
Mem. Fae. Eng., Kyoto Univ. Vol. 54, No. 1 (1992)

Notes on the Next Generation
Software Factory

by

y oshihiro MATSUMOTO

(Received September 3, 1991)

Abstract

Almost twenty years have passed since the first software factory started operations.
From his firsthand experiences, . the author introduces a typical software factory model
currently being used in Japan's software factories.

A project called Japanese Software Factory of the Next Generation (JSF/NEXT),
which is headed up by the author, has started to work out a new software factory
model. The project aims to create an extension of current software factory models in
order to meet recent needs for information system-integration and software productivity/
quality improvement.

1. Introduction

The t~rm "software factory" was coined from an analogy with the hardware
factory. In the hardware factory there are a number of machining-shops. Each
shop receives partially-made products from the preceding shop, tools from the
tool-house, parts from the part-house and programs for numerical-control (NC)
from the program-house. Using these tools, parts and NC programs, it adds
functions, values or quality to the input products, and then transfers the machined
products to the next shop. There are integral processes which collect information
from every shop, analyze the behavior of each shop, and manage the process
development from the aspects of quality, progress and configuration control. The
activities performed inside real Japanese software factories follow a similar model,
only the semantics of the machining-shop are changed to what we call "unit
workload" which will be described later.

The concept of software factory is an overall approach in which the improvement
measures are organized in order to optimize performance factors and obtain improved
manifestation8

)9) in large-scale software production. Although the word "software
factory" has been recently used in a more general meaning (for example see the

Department of Information Science, Kyoto University, Kyoto 606--01, Japan

2 y oshihiro MATSUMOTO

book by Cusumano 2>), the original meaning intended by the author was the
environment which allows software manufacturing organizations, housed in it, to

design, program, test, ship, and maintain commercial software products in a unified
manner. The software factory provides the following items:

(1) Properly designed work spaces.
(2) Software tools, user interfaces and software engineering repositories/databases

(These software components are built on 'open' platforms, 'open' meaning that the

platforms have public, common, portable and internationally standardized
interfaces).

(3) Standardized baseline management systems for design review, inspection and

configuration management.
(4) Standardized software engineering methodologies and disciplines.
(5) Education programs.

(6) Project progress management system.
(7) Cost management system.
(8) Productivity management system.

(9) Quality assurance system and standardized quality metrics.

(10) Quality circle activities.
(11) Documentation support.
(12) Resuable software libraries and maintenance support for them.

(13) Technical reference libraries.
(14) Career development system.

(15) Facilities to support clerical work.

The key plans of project management are 10>:

(a) Project objectives are confirmed at the beginning of the project. The objectives
include the target product, cost, quality level, productivity, and constraints (such as
resources being allowed, standards to follow, methodology being recommended,

formalities to follow, etc.).

(b) Whole-project activity is divided into many unit workloads. A unit workload
is defined as the activity required for one person to accomplish one software
configuration item.

(b.1) Unit workloads are defined phase-by-phase at the beginning of every
phase. The objectives for each unit workload are derived from the project objectives.

(c) The management differs from ordinary management-by-objectives plans in the
following ways:

Notes on the Next Generation Software Factory 3

(c.1) The objectives for each unit workload are derived by a computation
called unit workload planning. Human factors are taken into account in the
computation.

(c.2) The objectives for every workload are reviewed and modified in review
meetings that all project members attend. The objectives are updated during the
course of the project.

(d) In the course of progress, production quantity and resource expenditures are
entered daily or weekly through the terminals by each person responsible for a unit
workload.

(e) The system analyzes the status of progress and resource expenditures, and
displays the deviation between current performance and target projections. ·

The objectives of each unit workload, taking into account the results of unit
workload planning and unit workloads, are shown below.
(1) Workload identification.
(2) Name of responsible person.
(3) Product specifications (to be imported and exported).
(4) Estimated quantity of the software configuration item to be produced in this

unit workload.
(5) Time allowed.
(6) Cost allowed.
(7) Suggested reusable items.
(8) Constraints.
(9) Resources to be used.

