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Abstract 

A dynamic model for estimating real-time origin-destination flows from time-series 
of traffic counts is presented. The time variation of flows is explicitly treated as a 
dynamic process. The model is formulated based on minimizing the integrated 
squared error between predicted and observed output traffic counts over the period 
of observation. An efficient solution method is developed by using Fourier transformation 
and illustrated with numerical examples. The numerical simulation experiment shows 
that the system dynamic approach may be particularly suitable for on-line traffic 
management and control in urban transportation systems. 

1. Introduction 

The estimation of origin-destination (0-D) trip matrices from link traffic counts 
has been considered by many researchers during the past decade. One main 
advantage of this approach is that the traffic counts are available at a relatively 
low cost in relation to traditional methods for estimating 0-D matrices, e.g., home 
interviews and roadside interviews. Most of the previous studies have focused on 
using accumulated traffic counts and some priori information to estimate or update 
a long-term 0-D matrix which represents the basic information for transport 
planning and design purposes. However, travel demand for on-line traffic 
management and control on heavily congested roads has become increasingly 
important in recent years. For this purpose, the real-time 0-D flows become 
necessary and must be estimated by considering the variation of trip matrices over 
time. 

Recent work by Cremer and Keller (1987), Nihan and Davis (1987, 1989) 
proposed a new family of dynamic methods for the estimation of 0-D matrices 
based on error minimization, recursive least squares, Kalman filtering approaches 
etc.. These approaches aim at estimating turning movements in real-time from 
exit and entry measurements of traffic flows for a simple intersection. A 
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fundamental assumption is that the time taken by vehicles to traverse the 
intersection is small in relation to the chosen time interval. The complicated 
problems concerning the changes in travel time lags and travelers' route choice 
behavior are avoided. These dynamic methods can be applied efficiently to 
traffic-responsive signal control for an intersection but are unsuitable for efficient 
real-time traffic management in general urban networks. 

However, real-time traffic monitoring and route guidance systems in urban 
areas often require the use of time-dependent origin-destination flows estimated by 
continuous on-line measurement of the traffic flows for a subset of links of the 
general networks. The related estimation problem is likely to be large-scale and 
have nonlinearities introduced by the route choice process. Namely, we have to 
consider the variation in traffic flow over time not only with respect to its volume 
but also with respect to its structural origin-destination relationships. 

To deal with this general estimation problem, dynamic estimation models based 
on an entropy-maximizing approach have been proposed recently by several 
authors. Willu'msen (1984) describes an extension of an entropy maximizing model 
for estimating time-dependent O-D matrices. This model was implemented and 
tested in combination with CONTRAM : a traffic management simulation 
model. Janson and Southworth (1989) describe the use of traffic count data with a 
dynamic assignment algorithm to estimate the distribution of trip departure times 
based on the entropy maximizing principle. Furthermore, Nguyen et al. (1988) 
considered the discrete time dynamic estimation problem for passenger origin­
destination matrices on transit networks, and described an entropy-based 
optimization formulation where the traveler's route choices and travel times are 
assumed to be not affected by congestion. The link choice proportions for each 
time interval are determined by a proportional assignment prior to the estimation 
process. 

All these methods have the following two aspects in common: (1) They divide 
the time period of interest into discrete time intervals and introduce 0-1 variables 
to describe the fundamental relationship between a link count for a given time 
interval and trips associated with different time intervals. (2) They use additional 
priori information on the time distribution of O-D matrices and derive a model 
by the entropy-maximizing approach constrained by different time interval counts. 

This paper presents a new dynamic method for the estimation of origin­
destination flows, different from the dynamic methods proposed previously. Traffic 
flows are treated as continuous time-variant variables and the model is formulated 
based on minimizing the integrated squared error between predicted and observed 
output counts. The remaining part of the paper is organized as follows : The 
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model is formulated in section 2, and some discussion about the estimation problem 
is given in section 3. In section 4, a numerical method based on the discrete 
Fourier transform is described. In section 5, a simulation experiment with 
hypothetical data for a simple network is used to evaluate the estimator and the 
numerical algorithm. Finally some conclusions are drawn and the potential for 
further improvement is given in section 6. 

