
Mem. Fae. Eng., Kyoto Univ. Vol. 54, No. 2 (1992)

Parallel Viterbi Decoding Implementation

by Multi-microprocessors

by

Hui ZHAO*, Xiao Kang YUAN**, Toru SATO* and !wane KIMURA*

(Received December 24, 1991)

Abstract

The Viterbi algorithm is a well-established technique for channel and source decoding
in high performance digital communication systems. However, excessive time consumption
makes it difficult to design an efficient highspeed decoder for practical application. The
central unit of a Viterbi decoder is a data-<lependent feedback loop which performs an add
-compare-select (ACS) operation. This nonlinear recurrence is the bottleneck for a high­
speed parallel implementation. This paper describes the implementation of parallel Viterbi
algorithm by multi-microprocessors. Internal computations are performed in a parallel
fashion. The use of microprocessors allows low-cost implementation with moderate comp­
lexity. An organization network, separate memory blocks and programs provide proper
operation. For a fixed processing speed of given hardware parallel Viterbi decoding allows
a linear speed up in the throughput rate by a linear increase in hardware complexity.

1 Introduction

105

The Viterbi algorithm (VA) is widely used for decoding convolutional codes n. It is an

optimum decoding algorithm but its computational complexity grows exponentially with the

constraint length of the encoder. To enhance the achievable throughput rate of an implem­

entation algorithm, parallel and/or pipelined architectures are used. Much research has been

done in recent years 2
•
3l_ G. Fettweis 4l proposed a method which can realize the linear scale

solution of Viterbi algorithm. P. G. Gulak s) proposed several pipeline architectures for the

Viterbi algorithm. R. Schweikert 6) also proposed a parallel Viterbi algorithm concatenated

by single-parity-check coding. Parallel Viterbi decoding by two microprocessors is implem­

ented by the authors 7l. The fully parallel Viterbi decoding algorithm was first proposed by

Forney in 1973 Ill. The main stumbling block for implementing parallel Viterbi decoding is

its complexity in synchronization and contention among the processors and occupation of

* Department of Electrical Engineering II, Faculty of Engineering Kyoto University
** Shanghai Research Institute of Radio Equipment, Ministry of Aerospace Industry, Shanghai

200082, P. R. China.

106 Hui ZHAO, Xiao Kang YUAN, Toru SATO and lwane KIMURA

space by connection lines. Usually pipelined algorithms provide inferior throughput and

fewer timing problems, so it is a trade-off between the throughput rate and the

implementation complexity. For high-speed implementation of an algorithm, architectures

are desired that lead to a linear increase in hardware complexity for a linear speedup in the

throughput rate if the limit of computational speed of the hardware is reached.

In this paper a fully parallel implementation of Viterbi algorithm is proposed where one

state is assigned for a microprocessor. For a convolutional code of constraint length K there

are 2 K states, and hence, 2 K microprocessors. For values of K greater than 8, Viterbi

decoding becomes increasingly complex and impractical. On the other hand, the required

hardware logic speed is only l/2 K operations per symbol interval. This type of full parallel

layout dominated by a large inter-processor wire area, is the architectural organization with

the greatest possible throughput for a given microprocessor. In section 2 the architecture of

microprocessors is described briefly. Viterbi decoding is introduced in section 3. Parallel

Viterbi decoding is found in section 4. Hardware implementation of Viterbi decoding is

described in section 5. Experiments and results form section 6. Section 7 summarizes the

conclusions of the present paper.

2 Architecture of Microprocessors

Here we design the Viterbi decoder by microprocessors. It is relatively simpler and

cheaper as compared to a specially proposed Viterbi decoder made by VLSI.

Figure 1 shows the architecture of a Z-80A microprocessor.

CPU is a Central Processing Unit. Z-80A CPU is an 8-bit microprocessor. It is sup­

plied in a 40--pin dual in-line package. It has 40 lines : the data bus is 8 lines, the address

bus is 16 lines, the control bus is 13 lines, the clock signal is one line, and the power

Display I I Keyboard I I PIO I

_ Address bus -
Data bus

CPU RAM
Control bus

.__ -

EPROM I I CTC I I SIO I

Fig. 1 Architecture of the microprocessor.