The objectives of each unit workload are printed individually on a form called
a unit workload order sheet (UWOS), and are delivered to each individual assigned
to that workload. (A typical form of UWOS is shown in Figure 1). The

Unit Workload Order Sheet

UWNo

UWName:

Purpose: Constraints·,..,-.. ,-,,,-00----------;

Pre-Cond111on·
Cost

Import: Denotation EKport: Quality:

Size

Performance

Post-Condition:

Fig. 1 The form of unit workload order sheet

4 Yoshihiro MATSUMOTO

management system based on UWOS is characterized by the following features:
(a) Metrics and objectives for managing projects are planned at the beginning,
and every member is motivated by knowing one's own individual objectives as well
as project objectives.
(b) Up-to-date reports based on daily or weekly status enable members to jointly
decide on the need for quick corrective action.

A project is modelled as a set of unit workloads and information flows to
connecting unit workloads. The model is like a directed flow graph or a network

(an example is shown in Figure 2). In order to describe the model precisely:
(1) a unit workload is represented by an object (a concurrent agent), and
(2) an information flow is repre!>ented by a message passing between objects.

The model which includes a set of objects, message passings, and the reflective
computations on the concurrent objects, is called a software factory model.

Fig. 2 An example of a unit workload network

Notes on the Next Generation Software Factory 5

The main part of this paper, consisting of three chapters, aims to present the very
beginning results of the JSF /NEXT project:

Chapter 2: Objectives (objectives of the project JSF/NEXT are described).
Chapter 3: Basic Model (the model of a next generation software factory is

described), and

Chapter 4: System Configuration (perspectives of the system configuration for

constructing software factory environments are presented).

2. Objectives

This paper gives the very beginning concept built into the project named

Japanese Software Factory of the Next Generation (JSF /NEXT). The JSF /NEXT
project is a private (non-governmental) project sponsored by the Advanced Software
Technology & Mechatronics Research Institute of Kyoto (ASTEM). The project
is supported by many major companies including large information systems (IS)

users, large computer manufacturers, IS integrators and universities. The author
heads the project.

The Next Generation Software Factory is a set of concepts, basic designs and
methodologies to be used in constructing future software engineering environments.
It aims to accomplish the following targets:

(1) End-user orientation.
(2) Open, portable and common interfaces for IS integrators, IS users and IS
manufacturers.

(3) Full utilization of the existing resources, culture and experience in Japan's
software factories.
(4) Open and common platforms to ease utilization of reusable products and
reusable processes.

(5) Open communication-network protoclos to enable group communication most
suitable for software production.

Although Japan's current software factories have attained many goals, each

factory is localized within each company, within each organization or even within
each department. In addition, every factory is a closed type which means a factory en

vironment cannot be accessed or used by outside organizations. We observed

that each factory has individually established its own solid management system on
which the computer-aided environments exclusively depend. This fact leads us to
say that the factory is management-centered (but not technology-centered).

We have had new demands by IS users and integraters for each IS manufacturer
to incorporate an open architecture into their software/information engineering

6 Yoshihiro MATSUMOTO

environments. One of the reasons for this demand is that international organizations
of differemt countries are getting involved in the same IS projects. Another reason
is the fact that members in the same project are often located in remote offices
which often have different environments.

We also have received a heavy demand for the platforms to enable the users
easy re-use of products/processes, efficient group-communication, and practical
maintenance/re-engineering. Middleware to bridge between workbenches and
targets, and the environments to combine product-centered views with process
centered views are also in demand.

Some example of what is discussed in the project are:
(1) How to promote technical transfer from software engineering researchers (SER)
of universities, laboratories and research institutes to software engineering
practitioners (SEP) at real production sites:

Instead of forward transfer (from SER to SEP), the main focus in western
countries, we promote backward transfer (from SEP to SER). We believe the
forward transfer must be managed as a part of a circular transfer which will be
made possible by promoting backward transfer as well as forward transfer.
(2) How to make software engineering disciplines more open:

The nature of Japanese society is characterized by its cultural background as
preferring:

induction-centered to deduction-centered in people's thinking processes,
bottom-up-centered to top-down-centered in the construction of things,
"concrete-to-abstract" to "abstract-to-concrete",
"real-practice-to-academism" to "academism-to-real-practice",
actual experiences to abstract concepts, and
results-after-trial-and-error to formalism which is not practiced.