2. Model Formulation 

In order to consider explicitly the variation of traffic flow over time, the 
origin-destination flows and flows through counting points are assumed to be 
continuous functions of time. The following notation is employed in the paper. 

A : the set of observation links 
R, S : the sets of origin and destination nodes respectively 

Q : the set of origin-destination pairs 
K,s: the set of available paths between origin r and destination s 

'50 k,s: 1 if the kth path between origin r and destination s passes along link a, 
0 otherwise. 

tkra: the time for traveling from origin node r to traffic counting point a along 
path k, if link a is not on path k, then tk,a = oo 

v0 (t): traffic flow measured by the detector at a counting site on link a (here it 
is referred to as the flow rate function measured as the traffic flow per unit 
time) 

f,.(t): traffic flow leaving r destined for s at time t (origin-destination flow rate 
function measured as 0-D traffic flow per unit time) 

p,.,.: the proportion of trips between origin r and destination s using path k. 

For the moment we assume that the traffic congestion does not significantly 
affect traveling time and route choice. Thus, the route choice proportions Pk,s 

between every 0-D pair keK,. can be determined using some form of proportional 
assignment. For example, the multinomial logit assignment model (Sheffi, 1985) 
may be employed. 

exp ( - 0tk,.) 
Pk,s = "" 

L. exp ( - 0t1,.) 
leKra 

keK,., rseQ (1) 

where 0 is a positive parameter, tk,s is the travel time on path k e K,., rs e Q. 
Since the time incurred by a vehicle traveling from origin r to traffic counting 

point a along path k is assumed to be tk,a• the driver should have departed at 
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time (t - tk,a) from origin r if he (or she) is observed at counting point a at time 
t. Thus the predicted traffic flow rate va(t) passing over point a at time t can 
be expressed as 

Va(t) = L L f,.(t - tk,a) Pkrs ()akrs (2) 
rseQ keK,. 

where [t0, ti] is the time period of observation. 
Because of the variation of travel times tk,a and measurement errors, the 

predicted traffic flow rates do not necessarily equal the observed flow rates. Let 
(a(t), a e A denote the difference or error between observed and predicted traffic 
flow through counting point a. (a(t) is, in general, a random error function of 
time t. The following stochastic dynamic system is then posed. 

t0 ~ t ~ t 1 aeA (3) 
t < t0 or t > ti 

Here it is assumed that (a(t) = 0 for t < t0 and t > ti since the traffic flow out of 
the analysis period is not taken into account. 

Therefore the time-varying 0-D traffic flows can be estimated by minimizing 
integrated squared error over the period of observation. 

f
t, 

Min E[f,.(t)] = L {(a(t) }2 dt 
aeA to 

f
t, 

= L { L L fr.(t - tk,a) Pkrs ()akrs - Va(t) }2 dt 
aeA to rseQ keK,. 

(4) 

Because the time lags tk,a (re R, a e A) appear in the above formulation, it is 
extremely difficult to calculate 0-D flow rate f,.(t) (re R, s e S) in a direct 
manner. Hence we employ the Fourier transform (Robillard, 1974; Bracewell, 
1978) on the integrated function to derive the solution method of the model. 

Let F,.(t) and Y,;(t) be the Fourier transforms of the flow rate functions f,.(t) 
and va(t), respectively: 

F,.(x) = f ~
00 

e-i21txtf,.(t)dt 

Y,;(x) = I~ oo e-i21txt va(t)dt 

where i = J=t. 

(5) 

(6) 
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Let the Fourier transform of error function (a(t) be 'la(x). Applying 
transitional theorem on the Fourier transform, we obtain 

'la(x) = L L Pkrs()akrse-i211xlkra F,.(x) - Y.;(x) 
rseQ keK,. 

