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Abstract 

A new concept of generalized diagnosability is proposed for a formal diagnosis model 
which incorporates most diagnosis models so far proposed. A self-diagnosis model consists 
of a set of units which can test other units and be tested by other units. Generalized 
diagnosability is a new measure of diagnosability in system diagnosis problems which is 
extensively studied with respect to self-diagnosis models. This diagnosability expresses 
explicitly such information as ( l) the maximum number of units to be identified as faulty, 
(2) the maximum number of units to be identified as fault-free, and (3) the maximum 
number of units whose states are definitely identified when the upper bound on the number 
of faulty units is assumed. 

Conditions for generalized diagnosability are expressed by certain relations between 
the power sets of a set of faulty units. Since these conditions are of the form that they 
must be checked all over the possible syndrome, it is generally difficult to investigate 
generalized diagnosability. However, these conditions are meaningful in cases in which the 
graph of a diagnosis model has symmetricity, or a diagnosis model has a constrained 
structure about the relation between fault patterns and syndromes. Some examples of these 
cases are presented. 

Furthermore, we discuss the problem of finding the minimal fault pattern consistent 
with a given syndrome. This problem is formulated as a mathematical programming 
problem with the same relations both in constraints and objective functions as those used to 
express conditions for generalized diagnosability. 

1. Introduction 
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The concept of system diagnosis is becoming important with the development of highly 

integrated digital systems and complicated computer networks [1]-[4]. Especially, self­

diagnosis models (SDM) have been studied extensively [5]-[8]. An SDM consists of n 

units, each of which can test and be tested by other units. This SDM can be expressed by a 

graph G( V, E) where Vis a set of vertices { v;} corresponding to a set of units of SDM, 

and Eis a set of arcs {ay} such that: 
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{
al= E: if unit i tests unit j. 

all= E : otherwise 

Yoshiteru ISHIDA 

Each test (arc a ij) of SDM of PMC type [5] produces binary test outcomes t ij: 

l 0 : if both units i and j are fault-free. 

tlJ= 1 : if unit iis fault-free and unitjis faulty. 

1/0 : if unit i is faulty, where 1/0 indicates the test outcome can be either 1 or 0. 

For this SDM, many diagnosabilities such as t-fault diagnosability (t-fd), t-fault 

diagnosability with repair (t-fdwr), and t out of s diagnosability (t/s-d) have been pro­

posed [ 8] -[ 13]. These diagnosabilities are defined under the common assumption that the 

number of faulty units does not exceed t. Under this assumption, a system is called t-fd if 

and only if all the faulty units are identified exactly, t-fdwr if and only if at least one faulty 

unit is identified, and t/s-d if and only if all the faulty units are specified within a subset of 

units whose cardinality is less than s. Generalized diagnosability is a new concept which 

totally expresses parameters appeared one by one in the above mentioned diagnosabilities. 

Definition 1. ( Generalized diagnosability) 

A system is called t/s/r/w-d if and only if the following conditions are satisfied, 

provided the number of faulty units present does not exceed t. 

(I) All the faulty units are specified within a set of at most s units, 

(2) all the fault-free units are specified within a set of at most r units whenever the number 

of fault-free units is less than r, and 

( 3) the states of at least w units can be identified. 

When some of these parameters can not be specified, they are denoted by a dot. With 

this generalized diagnosability, t-fd, t-fdwr, and t/s-d are termed t/. /. /n-d, t/. /(n-1)/1-

d, and t/s/. /(n-s)-d respectively where n is the number of units. 

In section 2, we define a formal diagnosis model which incorporates almost all existing 

diagnosis models. Certain relations between the power sets of a set of units are defined on 

this diagnosis model. Conditions of generalized diagnosability are expressed with these rela­

tions. In section 3, we discuss generalized diagnosability on a diagnosis model with con­

strained structure of association between fault patterns and syndromes. Conditions of 

generalized diagnosability are reduced to a form easy to check with this constrained struc­

ture. In section 4, we consider the diagnosis problem of finding the minimal fault patterns 

consistent with a given syndrome without assuming an upper bound on the number of faulty 

units. This problem is formulated as a mathematical programming problem with constraints 
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and objective functions expressed by the relations defined in section 2. 