We must formalize the Japanese way of operating in order to be more easily
understood by all international project members.
(3) How to make environments more open:

In order to open our environments, we must define common platforms of
which the interface must be common and portable. International standards must

be completely followed, and if we have no such international standards to follow,
we must cooperate with international bodies such as the International Organization

for Standardization (ISO), to establish standards. The following standards are being
studied.

(a) CCITT X.400, X.500 for group communication network,
(b) ISO/IEC JTCl SC21 drafts on Information Resource Dictionary System

(IRDS) and CASE Data Exchange Format (CDIF); ECMA Standard

Notes on the Next Generation Software Factory

149 for Portable Common Tool Environment (PCTE), and
(c) Various standard drafts delivered by ISO/IEC JTCl SC?.

(4) How to construct common platforms for reusable items such as:
(a) Algebraic module specification,
(b) Morphism-based semantic transformation,
(c) Object-based procedure abstraction,
(d) ADT-based data abstraction. and software process.

(5) How to accomplish efficient computer-supports for project coordination.
Subjects included in this area are:

7

(a) Optimal software factory model (this might be understood as an adaptive
communication model for software production),

(b) Optimal synchronous/asynchronous communication protocol (based on
future communication-network such as broad-band ISDN (integrated
Services Digital Network), ATM (asynchronous transfer mode), etc.),

(c) X.400/500 based group communication, and
(d) Optimal group window/shared-cursor system.

3. Basic Model

The major element of the software factory model is an object, which is a
concurrent agent. An object denotes a data type which consists of variables to be
bound to the values of a thing, and the methods to handle those variables. Let
us assume we have thing X. Object x represents thing X. We will also have
[meta x] and [meta [meta x]]. Each variable of x, [meta x] and [meta [meta x]] is
causally connected7

'.

(1) [meta x] describes the structural and computational aspect of the denotation.
(2) [meta [meta x]] describes the environmental aspect of the computation and the
structure (see Figure 3).

The variables denoted in an object represent the signature of a thing. A thing
is a software configuration item for which one project member is responsible. A

thing may be a set of data flow diagrams, state transition diagrams, specification
sheets, program source texts, quality assurance sheets or group communication
tracks (see Figure 4).

The real objective bodies (ROB) of these software configuration items are to
be stored in each file, which will exist in a soft..vare repository. The values to
which the object is bound are always consistent with its real objective bodies (see
Figure 5).

8 Yoshihiro MATSUMOTO

M

E

H
0

D
s

OBJECT

CONCURRENT AGENT

META-META

META

DENOTATION

META: STRUCTURAL & COMPUTATIONAL
ASPECT OF THE DENOTATION

META-META: ENVIRONMENTAL ASPECT
OF THE COMPUTATION &
STRUCTURE

Fig. 3 Description of an object

REAL OBJECTIVE BODIES (ROB's)

example:

_QMQI.

DFD

specification

tool

program

source

nodes & edges physical

image

signature text
equations

signature exeutable

codes

signature

equations source text

annotations

Fig. 5 Examples of Real Objective Bodies

A "THING" IS DENOTED IN A "OBJECT".

A"THING" =
A SOFTWARE

CONFIGURATION ITEM
SUCH AS

ASET0F DFD's
A SET OF STD' s

ASETOF SPECIFICATION•

A SET OF PROGRAM SOURCE TEXT•

A SET OF Q. A. REPORT s

A SET OF GROUP COMMUNICATION
TRACK•

THE VALUES OF AN OBJECT

IN x, IMETA x], IMETA IMETA xii

ARE CAUSALLY CONNECTED.

x: DENOTATION

Fig. 4 Things denoted by an object

DENOTATION

DENOTATION

METHOD DECLARATIONS OF

f=
STATE-VARIABLES

s

IMPORTS EXPORTS

SEMANTIC NOTATIONS

•example

StructuredDiagram (list_ of_ boxes, list_ of_ branches)

=StructuredAnalysis (Dfd (list_ of _nodes,
list_ of_ edges))

Fig. 6 Object denotation

Example 1 (Variables of an Object): In object x, which denotes a data flow diagram,
the values of the variables will denote only nodes, edges and links included in the
diagram. However the ROB of x includes the whole physical image of the diagram.