(7) 

Since the error function (a(t) shown in (3) is a real function and since (a(t) = 0 
fort< t0 and t > t1 , by extending the integral time domain [t0 , t 1] of function (a(t) 

to (- oo, + oo), we have 

(8) 

Furthermore, employing the Parseval's theorem on the Fourier transform (Whitfield 
and Williams, 1988), we obtain 

f~oo l(a(t}l2dt = f~oo 1'1a(x)J2 dx (9) 

According to the above relations, formulation (4) can now be transformed into 
the following problem Pl. 
Pl : Estimating real-time origin-destination flows 

= L f CX) I L L Pkrs()akr•e-l27<Xlkra F,.(x) - v.;(x)l2 dx 
ae.A. - 00 rseQ keK,. 

(10) 

Consequently, using the function F,.(x) (rs E Q) in the above error minimization 
problem, the time-varying 0-D traffic flow f,.(t) during the analysis period can be 
obtained by means of the following inverse Fourier transform: 

f,.(t) = f ~ 
00 

i 2
"'" F,.(x) dx (11) 

In order to guarantee the uniqueness of the solution of Pl, sufficient traffic 
flow observations at different counting sites are needed, and hence the estimation 
problem is computationally demanding. If the destination choice probabilities q,. 
(I.q,. = 1.0) are known somehow (e.g., by sample survey or based upon an existing 
0-D matrix), the model can be formulated in terms of the trip generation rate 
f,(t) (trip generation by origin per unit time). The estimation variables are thus 
substantially reduced. 

For simplicity, we assume that the destination choice probabilities q,. 



184 Hai YANG, Yasunori IIDA and Tsuna SASAKI 

(reR, seS) are fixed and known. Using function f,(t) of the trip generation rate, 
the time-varying O-D traffic flow f,,(t) can be expressed as 

f,.(t) = f,(t)q,. (12) 

By employing relation (12), the estimation of time-varying trip generations or 
trip departure rates can be formulated as follows: 
P2: Estimating real-time trip generations 

= L f 00 IL L L q,.Pkrs"akrse-i2
1IXlkra F,(x) - J,:;(x)l2 dx 

aeA - 00 reR seS keK,. 
(13) 

where functions F,(x) (re R) represent the Fourier transform of function f,(t). 
Therefore the time distribution of trip generations from each origin can be 

obtained by implementing an inverse Fourier transform on the function F,(x) 
obtained from P2. 

3. Discussion 

(1) The destination and route choice probabilities in the formulation Pl and P2 
are assumed to be fixed. If the time variation of the O-D distribution pattern 
and route choice between origin and destination is of minor importance, the 
proposed method is applicable to the identification of traffic flow variation in 
real-time from time-series of traffic counts. If the influence of the time variation 
of the O-D distribution pattern and route choice is significant and cannot be 
omitted, the destination and route choice probabilities can be treated as continuous 
or discrete variables of time or time intervals and can be incorporated into the 
estimation process. But how to estimate time-dependent destination and route 
choice probabilities needs to be further studied. In this regard some fundamental 
results have been reported by Iida and Takayama (1987); the problem is, however, 
still far from being solved. 
(2) The traffic flows passing traffic counting points are assumed to be a continuous 
function of time in the model formulation. However, only the discrete values of 
traffic flow rates at a limited number of sampling points are needed in the numerical 
procedure which is based upon the discrete Fourier transform. Namely, the traffic 
count data for a limited number of time intervals (for example, traffic counts per 
10-minute time interval) can cover the requirement of the estimation problem. At 
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present, because of the popularity of varieties of vehicle detector, traffic count data 
throughout each day in 5 ~ 15 minute intervals are available, so the dynamic 
estimation of time-dependent O-D traffic flows can be realized in practice. 
(3) A large number of estimation methods proposed previously have been primarily 
limited to determining a static matrix from limited counts, i.e., they dealt with a 
static underdetermined system of static equations concerned with the average traffic 
flow pattern over a whole day. For this reason, they can be referred to as static 
estimators in comparison with a time-varying flow situation. The estimates 
obtained by these static methods can be viewed as the results of a stationary process 
throughout an infinite time period ( - oo, + oo ). In contrast to these approaches, 
the present dynamic method explicitly considers traffic flows as a dynamic 
process. The O-D flows are treated as time-dependent variables and the model 
is based on minimizing the integrated squared error between predicted and observed 
link flows. If the traffic flows through the network do not vary with time, i.e., 
for the static situation, the model formulation Pl or P2 will result in one of the 
types of least squares models proposed by lida and Takayama (1986). 
(4) For the practical application of the method, we must first consider how to 
determine the time domain [t0, tiJ. Here we define maximum lag time rMax and 
minimum lag time rmin for the observation system as follows: 