2. Conditions of generalized diagnosability 

We define a formal diagnosis model which includes most diagnosabilities so far pro­

posed. And we discuss conditions for generalized diagnosability of the model. Then, the 

generalized diagnosability of SDM is investigated as an example. We use the following 

notations. 

1) x= {x) (i= 1 ... n) denotes a set of units each of which can take binary state: faulty 

and fault-free, and Y= { y) (j= 1 ... m) denotes a set of measurements each of which 

can take a binary state : abnormal and normal. 

2) F(~X) denotes a fault pattern: the subses of all units which are faulty, and a denotes 

a syndrome: the subset of all measuresents which are abnormal. We use a(F) to denote a 

syndrome which is consistent with fault pattern F: That all yf::C.a(F) become abnormal and 

all y/$:a(F) become normal when fault pattern Fexists in a system. 

3) We use S to denote a subset of a set X, and P(X) to denote the power set of a set X. 

Definition 2. (Formal Diagnosis Model) 

A the formal diagnosis model is a triple (X, Y, M) where X= {x;} i= 1 ... n is a set of 

units, Y= { y) j= 1 ... m is a set of measurements, and M= {µ} is a binary relation of 

P(X) xP( Y). Binary relation µ is defined as below : 

{ 
(F, a) Eµ : if a fault pattern FE P(X) is consistent with a syndrome aE P( Y). 

(F, a) $µ : otherwise 

With this formal diagnosis model, the next two types of set relations and two other 

types of set functions are defined. This formal diagnosis model is the generalized version of 

the failure diagnosis model discussed later in Example 2. 

Definition 3. 

Two types of set relations, Gi°(S) and G0(S), and two other types of set functions, 

S1 (t, a) and s0(t, a) are defined as follows : 
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where F=X- F and the minimum is taken with respect to the car dinality of fault 

pattern F. Since there may be many minimal fault patterns which satisfy the constraints of 

Gi°(oJ (S;), these are relations. And I G{'c01 (S;) I denotes the cardinality of one of the mini­

mal fault patterns, whereas it is interpreted as 00 if there is no fault pattern consistent with 

a. Gi°(S;), for example, indicates minimal fault patterns consistent with a syndrome a 

under constraints in which units in S; are all faulty. Among these relations and functions, 

Gi''col (S;) with S; restricted to a unit x; has already been proposed to express the condition 

for t-fdwr [10]. Properties of these relations and functions are summarized in Appendix. 

With these relations and functions, conditions of generalized diagnosability are obtained in 

the next Theorem 1. 

Theorem 1. ( Conditions of generalized diagnosability) 

The formal diagnosis model is t/s/r/w---d if and only if 

minlS'(t, a) I ;;;,n-s 
aEE,j 

(1) 

minlS0(t, a) I ;;;,n-r (2) 
aE::Eh-, 

(3) 

where I: A is a set of all possible syndromes : I: A= {a : (F, a) Eµ for some K X}, 

I: n-, is a set of syndromes which are consistent only with fault patterns whose cardinality is 

less than n- r where n= I XI ; I: n-,= {a: (F, a) Eµ for some KX such that I Fl~ n- r}. 

Proof 

Sufficiency: It should be noted that S 1 (Ol ( t, a) denotes a set of all units which are 

known to be fault-free (faulty) given a syndrome a, under the assumption that the number 

of faulty units does not exceed t. Therefore, if condition (1) is satisfied, there exists a set 

of units S;EP(X) such that each unit in it is fault-free and whose cardinality is larger than 

n - s. Thus, faulty units are specified within a set whose cardinality is less than s. 