The denotation of each object is detailed somewhat in the following
paragraph. The denotation consists of variable-descriptions and method-descrip
tions. The variable-description includes a variable-declaration part, import part,
export part and semantic notations (see Figure 6).

Example 2 (Denotations of an Object): We assume unit workload x which produces
a structured chart X. We will import the dataflow diagram which will be analyzed
and converted to structured chart X. The import will be made by sending messages

Notes on the Next Generation Software Factory 9

to the object which represent the dataflow diagram. The imported items are nodes,
edges and links which are included in the data flow diagram. If one needs a
physical image of the data flow diagram, one can also import the ROB.
that object x has the method (denotation) named "structured analysis".

Assume
If you

invoke this method, you can convert the data flow diagram to the structured chart
step by step with computer-aided guidance. The boxes, branches and links in the
structured chart are put in relation with the nodes, edges and connections in the
data flow diagram. The relationships between boxes/branches/links and nodes/edges/
connections will be described in the part called 'semantic notations.'

Next, the missions of META (see Figure 7) are to:
(1) receive messages, and put them into a queue;
(2) take out a message from the queue;
(3) analyze and accept the message, and send the method which corresponds with
the accepted message to the interpreter;

interpret the method; (4)
(5) monitor the object-status (the values of the denotation) while the denotation
is interpreted;
(6) add, delete or revise denotations and/or methods;
(7) take inherited denotations and methods of other objects; and
(8) create children.

The missions of META-META are to:
(1) create and delete itself (object); and
(2) change its own dynamic state (mode) so as to adapt itself to different
environments.

what META does:

1. Aceive messages, put them into a queue;

2. Take out a message from the queue;

3. Analyze and accept the message, and send the method which

corresponds to the accepted message to the interpreter;

4. Interpret the method;

5. In the interpretation the states {the values of the denotation)

are monitored;

6. Add, delete or revise denotations and/or methods;

7. Be inherited denotations and methods of other objects;

a. Create childs;

what META-MET A does:

1. Create and delete itself (object);

2. Change its own state to adapt environments;

Fig. 7 Meta's applications

9•1!~~)ded

~
coJ!r.r!~ / 0 (:o~f~~~dition satisfied)o sat,sf,ed)

\O~{available
non•available

CL ...
Fig. 8 l'v,odes and transitions between

modes in an object

10 Yoshihiro MATSUMOTO

The dynamic states (modes) of an object, shown in Figure 8, are listed below.
(1) Non-existent: The object is unknown by the system.
(2) Existent: The instance of the object is known by the system. You can lock
the object so that the denotation or the ROB are not available (importable) by
other objects.
(3) Ready: The object of which the precondition is true becomes ready for enaction.
(4) Enacted: The object enacted by the responsible member by the message input
through a user interface is in a enacted state.
(5) Suspended: While the object is enacted, it can be suspended by the user who
wants to hold the enaction.
(6) Complete: When the enaction terminates and the postcondition is satisfied,
the object is in a completed state.

Now, a logical structure of software engineering performed to produce software
products for a large information system in software factories is given below, followed
by the semantics to satisfy the logical structure presented. The set of presentations
on the individual software factory, which consists of logical structure, semantics
and satisfaction-relationships, gives precise meanings for each software factory model.

Logical structure
The unit workload (UW) is the major concept used in planning software

engineering projects. One unit workload represents the process of one individual
implementing one software configuration item. The logical structure of the software

engineering for a project, or the project workload, is modelled using a network in
which nodes act concurrently. The network is called Unit Workload Network
(UW-Net). An example of UW-Net is shown in Figure 2. A node in a UW-Net
represents a unit workload. An arrow represents an event, where the event is
similar to the event of LOTOS4 >. For example, UW 54.4, shown in Figure 2, is
described in a LOTOS-like language in the following manner (only a partial
description is shown):

process unit-workload-54.4 [from54.2, from54.3, from55.7, to 54.5]: noexit: =
precondition:

(and from54.2?54.2:scan-table, from54.3?i54.3:sensor-list,
from55. 7?i55. 7:validity _range_list);

postcondition:
to54.5!p54.5:sensor_database_def;

endproc

Notes on the Next Generation Software Factory 11

This example means that, in unit workload 54.4, the sensor database definition
is produced using the following products:
(1) The scan table produced in unit workload 54.2,
(2) The sensor list produced in unit workload 54.3, and
(3) The validity range list in unit workload 55.7.