!Max= max max max tk,a• 
r k a 

t Min = min min min tk,a 
r k a 

(14) 

Furthermore, we let 

(15) 

Obviously, the trips departing before T0 do not pass over, or are not observed 
at any counting site during time period [t0, ti], thus we may set the origin of 
the time axis at T0 • On the other hand, the O-D traffic flows throughout the 
time period [t0, ti] are calculated in the Fourier transforms. However, due to 
time lag, the trips departing in the interval [Ti, ti] will not be observed during 
the period [t0, ti], thus the estimated accuracy of the O-D flow within interval 
[Ti, ti] contained in time period [t0, ti] may possibly become poor. Therefore, 
in order to obtain highly reliable estimates of time-dependent O-D traffic flows, 
the traffic counting time should take longer than that of the O-D flow estimation. 

4. Numerical Solution Method 

The model (10) for estimating origin-destination flows and the model (13) for 
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estimating trip generations are unconstrained integral minimization problems in 

terms of imaginary functions. The flow rate functions f...(t) or f..(t) (re R, s e S) 

cannot be solved analytically in general. Hence we adopt a numerical method to 

evaluate the transformed functions F,.(t) and F,(t), and then go back to compute 

the distribution of flow rate functions over time using the inverse Fourier transform. 

There is no conceptual difference in the numerical solution methods between 

formulation (10) and (13). When the destination choice probabilities q,. (L.q,.= 1.0) 

are known, the time distribution of the 0-D traffic flow can be directly calculated 

after the trip generation rates are obtained. Here, we only present the numerical 

solution method for formulation P2. 
Letting imaginary function 

G (x) - '\' '\' q p () e-i21'Xlkra 
ar - i..J i..J rs krs akrs aeA, reR (16) 

seS keK,-a 

and substituting (16) into (13), we have 

Min E[f..(t)] = a~f ~
00 

I,~ Ga,(x)F,(x)- Y,;(x)l2dx (17) 

Seemingly, Eq. (17) is concerned with integral over ( - oo, oo ), but it does not 

imply that the phenomena continues infinitely. The numerical procedures are 

performed using a finite Fourier transform and hence it is only necessary to evaluate 

imaginary function F,(x) at a certain number of points over an equivalent frequency 

domain [a, b] corresponding to time domain [t0 , t 1]. 

We now divide the closed interval [a, b] into M sub-intervals. The central 

coordinates of the intervals are denoted by x0 , x 1 ,···,xm,··•,xM-l and the 

corresponding values of functions Ga,(x), F,(x), Y,;(x) at these points by Ga,(xm), 

F,(xm), Y,;(xJ (m = 0, 1,··•,M - 1) respectively. The squared error integral (17) 

can now be approximately expressed as the following numerical integral. 

P M-1 N 

E[f...(t)] = L L wml L Ga,(xm)F,(xm) - Y,;(xm)l2 (18) 
a=l m=O r=l 

where P and N denote the numbers of observation links and ongm nodes 

respectively, the weighting coefficients wm depend upon the specific quadrature rule 

chosen to approximate the integral in (17). For example, wm equals (xm+ 1 - xm) 

/2(m = 0, 1, • • • • • •, M - 1) when the trapezoidal rule is employed. 
Furthermore, letting Re [ ·] and Im [ ·] denote the real and imaginary parts 

of an imaginary number, we then have the following relationship. 
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N 

I L Ga,(x,,,)F,(xm) - Y,;(xm)l2 
'"' 1 

N N 

= Re [ L G0 ,(x,,,) F,(xm) - Y,;(xm)J 2 + Im [ L G0 ,(x,,,) F,(xm) - Y,;(xm)J 2 

'"' 1 r"' 1 

(19) 

Consequently, the error minimization of (17) in terms of F,(xm) (reR, m = 0, 1,···, 
M - 1) constitutes the following linear least-squares problem. 