In the same manner, condition (2) implies that all fault-free units are specified within 

a set whose cardinality is less than r. But in this case the minimum is taken over I: n-,, for 

aE I: A- I: n-, implies that the ca dinality of all the fault patterns consistent with a is larger 

than n- rand hence all fault-free units are specified within a set whose ca dinality is less 

than r. 

Further, since S 1 (t, a) is a set of units identified as fault-free and S 0(t, a) is a set of 

units identified as faulty, S1(t, a) US0(t, a) is a set of units whose states are identified and 

S 1(t, a)ns0 (t, a)=¢. ThuslS 1(t, a)US0 (t, a)l=IS'(t, a)l+IS0 (t, a)I and condition 
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(3) implies that the state of at least w units can be identified. 

Necessity : If a formal diagnosis model is t/s/. /. -d, then for all the set of fault patterns 

{FJ i= 1 ... q such that (a) I F;I ;£;ti= 1 .. q (b) a=a(F,) =a(F2) = ... =a(E9) and (c) 

ao/:-a(F) for all F/i {FJ, it must be satisfied that I ~ F;I < s by the definition of tis/./.-
-- ,-1 --

d. This fact implies that I U F;l 2 n-s. And further, I Gi°(x;) I~ t+ 1 for all X; in ( U F;) 
1=t ,=l 

by Lemma 5, (2)-(i) in the Appendix. Therefore condition (1) holds. 

If a formal diagnosis model is t/. Ir/. -d, then it must be satisfied that In F;I ~ n- r 
i=I 

for all the set of fault patterns {FJ such that (a) and (b) mentioned above hold for all a 

Ei:: .-, by the definition of ti. /r/.-d and i::.-,. Further, I Gg(x;) I ~t+l for all X; in (Q, 
F;) by Lemma 5 (2)-(ii) in the Appendix, and henece condition (2) holds. Finally, if a 

formal diagnosis model is t/. /. /w - d, then the above mentioned sets of fault patterns {F J 
satisfy that l(U F)u(n F)l~w for all aEi::A where (u F;) and (n F) correspond to 

1=1 1=l 10:I 1""1 

S'(t, a) and S 0(t, a) respectively with a which realizes the minimum of condition (3). 

Q.E.D. 

As shown by the proof of Theorem 1, conditions (1), (2), and (3) correspond to the 

conditions to be tis/. /. - d, t/. Ir/. -d, and t/. /. /w -d respectively. Among these con­

ditions, conditions (1) and (2) are expressed in a different form. Next Theorem 2 is ob­

tained by replacing (1) and (2) of Theorem 1 with (l)' and (2); each of which is equi­

valent to (1) and (2) by Lemma 6 in the Appendix. 

Theorem 2 

A formal diagnosis model is t/s/r/w - d if and only if 

min (max (minlGi°(x;)l))~t+l 
aEl:.-11S,1 =n-s x,ES, 

(l)' 

(2)' 

min(IS0(t, a) I+ 1S'(t, a) l)z.w 
oEl::" 

(3) 

Conditions (1) and (2) of Theorem 1 are convenient forms to obtain parameters sand 

r of the generalized diagnosability for a certain t. On the other hand, conditions (1)' and 

(2)' of Theorem 2 are used to investigate the permissible upper bound of t for given parame­

ters s and r of the generalized diagnosability. About the relations among these parameters, 

the following Lemma 1 is easily understood. 

Lemma 1 

If a formal diagnosis model is t/s/r/w-d, then w~2n-s-r. 
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Proof 

If a formal diagnosis model is t/s/r/w-d, then at least n-s units are known to be fault­

free and at least n- r units are known to be faulty. Thus altogether, the state of at least 2n 

- s- r units are known. Q.E.D. 

tis/. /. -d is the same concept as t/:rd which was first proposed by Friedman about 

SDM [11]. Necessary and sufficient conditions for t/:rd have not yet been obtained except 

for some special cases [13]. t/. /r/.-d is a new concept. However, _special case, when r= n 

-1 is known as t-fdwr about SDM. The condition for t-Jdwr will be obtained by 

substituting r= n-1 in condition (2) of Theorem 1, and this condition is the same as that 

proposed in [ 10]. 