The product produced in this process, which is the sensor database definition,
is to be exported to unit workload 54.5. Unit workload 54.5 is not able to start
unless the described precondition is satisfied. When workload 54.4 terminates, the
described postcondition is satisfied. The symbols, from54.2, from54.3, from55.7
and to 54.5, are the names of the gates where interactions are observed.

A unit workload is represented by an object. In order to describe the idea
of the unit workload, we use a language which is similar to the language called
ABCL/R 141• ABCL/R is an object-oriented concurrent language which enables us
to describe meta-objects and reflective computations. An object in ABCL/R is the
following:

[object object-name

]

(state variable-declaration)

(script
(= >message-pattern-reply-destination-variable

from sender-variable

(temporary variable-declaration)

behavior-description)

(= >···)

The state of an object is defined by a set of values to which the variables denoted

in the object are bound. In a state description many variable-declarations can
be included. Each variable-symbol should be bound to each state value. The
statement included in "(= > •··)" is called the method. In a method, the
message-pattern to be acceptable, the behavior-description which describes what is
to be. done when the message is accepted, temporary variables to be used in the
method only, and other options (such as the object names of the message-sender
and the destination to which the message is to be sent) are described.

12 Yoshihiro MATSUMOTO

Let us assume that we have object x. The notation:
[meta x]

represents the meta of object x or j x, while
[den jx]

represents the denotation of jx, that is x. For each object x, there exists one
particular meta-object jx. Object jx describes the structural and computational
aspects of object x. The structural aspect is the value (state) of ix. The
computational aspect of x is described in the methods of jx. The state values of
both x and jx are causally connected71• For each object jx, there exists one
particular meta-meta-object fix. Thus there exists an infinite tower of objects x,
ix, fix, .,j(i)x, .. ,j(w)x. The scope of the world to which j(i)x is bound is larger
than the scope to which i(i - 1)x is bound. But remember that the values to which
all these meta's are bound are causally connected with the denotation x. The
principle of how to design an x whose denotation satisfies these conditions is now
being studied in our project. This principle seems similar to satori in Buddhism. In
our current system, we consider only x, fx, and fix. In our future system, we
consider a higher reflective tower.

Semantics to satisfy the logical structure
In this paragraph the semantics of the unit workoad to satisfy the logical

structure of software engineering projects previously presented are covered.
Let us take unit workload X, and let object x represent unit workload X. Object
x is bound to the states itemized below:
(1) Name

The value to which the symbol "name" is bound is used to call the object.
(2) Product

The computations performed by the methods included in object x read or write
the state values to which the symbol "product" is bound. The "product" represents
items produced in unit workoad x, such as specifications, diagrams, program texts, etc.
(3) Precondition

As was explained, object x becomes ready to start when the values to which
the symbol "precondition" is bound becomes true. When the message to start the
object arrives, a designated method is started.
(4) Postcondition

When the computation of a method in object x terminates, the values to which
the symbol "postcondition" is bound become true.
(5) External-awareness

This refers to the information about external objects which object x is aware

Notes on the Next Generation Software Factory 13

of. The values to which the symbol "external-awareness" is bound are the names
of other objects from which object x imports product values, the names of other
objects to which object x sends some values, and the names of other objects from
which object x inherits scripts. The "external awareness" includes the awareness
of the hardware environments (for example the interrupts from the devices), which
will be used by [meta [meta x]]. It may also include the awareness of the human
communication (in the project, organization or company), which will be used by
the higher meta.
(6) Queue

The queued messages are the values to which symbol "queue" is bound.
(7) Scriptset

The values to which the symbol "scriptset" is bound are the list of message
patterns which will be used to invoke methods.

[object ; ;an object
(state

[name := the n3/lle of myself]
[product :=

Here the instance variables which are bound to
the values to represent a product are described.
If it is the object to denote. for example.
a network-type diagram(e.g. data-flow or state-transition).
node-id's. node-names. node-attributes, connections. arc-id's.
arc-names. arc-attributes. arc-connections, etc. are defined .