(20) 

Here, the imaginary functions G0 ,(x), F,(x), Y,;(x) are sampled with equal intervals, 
the weighting coefficients wm are thus excluded from the objective function. 
Moreover, c,.i and d,. are real constants to be prescribed; u1 are real optimizable 
parameters to be evaluated. 

j = 2M(r - 1) + 2m - 1 

j = 2M(r - 1) + 2m 

m=l, 2,···,M, r=l, 2,··•,N 

k = 2M(a - 1) + 2m - 1 

k = 2M(a - 1) + 2m 
m = 1, 2,···,M, a= 1, 2,···,P 

The coefficients c,.1 (k = 1, 2,···,2PM, j = 1, 2,···,2NM) are determined by the real 
and imaginary parts of imaginary function G0,(xm_ 1) (aeA, reR, m = 1, 2,···,M) 
as follows: 

Re[G0,(xm_ 1)]: k = 2M(a - 1) + 2m - 1, j = 2M(r - 1) + 2m - 1 

- lm[G
0
,(xm_ 1)]: k = 2M(a - 1) + 2m - 1, j = 2M(r - 1) + 2m 

Im [G0 ,(Xm- 1)]: 

Re [G0 ,(Xm-1)]: 

k = 2M(a - 1) + 2m, 

k = 2M(a - 1) + 2m, 

j = 2M(r - 1) + 2m - 1 

j = 2M (r - 1) + 2m 

m = 1, 2,··•,M, r = 1, 2,·•,N, a= 1, 2,···,P 

Let C denote the (2PM x 2NM) matrix with elements (c"i: k = 1, 2, · · ·, 2PM, 
j = 1, 2,··•,2NM) and let vector U = (u 1 , u2 ,··•,u2NMf and D = (d1, d2 ,···,d2PMf­

From the necessary conditions of non-linear programming, we obtain the following 
normal equations with respect to vector U which minimizes (20). 

(21) 
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where "T" denotes transposition of a vector or matrix. 

If the traffic counts are independent from each other, matrix CT C is generally 
non-singular and its inversion ( CT q- i exists. Hence the explicit solution U * for 

(21) can be expressed as 

(22) 

Therefore, after the M-values of function F,(xm) (reR) at sample points x0 , Xi,"', 

xm,"•,xM-i are evaluated, the trip generation rate f,(t) (reR) can be obtained by 
employing the inverse Fourier transform. 

According to the above idea, the numerical algorithms based upon the discrete 

Fourier transforms may be described as the following step 1 ~ step 4. Here it 

should be noted that since the traffic volume counts are given as discrete time-series 
data, the discrete Fourier transform corresponding to the continuous Fourier 

transform shown in (5), (6) and (11) is employed in the numerical procedure. In 

place of tm and xm, k and m are used to indicate the data number. Moreover, 
formula (16) is rewritten in the corresponding discrete form. 

G (m) = '\' '\' q p () e-i21'm(lkra/T) 
ar .i..J L..i rs krs akrs aeA, reR (23) 

seS keKr• 

where T = ti - t 0. 

Solution Algorithm 
Step 1: Partition the observation period [t0 , ti] into sequential M-intervals with 

equal length, and calculate the average traffic flow rate v
0
(m) (m = 0, 1, • • •, 

M - 1, a EA) during each interval using the time sequences of traffic 
counts. 

Step 2: Use the following discrete Fourier transform to calculate the real and 

imaginary parts of Y,;(k) and hence obtain vector D = (di, d2 , .. ·,d2 pM). 

Determine the coefficient matrix C according to formula (23). 

1 M-i . 
Ya(k) = - L Va(m)e-•2,,km/M 

M m=O 
k = 0, 1, .. ·,M - 1, aeA 

Step 3: Solve the normal equation (21) to calculate vector U*, and hence obtain 
the real and imaginary parts of imaginary number F,(m) (m = 0, 1, ... , 
M - 1, reR). 

Step 4: Use the following inverse Fourier transform to evaluate the trip generation 
rates for each time interval. 