The concept of t/. /r/.-d also plays an important role in the situation of sequential 

diagnosis which proceeds by replacing faulty units with fault-free units and diagnosing for 

renewed syndromes iteratively. The diagnosis terminates in this way as long as the graph of 

SDM is strongly connected [6]. The number of exchanged units in a step increases as the 

number r of the generalized diagnosability decreases, and the number of steps of the 

sequential diagnosis will decrease as well. 

These are discussions about diagnosability. As for detectability, a similar discussion to 

that of diagnosability can be done with Gi°co) (x). A formal diagnosis model is said to be t­

fault detectable (t-Jdt) if and only if all the syndromes consistent with the null fault 

pattern </JEP(X) (all units are fault-free) are distinguishable from those consistent with 

the fault pattern FEP(X) where F-=l:-</J. The condition of t-Jdt can also be characterized by 

G{(x). 

Theorem 3 (Condition for t-Jdt) 

A formal diagnosis model is t-Jdt if and only if 

mini G~0 (x;) I ~t+l where a 0 =a(</J). 
XrEX 

Proof 

I G?(x) I~ t+ 1 implies that a(F)-=l:-a 0 for all F;-=l:-</J, and thus the formal diagnosis 

model is t- fdt. On the other hand, I G? (x;) I < t implies that the syndrome a O is consistent 

with the fault pattern F; such that F;:3x, hence F;-=l:-</J. Q. B. D. 

Furthermore, the condition in which the state of at least one unit can be identified is 

characterized with respect to the syndrome a I which is consistent with the fault pattern X. E 

P(X). 

Theorem (Theorem 7 in [6]) 

The state of at least one unit can be identified in the formal diagnosis model under the 
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assumption that the number of faulty units present does not exceed t if and only if 

(2) a I is the only syndrome with which all units can be faulty or fault-free under the 

assumption. 

Proof See Theorem 7 in [ 6] 

Condition (2) of the Theorem is automatically satisfied for SDM of BGM type [6], or 

FDM with inclusive structure discussed later in this paper. And for these models, only con­

dition (1) is necessary and sufficient so that the state of at least one unit can be identified. 

Although Theorem 1 and 2 present a necessary and sufficient condition for generalized 

diagnosability, it is difficult to check them. This is because the domain of syndromes over 

which the minimum is taken is sizable for large-scale systems. Even in such cases, it often 

occurs in fault diagnosis that fragmentary knowledge useful in diagnosis is known, such as 

that some unit is faulty with syndrome a or a certain set of units must not contain faulty 

units under syndrome a. This fragmentary knowledge will be used to roughly evaluate pa­

rameters t, s, r, and w of the generalized diagnosability. 

Furthermore, these conditions in Theores 1 and 2 become chackable by reducing the 

domain of syndrome patterns. This is done by imposing restrictions on the relation between 

fault patterns and syndromes as studied in section 3 or by using the symmetricity of the 

graph as discussed in the next Example 1. The domain of syndromes over which the mini­

mum of conditions of Theorem 1 and 2 is considered might be reduced to a great extent 

when the graph of SDM has symmetricity. Assign distict integers of {1, 2, .. j} to each arc 

(test) of the grph of SDM. Permutation C:.\:::/. ;) is called possible permutation if some 

rotation (around axis or point) results in the same rearrangement in the integers associated 

with arcs as in this permutation. Syndrome a; is regarded as equivalent to a i under possible 

permutation p if p(a) =ai where p(a) =p( y;
1 

y'2 ... Y;) =jEp(i 1, •• iJ U ( y). 

The minimum of conditions of Theorem 1 and 2 is taken over the domain which 

consists of all the syndromes that are not equivalent with each other. The cardinality of this 

set of syndromes is obtained by Burnside's Theorem [14]. 