. . . . })
[precondition := an input-gate expressio~
[postcondition := an output-gate expressio~
[status := , current condition}
[external-awareness := I list of 1ntorm1tions about

the external worl~
[queue : a a message queue}
[scriptset := , list of scripts}
[evaluator := an evaluator object]
[mode ;= either :existent-available, :existent-non-available,

:suspended, :ready, :complete or ;enacted)
[system_queue := , queue to store system messages such as

/llessage to change dynamic states,
exception-hand! Ing or hand! Ing h,rdw,re interrupt]

(script
(=> [:insertnode) ...)
(=> [:insertarc } ...)

Fig. 9 Description of an object representing a network-diagram

14 Yoshihiro MATSUMOTO

(8) Evaluator
The values to which the symbol "evaluator" is bound are the names of the

evaluator objects in which method denotations are evaluated.
(9) Mode

The values to which the symbol "mode" is bound are dynamic states which
are shown in Figure 8.
(10) Status

The values to which the symbol "status" is bound are temporal measures such
as the time spent to finish a product, the time spent to complete a method, the
number of items included in the current product, the current resource consumption,
etc. The values also include constraints which characterize the object.

In addition, the values to which the states of x, [meta x] and [meta [meta x]]
are bound are causally connected. The concepts of x, [meta x] and [meta [meta x]]
are summarized in Figure 9. Figure 10 and Figure 11, respectively. In Figure 9,

[object ; ;a meta-object

(state ; ;causally connected
(script

(=> [:message :Message Reply-Dest Sender]

[queue := (enqueue queue [Message Reply-Dest Sender]))

(if (and (eq mode ' : ready) (eq (eval precondition) true) then

[mode : = ':active]

[Me <= [:begin]]))
(=> [:begin]

(temporary mrs scr newenv [object : = Me]) ; ;declare temporary

; ;variables local to this method only

[mrs : = (first queue))

[queue : = (dequeue queue))

[scr : = (find-script (first mrs) scriptset)]

(if scr then

[newenv := [env-gen <== [:new (script-alist mrs scr) state))]

[evaluator <= [:do-prg (scr$body scr) newenv [den Me]) @!

[cont ignore ::the values evaluated are ignored.

[object<= :end]))

else (push status' Cannot accept the message' (first mrs))

[[meta [meta Me]] <= [: exception Me Me)]

[Me<= [:end))))

(=> [:end]

(if (not (empty? queue)) then

[Me<= [:begin]]

else
[mode :'ready]))

(=>)

Fig. 10 Description of a meta object

Notes on the Next Generation Software Factory

[object : ;a meta-meta-object
(state ;;causally connected
(script

)

l

(=> [:system_message :Message Reply-Dest Sender]
; ;If the object receives messages from the hardware or other
;;objects which are superior to myself(the messages indicate
; ;object-creation/deletion, needs for mode-change, etc.),
;;the object initializes states, and control the interpretation
;;of denotations.

Fig. 11 Description of a meta meta object

15

object x which represents a network diagram, e.g. a data-flow-diagram, or a state-tran
sition-diagram, is partially shown. Meta-object, partially described in Figure 10,
describes the structural and computational aspect. It describes that a message which
has arrived is put into the message queue, and processed by the evaluator which
interprets the denotation of object x.

Meta-meta-object, shown in Figure 11, describes the creation and communication
aspects. It describes how the object is created, how it interacts with signals sent
from the hardware and how it communicates with other external objects. Messages
which cannot be interpreted by [meta x] or x are handled by [meta [meta x]]
through communications with external objects.

4. System Configuration

The major components which constitute a Next Generation Software Factory
are summarized in Figure 12. The functions of each component are described below.