M-i 
f,(m) = L F,(k)e;2,,mk/M m = 0, 1, ... ,M - 1, reR 

k=O 
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5. A Numerical Example 

In order to verify and test the model and its numerical algorithm proposed 
above, we present a numerical simulation for a simple network consisting of 8-links, 
6-nodes and 4 0-D pairs as shown in Fig. 1. The link travel times are indicated 
on each link and the destination choice probabilities are given in Table 1. Further, 
the utilized routes and route choice probabilities are displayed in Table 2. 

In the numerical example, we try to estimate the trip generation rates from 
origin 1 and 2, assuming that the destination and route choice probabilities are 
known and are constants across time. Two traffic counting points a and b are 
assumed to be located at exit points on links 35 and 46. 

The analysis time period is assumed to be the peak period 7 : 40 AM~ 9: 20 AM, 
the 1-minute trip generation profiles at origin 1 and 2 during the peak period are 
shown in Fig. 2. The trips departing from each origin are then assigned to the 
network according to the assumed destination and route choice probabilities. As 
shown in Fig 3, the trip arrival profiles at counting point a and b can be obtained 
based on the traveling time from origin to traffic counting point. In a practical 
situation, continuous measurements of traffic flows may be obtained by a variety 
of types of vehicle detectors. Here we assume that the traffic count data are 
collected throughout the period 8: 00 AM ~ 9: 20 AM (t0 = 8: 00, t 1 = 9: 20) at 

Origin Destination 
Fig. 1 Test Network 

Table 1. Destination Choice Probability 

Origin 

1 
2 

5 

0.60 
0.30 

Destination 
6 

0.40 
0.70 



190 Hai YANG, Yasunori IIDA and Tsuna SASAKI 

Table 2. Route Choice Probability 

O-+D 
Path 

1-+2 1-+6 2-+5 2-+6 

1-3-5 0.80 
1-3-6 0.50 
1-4-5 0.20 
1-4-6 0.50 
2-3-5 0.40 
2-3-6 0.10 

2-4-5 0.60 
2-4-6 0.90 

c 50 ·g 
50 

·g 
40 -- 40 --! i 

30 30 

~ ~ 
20 r,.. 20 r,.. 

u u .... .... .... 10 
.... 10 .... .... 

~ 0 
~ 0 

7:40 8:00 8:20 8:40 9:00 9:20 7:40 8:00 8:20 8:40 9:00 9:20 

(1) Origin 1 
Departure times (min) (2) Origin 2 Departure times (min) 

Fig. 2 Generation Rate Profiles 

5-minute intervals. The transitional period 7: 40 AM ~ 8: 00 AM is therefore left 
out of account. 

Fig. 3 shows I-minute trip arrival profiles and 5-minute traffic counts (input 
data) at counting sites a and b. Obviously, the shorter the time intervals between 
data collection, the more precise traffic count data consistent with the time 
fluctuation of traffic flow obtained correspondingly. The resulting estimation 
accuracy of trip generation rates may possibly be improved. 

The actual and estimated time distributions of trip generation rates at origin 
1 and 2 are shown in Fig. 4. The relative estimation errors for 16 intervel periods 
are displayed in Table 3. It can be observed that the model can track the time 
fluctuation of trip generation rates and maintain sufficient accuracy with respect 
to the estimates except for the less accurate estimates for the last two 
intervals. The estimation error arises mainly from the cut off error associated 
with the finite Fourier transform. The poor estimates for the last two intervals 
are due to the fact that the trip departures during these two intervals are not 
measured at any traffic counting point during the observation period as stated 
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Minute Arrival Profile 

5 Minute Counts 

40 
C: ·g 35 ..._ ! 30 

~ 25 
.... 
r.. 20 
{) 

id 15 .... 

5 Minute Counts 

Minute Arrival Profile 

7:40 8:00 8:20 8:40 9:00 9:20 
~ 10 ............................ _._ .............................................. _._~ ..... 