Example 1 (An Example of SDM) 

Fig. 1 shows the graph of an example of SDM of the PMC type. The number of the 

cardinality of a set of syndromes over which conditions of Theorem 1 and 2 are checked is 

reduced to twenty four. This reduced set of syndromes is denoted by~: min ISk(t,) I k= 
aE:E' 

0, 1 are shown for several t in Table 1. It is shown by Theorem 1 that this SDM is 1/3/6/3 

-d, 2/4/6/3-d, and 3/6/6/0-d. It is also shown that this SDM is not even 1-fdt by 

Theorem 3. If we suppose the syndrome a O never occurs, then the parameter r of general-
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Fig. 1 An Exanple of SOM of the PMC type. 

Table I The Cardinality of the Syndromes 

I~ min (ls'(t, a) I) oEI:' min (1s 0(t, o)I) oEI:' min (ls'(t, a) I+ 1s 0(t, a) I) oEI:' 

I 3 0 3 

2 2 0 3 

3 6 6 0 

ized diagnosability become S when t= 1, 2. 

3. Generalized diagnosability of diagnosis models with constrained structure 

The last section presents conditions of generalized diagnosability without any restriction 

on the structure of association between fault patterns and syndromes. It is almost im­

possible to evaluate parameters t, s, r, and w of the generalized diagnosability, since the 

domain of syndromes over which the minimum is taken is enormous. In this section, we 

study corresponding theorems for diagnosis models with constrained structure. Using the 

constrained structure, conditions for generalized diagnosability become easy to check. We 

present some illustrative examples of diagnosis models with constrained structure. 

Definition 4 (Constrained Structure) 

A formal diagnosis model is said to have inclusive structure if and only if 

a(F;U F)-;;;).a(F) Ua(F) for all F;, F/=P(X) 

and it is said to have additive structure if and only if equality holds for all F;, FjEP(X). 

A characteristic property of this inclusive structure is that some fault-free units can be 

known from the relation between syndromes. 
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Lemma 2 (A Property of Inclusive Structure) 

If a formal diagnosis model has an inclusive structure, then unit x; is fault-free under 

the syndrome a(F) such that a(F) ;]a(x;). 

Proof 
Suppose unit x 1 is faulty, then the fault pattern present F includes X; and hence a(F) :2 

a(x) by the inclusive structure. This contradicts the hypothesis a(F);;Qa(x). Q. E. D. 

Thus Lemma 2 does not hold for diagnosis in general. By this Lemma 2, the next 

Theorem 4 follows from condition ( 1) of Theorem 1. 

Theorem 4 (t/s/./(n- s)-d of Models with Inclusive Structure) 

A formal diagnosis model with inclusive structure tis/. /(n-s)-d if and only if 

minlS1(t, a) I ~n-s 
aEI:, 

where 1:: s is the set of all syndromes such that aE 1:: s implies that I {x; : a(x) i:;;;; a} I ~ s+ 1. 

Proof 
Divide 1:: ,1 into 1:: s and 1:: ,1 - 1:: s where 1:: ,1 is the set of all possible syndromes. Since 

aE 1:: ,1- 1:: s implies that I {x; : a(x) i:;;;; a} I < s. And thus it can be observed by Lemma 2 

(A property of inclusive structure) that all faulty units are specified within a set S; such 

that I S; I ~ s for all aE 1:: ,1 - 1:: s. Therefore, it is sufficient that condition ( 1) of Theorem 

1 holds only for aEl:: s• Q. E. D. 

This Theorem 4 means that the inclusive structure reduces the domain of syndrome 

over which the minimum of condition (1) is taken. About t/(n-1)/. /1-d, a simpler 

result can be obtained, since 1:: s become only one syndrome 1:: n- i = a 1 ( = Y). 