(1) User interface: This symbolizes the CRT and the keyboard of the workstation.
The workstation has a permanent memory (disc). The objects for which the owner
of the workstation is responsible are stored. The workstation has a work space
in which the necessary objects are fetched in and object-computation is performed
(see Figure 13).
(2) Unit workload (object): A composite object represents a unit workload. The
object composition is three-layered. The innermost object represents a denotation.
The second-layer object describes the meta of the innermost object. The outmost
object is the meta of the second-layer.
Example 3 (a Unit Workload Object): Let us assume that we have a unit workload
to produce a source program text "XYZ". The source program text, which are

16 Yoshihiro MATSUMOTO

OSER ~
,NTERFACELJ

SEMAN;,ce,,e~

INTE.RFACE
w,th

WORKSPACE 9
USER

FILE !DATASET)

ri
Fig. 12 Elements of environments

A "OBJECT" IS

}1,
RESPONSIBLE

OWNED BY THE PERSON

ONE WHO IS
RESPONSIBLE

FORIT.

g OBJECT

ROBIN THE
REPOSITORY

A "OBJECT~ MAY HAVE

ITS REAL OBJECTIVE BODY (ROB)

IN THE REPOSITORY

Fig. 13 Elementary configuration

the ROB of the object, will be stored in a file (in the repository). However, major
items included in the file are selected and to these values the variables of product-object
"xyz" are bound. The tools to view both these values and the ROB, to maintain
consistency between these values and the content of the ROB, and to maintain
consistency between the values of the different objects, are available from inside the
method capsulated in object "xyz".
(3) Tool: A tool is an object which imports a file (or a dataset), processes it and
exports a new file. A tool itself is also an object, where the ROB of the tool
(executable codes) are stored in a file (in the repository).
(4) File (or dataset): A file in the software engineering repository stores one ROB.

(5) Semantic pipe: Sets of data to be transferred between user interfaces, tools,
objects and files are transformed from some syntactic-forms to other syntactic-forms
without changing semantics, using semantic pipes. The semantic pipe also is an
object.

(6) Platform: Through the platform many individuals who are located in remote
offices can exchange datasets, use tools, and exchange messages in the same
project. The platform may include communication networks.

Unit workloads (objects), tools, semantic pipes and files (in the repository) may
be connected in various ways through the platform. A basic configuration is shown
in Figure 14. The user may access a unit workload, bring it to one's own work
space, and produce products using tools. The produced products are saved in the
file. (Alternative configurations are shown in Figures 15 and 16.)

A functional prototype of object management in the Next Generation Software
Factory has been experimented with through the research and development of the

w
0
R
K
s
T
A
T
I

0
N
s

Notes 011 tlie Next Generation Software Factory

Jl

DISTRIBUTED REPOSITORIES

Fig. 14 Typical configuration Fig. 15 Alternative configuration

user A userB

platform (based on e.g. CCITT X.400)

e.g complier e.g. applk;ation unit workload uni1 WQrklOad
generator

Soltlltareengmeering repository

Fig. 16 Another alternative configuration

17

Kyoto University Software Project Database (KyotoDB)1
1), which has been developed

in the Department of Information Science, Kyoto University. A comparison of the
data models applied in KyotoDB, with those in PCTE3>, CAIS12>, ATis 1> and AD/
Cycle™ 5> is provided here.

PCTE applies to an entity-relationship model where each entity type represents
a product (software configuration item), a process, a tool, a dataset, and a person
type, etc. Each relationship type in the model represents a structural or
computational aspect of the link connecting entity types. A set of interconnected
objects, links, relationships and attribute types can be defined in the schema definition

18 Yoshihiro MATSUMOTO

sets. PCTE provides a public tool interface that can be used as a portability
interface and integration support for executing tools and programs defined in the

data model in distributed environments.
In KyotoDB major objects are of the type called unit workload. The object

encapsulates the values which are associated with the product produced in the unit

workload and the methods to create, revise and delete these values. A unit workload
object communicates with user interface, tools, files to store the product, and other
unit workload objects. Products and tools are stored in a repository which is
seperate. The unit workload objects in KyotoDB communicate with each product-file
or tool stored in the repository which is designed based on COIF. Version

management is made based on the unit workload network. If any revision of the
product produced in a unit workload (which corresponds to a node in the unit
workload network) is made, the side effect caused by the revision is tracked using

branches which connects other nodes to it. A composite use of tools is programmed
in each method capsulated in the unit workload objects. A complicated dialogue
input from the user interface is analyzed and processed in,..each method capsulated in

the same object. These functions of KyotoDB are quite different from tho'se in the
PCTE. However, reading the purposes of the Pact activities 13> has led us to believe
that the purpose of the data model served by KyotoDB is compatible with that of
the common-services layer of the Pact environment's architecture (which is the
second layer next to the PCTE core). This belief led us to start a study on the
possibility of connecting KyotoDB to the PCTE core, although it has not been
completed yet. CAIS and A TIS look similar to the PCTE core from our viewpoint
of the KyotoDB.