Parallel Viterbi Decoding Implementation by Multi-microprocessors 107

occupies two lines.

1. Address bus: Z-S0A CPU uses 16 address lines. It is a tri-state output bus: high­

level state, low-level state and high-impedance state. The address bus is used to

provide the address when exchanging data between CPU and memory, CPU and a

peripheral device, or a peripheral device and memory. Memory data exchanges use

a 16---bit address bus. 1/0 data exchanges use the lower 8 bits of the address bus

to select one of 256 1/0 ports.

2. Data bus: It is a tri-state bidirectional bus. The word length of Z-S0A CPU is 8-

bit, and therefore the data bus is 8 lines. It can be put into a high-impedance con­

dition if another device is used to supply data to the bus.

3 . Control bus : There are three kinds of control lines : 1) system control lines, 2)

CPU control lines, and 3) bus control lines.

4. Clock: The clock signal is generated externally to the Z-S0A CPU. Timing

control for the execution of instructions by the Z-S0A CPU is provided by a single

-phase square-wave clock signal. Z-S0A CPU is available, operating with a

maximum clock frequency of 4MHz.

PIO is a Parallel Input and Output interface. The Z-S0A PIO is one of a set of chips

manufactured to facilitate Z-S0A CPU interface. The PIO circuit is designed to provide a

two--port, programmable, parallel data transfer between the Z-S0A CPU and peripheral

devices.

SIO is a Serial Input and Output interface. The SIO is used as a cost effective alterna­

tive to parallel communication over long distances. The Z-S0A CPU communicates with

the serial 1/0 circuitry via 8-bit parallel bytes. The function of the serial interface is to

make the translation from serial-to-parallel or parallel-to-serial.

CTC is a Counter-Timer Circuit. The CTC performs timing and event counting func­

tions. CTC is a programmable component that can operate in either Counter Mode or Time

Mode.

EPROM is a Programmable Read Only Memory. It is used for storing special prog­

rams, management programs and constant data.

RAM is a Random Access Memory. It is used for storing intermediate results and con­

stant tables. The characteristic of the RAM is that information stored in it will disappear

when the power is turned off.

3 Viterbi decoding

The Viterbi algorithm (VA) was first presented by Viterbi as a method of decoding

convolutional codes I). Since then it has been proven to be a solution for a variety of digital

estimation problems. The VA is an efficient realization of optimization sequence estimation

108 Hui ZHAO, Xiao Kang YUAN, Toru SATO and Iwane KIMURA

Initialization Data input Branch metric computation State metric computation

State metric memory Path trace back Decoded word memory Data output

Fig. 2 General serial architecture for Viterbi decoder.

r.;:
S

(l) "r,:,--,1/ =1100 5(t)
1-1=---------'v'-'--,-------;,>' ,

Fig. 3 The /-th stage trellis diagram of (4, 1, 3) convolutional code.

of a finite state discrete-time Markov process where the optimum can be achieved by

criteria such as maximum-likelihood or maximum a posteriori. The Viterbi algorithm can

be thought of as a dynamic programming solution to the problem of estimating the state

sequence of a finite-state Markov process observed in memoryless noise 8l. Fomey 9l

suggested an application of Viterbi algorithm to symbol-by-symbol data transmission. The

basic theory behind the Viterbi decoding algorithm is described in detail in Viterbi and

Omura w), and a good survey is given by Forney 11l. Here we show in Figure 2 the diagram

of a serial Viterbi decoder, which consists of the following elements:

1. Data input (Input section). Data is input by S1O and/or PIO interfaces.

2 . Branch metric calculation section. Figure 3 shows the /-th stage trellis diagram of

the (4, 1, 3) convolutional code with

Parallel Viterbi Decoding Implementation by Multi-microprocessors 109

where Si and Si-i (i= 1, ... , 8, l=, ... , L) denote the ith state at stages land /-