Corollary 1 (t/(n-1)/. /1-. of Models with Inclusive Structure) 

A formal diagnosis model with inclusive structure is t/(n-1)/. /1-d if and only if 

As for ti. /r/(n- r)-d, the problem is more difficult than that of tis/. /(n-s)-d. This 

is because, even if yiEa, it does not mean unit X; such that yiEa(x) is faulty. Whereas, Yi 

$a means unit X; such that yiEa(x) is fault-free under the syndrome a by inclusive 

structure. However, some faulty units become explicit with an additive structure. The next 

Lemma 3 shows a propery which makes additive structure different from inclusive structure. 
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Lemma 3 (A Property of Additive Structure) 

If a formal diagnosis model has additive structure, then unit x; is faulty under synd­

rome a(F) such that I {x;: yjEa(x)} I= 1 for some yjEa(F). 

Proof 

Suppose X; is fault-free, then y1EYsuch that l{x;: y1Ea(x)}l=1 is normal; and 

hence the syndrome present a(F) ( 3 Y) never occurs, for a(F') $ y 1 for all fault patterns 

a(F') $yj for all fault patterns .F'such that F' $x;. Q. E. D. 

It should be noted that this Lemma 3 does not always hold for formal diagnosis models 

with inclusive structure, because, even if I {x;ly1-Ea(x)} I= 1, it may occur a(x; ... X; )-
1 q 

{a(x;) U ... Ua(x; )} Eyft for some F;= {x;, ... , X;} $x; by the definition of inclusive 
I q I q 

structure. By this Lemma 3, we obtain the next Theorem S about t/. /r/(n-r)-d which is 

derived from condition (2) of Theorem 1. 

Theorem 5 (t/. /r/(n- r) -d of Models with Additive Structure) 

A formal diagnosis model with additive structure is t/. /r/(n- r) -d if and only if 

min I s0(t, a) I~ n- r, where I;' is the set of syndromes such that U I {x;: I {x;: 
aEI:' aEI:' 

Proof 

aE I; A- I;' imples that the number of units identified faulty is not less than n- r by 

the definition of I;' and Lemma 3(A property of additive structure). Therefore condition 

(2) of Theorem 1 is clearly satisfied for all aE I; A- I;'. Q. E. D. 

Thus, if a formal diagnosis model with additive structure has relatively large number of 

units mentioned above, it becomes easy to evaluate parameter r of the generalized diagnos­

abiliy. 

Example 2 (Diagnosis Model with Additive Structure) 

The failure diagnosis model (FDM) is a triple (X, Y, A) of a set of units X= {xJ i= 

1 .. n, Y= { y) j= 1 .. m j both X and Y take the same binary state as the formal diagnosis 

model, and A= {il} which indicates a binary relation between x;EX and yjE Yis defined as 

below: 
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Fig. 2 An Exanple of FDM. 

EA if the faulty state of unit x; always implies that the 

abnormal state of measurement Yi• 

$A otherwise 

43 

Fig. 2 shows an example of FDM expressed by bipartite graph G(X, Y, E) where the 

arc eijEE only if (x;, y} EA. Since FDM ias additive structure, :EA of Theorem 1 is 

reduced to :E 3= {( Y1 Y2 y 3 Y4 y5), ( y 2 y3 y 4 y5), ( y 1 y 2 y3 y 4)} when r=3 by Theorem 4. 

And min I S 1(3, a) I ;;;;s-3 implies that this example is 2/3/. /2-d. Further, :E 4 = {( y 2 y 3 
aEl: 3 

y 4), ¢>} and minlS0(2, a)l;;;;S-4 implies that this example is 1/./4/1-dby Theorem 5. 
aEl: 4 a 

By Corollary 2, it is also easily understrrd that this FDM is 3/4/. /1-d, for max I G/(x;) I= 
x 1EX 

max(3, 4, 4, 3, 3) =4. 