The repository management in the AD/Cycle has the means to manage
specifications and their execution in conceptual, logical and storage views. It allows
the selection of integrity, security, trigger and derivation policies. The major element
in implementing these views and policies is the object. The scope which is covered
by the repository management of the AD/Cycle is approximately the same as the
scope of KyotoDB. However, communications between objects (unit workloads)
in KyotoDB are implemented by the reflective computations between objects, while
Repository Manager TM serves as a cooperative control between objects in the

AD/Cycle. The reflective computation, which is applied in KyotoDB, is useful for
distributing objects.

(AD/Cycle™ and Repository Manager™ are trademarks of International
Business Machines Corporation.)

Notes 011 the Next Ge11eratio11 Software Factory 19

5. Conclusion

The major purpose of this paper was to introduce an early report on the JSF /
NEXT project. The paper also described the basic element of KyotoDB (a prototype
software engineering project data base) whose development is a main part of the project

effort. The Next Generation Software Factory, which will be the result of the
project JSF /NEXT, aims to provide the concept of a software/IS-engineering
environment which has portable, common and open interfaces. The Next Generation
Software Factory is based on a software factor model which has long been practiced
in the Japanese software factories.

Acknowledgements

The author would like to thank Dr. Yutaka Ohno, President of the Advanced Software Technology
& Mechatronics Research Institute of Kyoto, for his support for the JSF/NEXT project. The author
would also like to thank Mr. Jeffrey Mauro (from the U.S.A.), a visiting student at Kyoto University,
for reviewing the English of this paper.

References

1) ANSI X3H4 working draft, A Tool Interface Standard, ANSI X3H4/90---187 (1990)
2) Cusumano, M., Japan's Software Factories, Oxford University Press (1990)
3) The ECMA Standard 149, The Portable Common Tool Environment, ECMA (1991)
4) van Eijk, P.H.J., C.A. Vissers and M. Diaz (ed.), The Formal Description Technique

LOTOS, Elsevier Amsterdam (1989)
5) Hoffnagle, G.F. (ed.), IBM Systems Journal, Vol. 29, No. 2 (1990)
6) International Organization for Standardization, Information Resource Dictionary System(IRDS),

Services Interface, Working Draft, Revision 11, ISO/IEC JTC1/SC21 N4895 (1990)
7) Maes, P., Concepts and Experiments in Computational Reflection, Proc. ACM Conf. on Object

Oriented Programming Systems, Languages and Applications (OOPSLA), pp. 147-155 (1987)
8) Matsumoto, Y. et al., A Softwar Factory, in "Software Engineering Environments", North

Holland New York (1981)
9) Matsumoto, Y., Software Factory: An Overall Approach to Software Production, in "Software

Reusability", IEEE Publication (Cat. No. EH0256-8) (1987)
10) Matsumoto, Y., Approaching Productivity and Quality in Software Production-How to Manage

a Software Factory, Proc. DRP '87 International Conf., pp. 103-122, Diebold Deutschland
(1987)

11) Matsumoto, Y. and T. Ajisaka, A Data Model in the Software Project Database KyotoDB, in
"Advances in Software Science and Technology", Vol. 2, Iwanami Shoten Tokyo (1990)

12) Obernsdorf, P.A., The Common Ada Programming Support Environment (APSE) Interface Set
(CAIS), IEEE Trans. on Software Engineering, Vol. 14, No. 6, pp. 742-748 (1988)

13) Thomas, I., Tool Integration in the Pact Environment, Proc. 11th International Conf. on Software
Engineering, pp. 13-22 (1989)

14) Watanabe, T. and A. Yonezawa, Reflection in an Object-oriented Language, Proc. ACM Conf. on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA), pp. 306-315
(1988)