7:40 8:00 8:20 8:40 9:00 9:20 

Arrival Times (min) Arrival Times (min) 

(1) Traffic Counting Point a (2) Traffic Counting Point b 

Fig. 3 Arrival Time Profiles at Traffic Counting Points 

50 i ..._ 50 

40 ! 40 

30 ~ 30 

- Estimated Value r.. - Estimated Value 
20 {) 20 .... 

- - -- Actual Value .... .... - - - - Actual Value 
10 ~ 10 

0 0 
7:40 8:00 8:20 8:40 9:00 9:20 7:40 8:00 8:20 8:40 9:00 9:20 

(1) Origin 1 Time of ray (min) (2) Origin 2 
Time of ray (min) 

Fig. 4 Estimated and Actual Time Distributions of Trip Generation 

Table 3. Estimated and Actual Distribution of Trip Departture Times 

De1:irture Actual Flow Estimated Flow Relative Error 
1me (veh/min) (veh/min) (%) 

Interval Origin 1 Origin 2 Origin 1 Origin 2 Origin 1 Origin 2 

8:00-8:05 44.40 39.20 43.95 39.31 1.00 -0.29 
:05- :10 44.20 38.60 43.27 37.89 2.10 1.85 
:10- :15 44.40 39.80 43.93 38.57 1.06 3.09 
:15- :20 43.80 39.80 46.16 40.59 -5.38 -1.99 
:20- :25 42.40 34.60 42.25 39.54 0.35 -14.28 
:25- :30 39.60 37.80 39.66 34.54 -0.16 8.63 
:30- :35 36.60 34.80 37.37 35.89 -2.09 -3.13 
:35- :40 35.40 32.80 34.73 34.79 1.90 -6.05 
:40- :45 33.60 32.20 34.00 33.10 -1.20 -2.78 
:45- :50 29.60 32.00 30.83 32.92 -4.14 -2.87 
:50- :55 30.00 30.00 28.72 29.75 4.27 0.84 

8:55-9:00 30.20 30.60 30.06 30.41 0.45 0.63 
9:00-9:05 29.00 28.60 30.10 32.25 -3.79 -12.77 

:05- :10 28.20 29.80 27.04 27.00 4.12 9.40 
:10- :15 31.20 29.20 35.70 35.27 -14.43 -20.80 
:15- :20 34.00 32.60 39.03 37.18 -14.80 -14.06 
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earlier. The estimation error for the last two intervals can be reduced by 
prolonging the counting time. 

6. Summary and Conclusions 

A dynamic method for estimating time-varying origin-destination flows using 
time-series of traffic count data is presented. Traffic flow through the network is 
treated as a dynamic process using time-continuous variables. The essential idea 
is to minimize the integrated squared error between predicted and observed link 
flows, and the finite Fourier transform solves the problem numerically. The 
dynamic model is mainly characterized by the following aspects: 
(1) If time variation of traffic flows is explicitly incorporated into the model, not 
only the time distribution of O-D traffic flow can be estimated continuously by 
on-line measurements, but also the information on the daily average O-D traffic 
demand can be obtained simultaneously based on the real-time estimated results. 
(2) The numerical procedure of the dynamic model is only concerned with the 
discrete Fourier transform and solution of a system of linear equations. From 
the viewpoint of on-line applications, the suggested non-iterative method may be 
particularly suitable for real-time traffic management and control where the time 
distribution of origin-destination flows has to be estimated using information 
contained in the time sequence of the traffic counts. 

(3) Our continuous time dynamic approach may be contrasted with the discrete 
method of Nguyen et al. (1988) for the dynamic estimation of passenger 
origin-destination matrices on transit networks. The adoption of continuous time 
variables avoids the complicated interface relationship between a link count for a 
given time interval and trips associated with different time intervals. Our method 
is particularly applicable for the case of transit networks where the congestion 
effects are of minor importance. 

Future work will concentrate on the generalization of the assumptions 
introduced in the model formulation for simplicity. Namely, it is expected to 
extend the model to congested cases where flow-dependent route choices and travel 
times are taken into account. Furthermore, the approach of "Maximum Possible 
Relative Error", which is proposed by the authors (1991) for the reliability analysis 
of static matrix estimation problems, can also be applied to the estimation problems 
of real-time origin-destination flows. 
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