1, Mi and Mi- 1 (i= 1, ... , 8, l= 1, ... , L) denote the ith state metrics at stages l

and /-1. Oi and Oi- 1 (i= 1, ... , 8, l= 1, ... , L) denote the decoded information

of ith states at stages land /-1. In the diagram, the solid lines mean input branch

signal u 1= 0, and the dashed lines mean input branch signal u 1= 1. The 4----digit

numbers over the solid and dashed lines mean branch codeword v 1=v/nv/2lvPlv/,(J.
When decoding by a microprocessor, the branch metrics are calculated for all

possible branches at every stage l(m< l< L). According to the /-th received

branch, r i(codeword), Viterbi decoder computes the branch metrics leading to

every state Si. Since there are always two possible branches leading to the same

state, there are two branch metrics LJML to every state Si (j= 1, 2 and i= 1 to 8).

Because there are two branches entering each state, there are two branch metrics.

The 16 standard branch codewords v I are stored in the memory.

3 . Path Metric Calculation Section. The branch metrics are used in conjunction with

the stored state metrics at stage /-1 to compute the path metrics of the present

stage l. It reads out an old state metric value stored in a RAM, adds the corre­

sponding branch metric, and gets the path metric.

4 . State metric selection section. In this section the Viterbi decoder compares two

path metrics leading to a state, and chooses the path metric which has the mini­

mum value as the state metric of the state.

5 . Retained path selection section. The Viterbi decoder selects a path which has the

minimum metric as the retained path of every state.

6 . Output section. According to the retained path, the Viterbi decoder gets the de­

coding information and sends out the information.

Figure 4 shows the flowchart of the Viterbi decoding.

4 Parallel Viterbi Algorithm

4. 1 Principle of parallel Viterbi decoding

The principal limitation on the practical application of the VA is that the complexity of

decoding is proportional to 2 K, the number of encoder states. The decoder memory is

proportional to 2 K. Also, since 2 K comparisons must be performed per unit time, decoding

time is proportional to 2 K. This exponential dependence on K limits the use of the VA to

the value of K equal to 8 or less.

The speed limitation of the VA can be alleviated by employing parallel decoding. Since

the 2 K comparisons that must be performed at each time unit are identical, 2 K identical

llO Hui ZHAO, Xiao Kang YUAN, Toru SATO and Iwane KIMURA

START

Initialization

1th stage decoding

Output the first 8 bits
in the u of state 1

N

Output all the decoded
bits in the u of state 1

End of decoding

STOP

Receive the 1th
stage codeword r

Calculate the branch metrics
of state i,

Calculate the total metrics
of state i

Select the minimum metrics
as the state metrics

Select the corresponding
path as the decoding path
and get the decodeword u

N

Fig. 4. The Viterbi decoding flowchart. The left panel shows the overall flow, and the right
panel describes the 1-th stage of the decoding.

processors can be provided to do the comparisons in parallel rather than having one proces­

sor doing all 2 K comparisons in sequence. Each processor computes the metric values of the

2 paths entering every state, selects the path with the minimum metric, and stores that path

and its metric in the decoder's memory. This parallel implementation of the VA then

requires 2 K processors doing one computation per unit time. Parallel decoding therefore

implies a factor-of-2 K speed improvement over a standard decoder, but requires 2 K times as

much hardware.

MIMD (multiple instruction, multiple data) microprocessor architecture is used for

parallel Viterbi decoding illustrated in Figure 5.

Parallel Viterbi Decoding Implementation by Multi-microprocessors

Fig. 5 MIMD Microprocessors, (C: Control Unit; P: Processor; N: Organization Net­
work; M: Memory).

111

The MIMD machine consists of M processors, M memory units, an interconnection net­

work, and M controllers. Such a multiprocessor system can achieve a linear speed-up

factor.

4. 2 Problems to be solved in order to realize parallel decoding

In the practical application there are many factors which affect perforrnace, such as :

1 . Synchronization : some of the processors may be idle waiting for other processors

to catch up.

2 . Algorithm : an algorithm designed for a serial machine may not be the most effic­

ient on a multiprocessor machine.

3 . Contention : if multiple processors require the same resource they may have to use

it one after another.

The MIMD microprocessor architecture for Viterbi decoding has the following charac­

teristics:

1 . In each step, M(= 8) processors are used simultaneously.

