be a domain in R? such that C(¢) CG, for all 0<¢< T, and let the set {x||x—p]|
<4T} be included in G, where p=(I, 0). Also, let #(x) >0 be a smooth function
defined on R? such that B(x)=1if |x—p| <2T, and B(x)=0if |x—p| =>3T. In this

case, we have the well known formula by Irwin (see reference 8)):

9 CON = KD +KR@)

where K,;(g), K;;(g) are the stress intensity factors under the surface force g, E is
Young’s modulus and » is Poisson’s ratio. Since the stress intensity factors are linear

with respect to loads, we have, for example,

K (kgs+18) = kK, () HEK(gs) -
Therefore we obtain

(1—

04 (ga g1 {C(8)}) = Liﬁ(KI(Ea)KI(éb) +K11(8a)K11(Es)) -

On other hand, the map @, given in (3.7) is written as
D,(x) = (x5, —B(x)8, %) .
The hypersingular operator H [u] is expressed as
(H[?‘])i(xv 0) = _'Sa:w Cizksz,Emz:k((xn 0)s (11, 0)) [m} (31, 0)an,
in the distributional sense, and formally
8Hyc i) (s, 0) = lim ~(WFH(x, 0) —H[i) (5, 0)

— lim L (H [+, 0) —HIE) (5, 0))A(5, )

> +0
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From Theorem 3.4, we derive the following formula:

<6H{C'(i)} [il),] (> 0), [izb] (+s 0)>Rl
= EQE_i(KI (20) K1 (25) +K11(2) K11(25)) -

5. Conclusion

This paper has shown a mathematically rigorous way of computing the pertur-

bation, in the direction of the crack extension, of the elastostatic hypersingular
integral operator for crack problems. The analysis in this paper is expected to justify

the engineering computation carried out in reference 4). Our Theorem 3.4, together

with similar perturbation results in the normal direction of a crack, is expected to

serve as a mathematical foundation for inverse problems related to the detection of

cracks in engineering materials.

1)

2)
3)
4)
5)

6)
7

8)

9)

References

Becache, E., Nedelec, J. C., Nishimura, N.: Regularization in 3D for anisotropic elastodynamic
crack and obstacle problems, Internal report n°205 of Centre de Mathématiques appliquées,
Ecole Polytechnique, France, 1989.

Kupradze, V.D.: Three-dimensional problems of the mathematical theory of elasticity and
thermoelasticity, North-Holland, Amsterdam, 1979.

Nishimura, N, and Kobayashi, S.: A regularized boundary integral equation method for elas-
todynamic crack problems, Comp. Mech., 4, 319-328, 1989.

Nishimura, N.: Regularised BIEs in crack shape determination problems, In; M. Tanaka et
al. (eds.), Proc. BEM12, 2, 425-434, Comp. Mech. Publ., Southampton 1990.

Ohtsuka, K.: Generalized J-integral and three-dimensional fracture mechanics I, Hiroshima
Math. J., 11, 21-52, 1981.

Ohtsuka, K.: Irwin’s formula in three-dimensional fracture mechanics, in preparation
Ohtsuka, K.: Hypersingular operator in three-dimensional crack problems and its perturba-
tions along crack extensions, in preparation.

Rice, J.R.: Mathematical analysis in the mechanics of fracture, In; H. Liebowitz (ed.), Frac-
ture—An Advanced Treatise, 191-311, Academic Press, New York and London, 1968.
Stephan, E.P.: A boundary integral equation method for three-dimensional crack problems
in elasticity, Math. Meth. Appl. Sci., 8, 609-623, 1986.