Example 3 (Diagnosis Model with Incluseive Structure) 

The AND-node is defined in the graph of FDM in addition to the nodes which 

correspond to fault units and measurements. The AND-node is the node which propagates 

the an abnormal state to all the measurements connected to it only when all inputs into it 

are from faulty units. The failure diagnosis model with this AND-node has inclusive 

structure and not additive structure. Fig. 3 shows an example of FDM with this AND­

node. The square node with a dot inside denotes the AND-node. This example actually 

has inclusive structure, for a(x 2 Ux3) :::i a(x 2) Ua(x3). :E 3 of this example is {( y 1 y 2 y3 

Y4 y5), (y2 y3 Y4 y5)}. Because minlS1(3, a)l;;;;s-3, this example is 2/3/./2-d by 
aEI: 3 

Theorem 4. And the application of Corollary 2 shows that this example is 3/4/. /1-d, for 
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x, Y, 

X2 Y2 

X3 Y3 

X4 Y4 

Fig. 3 An Exanple of FDM with AND-node. 

max I G~1(x;) I =max(3, 3, 3, 3, 4) =4. 
x 1EX 

4. Diagnosis without the assumption of upper bound t in the number of faulty units 

Most diagnosability studies have been carried out under the assumption of upper bound 

t on the number of faulty units. However, this assumption seems meaningless in the follow­

ing cases: 

In the case of (i), a probabilistic version of generalized diagnosability should be con­

sidered. The probabilistic version of generalized diagnosability is obtained by replacing the 

assumption about the permissible number t of faulty units with the assumption of the proba­

bility of the fault pattern. All the discussions proceed in the same manner as in section 2, 

interpreting I G1(0) (S) I, I s1Co) (t, a) I as the probability of the fault pattern. 

(i) It often happens that the probability of the occurence of fault pattern F; is greater than 

that of fault pattern Fj even if IF; I > I Fj I . 
(ii) In the case that most fault patterns F; such that I F;I > t can be identified even though 

the system is not t-fd. Moreover, it is difficult to assign t adeqately beforehand. 

In this section, we remove this hypothesis and study the diagnosis directly from the 

syndromes with G1°c0/S;)discussed before. We present a property of Gi"rmCS;) in order to 

use it as a means of diagnosis without restriction on the number of permissible faulty units. 

Lemma 4 (A Property of Gi"coJ (S;)) 

A fault pattern F;EP(X) is the minimal fault pattern consistent with syndrome a if and 

only if 
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Gg(ft;) = G{(F;) where F;=X-F;. 

Proof 

Sufficiency: By the properties of Ga(S;) (see Lemma 5, (1) in the Appendix), it 

follows that G{(S;)~S;~Gg(S;). Thus, Gg(ft')=Gt(F;) implies that Gg(ft;)=G{(F;)= 

F;. 

Necessity: If a fault pattern Fis consistent with a syndrome a, then G{(F;) =F; and 

Gg(ft;)r:_;;_F;. Furthermore, since F; is the minimum fault pattern, thare is no fault pattern 

Fi such that Gg(.F;) =FFF;. Q. E. D. 

To find the minimal fault pattern consistent with a given syndrome, the min-max form 

of Lemma 4 is convenient. 

Theorem 6 (Min-Max Form of Lemma 4) 

A fault pattern F5 is the minimal fault pattern consistent with a given syndrome a 
if and only if 

the equation {F: F=G{(s) for some sir:_;;_xandlFI =.Flmin} = 

{F: F=Gg(SJ for some skr:_;;_xand IFI =R>max} 

has the unique solution Fs 

where FO max=maxl Gg(S;) land Fl min=minl Gt(S;) I. 
~eKm ~eKm 

By this Theorem 6, the problem of finding the minimal fault pattern consistent with a 

syndrome is formulated ints two mathematical programming problems dual to related to 

each other. And the minimal fault pattern is given by solving either of these mathematical 

programming problems. 