2 . All processors in every stage execute different sets of instructions, because each

processor is assigned a control unit.

3 . The inter-processor communication between two consecutive steps is independent

of the results of processing in these steps.

4 . There are memory read conflicts.

5 . All the processors must compute synchronously at every stage.

Because Viterbi algorithm is related to dynamic programming and has a data dependent

feedback loop, the most difficult problems for fully parallel implementation are timing and

contention. In order to make the best use of them, waiting periods in computation should

112 Hui ZHAO, Xiao Kang YUAN, Toru SATO and lwane KIMURA

be avoided.

4. 3 Facts that affect decoding speed in parallel algorithm

There are some cases in which parallel algorithm is not helpful in reducing time, be­

cause some processes cannot be divided into several parts and cannot be assigned multiple

CPU's to process them synchronously. As shown in Fig. 4, only the parts in the right panel

can be processed in parallel and this part takes most of the time in Viteribi decoding (from

state 1 to state 2 K). Processes shown in the left panel of Fig. 4 cannot be processed in

parallel. In parallel Viterbi decoding two factors affect the decoding speed: 1) Not all the

processes can be done in parallel ; 2) Inside the parallel decoding there are also some

processes which can not reduce calculating time such as "take the received branch r i', for

which M CPU's will take exactly the same time as one CPU does. In serial decoding one

CPU will take the received branch r I once and in parallel decoding each of M CPU's will

take the received branch r I once.

4. 4 Memory organization for survior paths

For a minimum error rate, the length of the survivor path memory should be made as

long as possible. The difficulty with long survivor paths is that each of the 2 K words of

storage must be capable of storing a long path plus its metric. The compromise is to trun­

cate the path memory of the decoder by storing only the most recent -r blocks of information

bits for each survivor. Experience and analysis have shown 12
) that if -r is on the order of

five times the encoder memory or more, all 2 K survivors stem from the same information

block -r time units back, with probability approaching 1, and there is no ambiguity in making

the decoding decision. Hence after the first -r blocks of the received sequence have been

processed by the decoder, the decoded memory becomes full. After the next block is

processed, a decoding decision must be made on the first block of k information bits, since

they can. no longer be stored in the decoder's memory.

There are several possible strategies for making this decision 12
). Here an arbitrary

survivor is selected, and the first k bits on this path are chosen as the decoded bits. After

the first decoding decision is made, additional decoding decisions are made in the same way

for each new received block processed. Hence, the decoding decisions are always delayed

from decoder input by an amount equal to the path memory (i.e., -r block).

A practical case has -r= 15 stages and a scheme is used in which after decoding 24 bits

of information, the first 8 bits are sent out in parallel. The delay varies randmnly from 16

bits to 24 bits.

Parallel Viterbi Decoding Implementation by Multi-microprocessors 113

S Technical consideration of hardware implementation

S. 1 Control units

Control units consist of EPROM's, and management programs and Viterbi decoding

programs are stored in them. Every processor is assigned a control unit and instructions for

the CPU are stored in the control unit. The CPU works under the control of the instruc­

tions. At any given time each processor can execute different instructions, and programs

should be designed to let all the processors calculate synchronously in every stage.

S. 2 Memory arrangement

For parallel Viterbi Decoding, 8 CPU's will access a memory frequently and synchron­

ously. In this case contention will happen. In order to solve this problem two methods can

be used : I) Let CPU's access memory one after another. In this way there are many wait

times. This is what we want to avoid. 2) The other way is to use 8 separate memory

blocks. Every CPU is assigned a memory block. Each CPU can access a different memory

block synchronously. Memory is divided into 2 K= 8 areas and 8 separate memory blocks

are used to store the information of the 8 states. Each memory block will store M/h, M1({)1 ,

LJM/t LJM?L 0/h, 01({)1 , (i=l, ... , 8, /=l, ... , L) as shown in Figure 6, where one

memory unit (8 bits) is used for each M/h, M1({)1 , LJM?/. and LJMi<t and three memory

units (24 bits) are used for each 0/h, and 01({)1 • Eight storage blocks are required in order

to assign all CPU's to access RAM simultaneously. Because Viterbi decoding is a dynamic

feedback algorithm, when the CPU calculates at a present stage, the information at a

previous stage is required. So in each storage block the memory is divided into two areas

for storing the information at stage / and at stage I+ 1. At stage l the I-th stage memory

area is used to store the information at the /-th stage and at the (I+ 0-th stage the (I+ 0-

th stage memory area is used to store the message of the (I+ 1)-th stage.