Problem 

min I Gt (S) I under constraint that Gg(s) = Si. 
s,eKm 

Dual Problem 

max I Gg (SJ I under conder constraint that Gt (SJ = S k. 
s,eKm 

Example 4 

Consider the same FDM as discussed in Example 2. Let a 2 and a 3 denose syndromes 

( Yi y 2) and ( y 2 y 3 y 4) respectively. The only fault pattern F; which satisfies G?(s;) =S; 

is Xi and this realizes the minimum of I G?(s) I. Therefore, the minimal fault pattern 

consistent with the syndrome is Xi- Next, the fault patterns which satisfy G?(S;)=S; are 

as many as {x 2 x 3 , x 3 x 4 , x 2 x 4}, and all of them realize min G?(s). Hence, if the synd-
s1eKm 

rome occurs, this model is not diagnosable in the because sense that the fault pattern con-

sistent with it is not uniquely identified. 
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5. Conclusion 

A new concept of generalized diagnosability is proposed for a formal diagnosis model 

which includes most diagnosis models so far proposed as particular cases. A detailed diag­

nosis is possible by this generalized dianosablity, sence this diagnosability incorporates infor­

mation expressed in t-fault diagnosability, t-fault diagnosablity with repair, and t out of s 

diagnosability. 

Conditions of this generalized diagnosability are discussed with some set relations be­

tween the power sets of a set of units. A though these conditions are difficult to check, for 

they must be checked over all the possible syndromes, this domain may be reduced in some 

cases. By the same set relations as used to express conditions of generalized diagnosability, 

the minimal fault set consistent with a given syndrome is obtained as well. This problem is 

formulated as a mathematical programming problem which has these set relations in con­

straints and objective functions. 

As a result, once these set relations are obtained, the generalized diagnosability as well 

as the minimal fault set consistent with a syndrome are given by these set relations. 
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Appendix 

Lemma 5 (Properties of GfcoJ (S)) 

(1) (i) IfGf(S)i:.¢,thenGf(S)~Swhereequalityholdswhen (S;,a) Eµ. 

(ii) G0 (S) c;;; S; where equality holds when S; is the minimal fault pattern con­

sistent with a syndrome a. 
(2) If {SJ i= 1 .. q is a set of units such that (a) I S;I ~ti= 1 .. q (b) a=a(S 1) = 

a(S2) = .. . =a(Sq) and a(S}i=a for all S/1= {SJ. then 

(i) IGf(xJl;;;;t+l forallxkin(0,s). 

(ii) I G0(x,) I;;;; t+ 1 for all xk in ( C\ s;). 

Proof 

(1) is straightforward from the definition of Gf<oJ(S); and we prove only (2). For 

the proof of (i), suppose there exists a unit xk such that I Gf(x,) I~ t and xkE( 0, S;). 
This implies that there exists a fault pattern S which is consistent with the syndrome a and 

that S/$ {SJ. This fact contradicts (b). In the same manner, the existence of x k such 

that I G0(x,) I< t+ 1 and xkE Q, S; also violates the hypothesis(b). Q. E. D. 

Lemma 6 (Relationship between Sk(t, o) and Gf(S)) 

(1) max (min I Gi°(x;) I) ;;;;r+ 1 if and only if IS1(t, a) I ;;;;n-s. 
1S11 =n-s x 1ES1 

(2) max (min I G0(x;) I);;;; t+ 1 if and only if I S 0(t, a) I;;;; n-r. 
1s,1-n-, x,ES, 

Proof 

min Gf(S) indicates all the fault patterns consistent with the syndrome a and satisfies 
X;ES1 

the constraint that at least one unit is faulty in S ;. Therefore, the condition max (min I Gf 
IS;I =n-s x,ES, 

(x;) I)) ;;;; t+ 1 is equivalent to : all the fault patterns consistent with the syndrome and 

whose caxdinality is less than t+ 1 must satisfy the constraint that all the subsets of units 

whose cardinality is greater than n-s consist of only fault-free units. This fact is equiva­

lent to the condition IS 1(t, a) I ;;;;n-s. The proof of (2) is done in the same manner as 

this. Q. E. D. 