The surviving state metrics for each group of 2 k-state metric which is stored in the

arithmetic unit is finite, so that the storage for state metrics must be prevented from over­

flow. One memory unit (8 bits) is assigned to each M/h state metric, so the maximum

value of a state metric is 2 8 =256. When there is overflow, the minimum M?J state metric

is selected as a common factor, and it is subtracted from all the state metrics producing the

new state metrics.

S. 3 Organization Network

From Fig. 3, we can see that every CPU will access three memory blocks : two in the

previous stage, and one in the present stage. Every memory block will be accessed by three

CPU's. Therefore memory blocks become common resources for CPU's. When CPU's

114 Hui ZHAO, Xiao Kang YUAN, Toru SATO and lwane KIMURA

State metric of Ith stage
(8 bits)

State metric of 1-1 th stage
(8 bits)

•/~~#,91:g••§f•lt11•¥#is~t•·•·•••·•
(24:bi:tsf•·•·•·········

.........................

State metric of Ith stage
(8 bits)

State metric ofl+lth stage
(8 bits)

Fig. 6 Distribution of S (;J state store area at I-th stage.

access the same RAM they will use the same bus. So the CPU's will be connected to the

common bus. If CPU's are connected to the common bus, they can only use the bus one

after another. To solve this problem, an organization network has designed. It has two

functions : 1) data transmission among CPU's and RAMs, and 2) preventing contention

when CPU's are using same bus. It has the following characteristics : 1) A CPU cannot

access another CPU; 2) A CPU can only access one RAM at a time; 3) The network is

controlled by CPU's.

Figure 7 shows the architecture of the organization network. It consists of connection

lines and three-state control gates. One three-state control gate consists of three 74LS245

chips. One chip can control 8 lines. When a CPU wants to access a RAM block, the corre­

sponding three-state gate turns on and the three buses (data bus, address bus, and control

bus) are connected to the RAM. Otherwise, the three-state gate is off, and the three buses

of CPU cannot connect to the RAM. If a CPU will access a RAM block, a three-state

control gate will be assigned to it. Because every CPU can access three different RAM

Parallel Viterbi Decoding Implementation by Multi-microprocessors 115

Fig. 7 Organization network.

blocks, three control gates are needed for each CPU. The connection lines and the control

gates will occupy a large space. The purpose of use three-state control gates is to make the

CPU's isolated from each other. Different CPU's can access different RAM blocks at the

same time and the same RAM block at different times, but cannot use the same RAM block

at the same time.

5. 4 Synchronization of CPU's

Viterbi algorithm is a dynamic feedback algorithm. For parallel operation, synchroniza­

tion is absolutely necessary, and a precise timing scheme is required. The following two

methods are used in realizing synchronization : 1) Central processor controlling synchroni­

zation : When decoding start, the central processor sends out a signal, and all the processors

start decoding synchronously ; 2) Programs synchronization : Because all the processors in

any step execute different sets of instructions and all the processors must compute

synchronously at every stage, program synchronization is used. That is to let all the

processors take the same calculating time at every stage. When some processors use the

same memory block at the same time, conflicts will occur. In this design we can avoid that

by programs. Because of the structure of the trellis diagram, when we use the M separate

memory blocks, every CPU will access three memory blocks. So we can let the CPU's use

different memory blocks every time. For CPU's of state 1 and state 3, CPUl can first

access S,~l , and then S,~l , and CPU3 can first access S,~i and then S,~l . In this manner

conflicts are avoided and the CPU's can compute continuously without waiting.

As Viterbi decoding is a dynamic feedback algorithm, there are many data exchanges

among CPU's and RAMs at every stage. For the prevention of collisions three methods are

used together as mentioned above: 1) organization network, 2) assigning M separate

116 Hui ZHAO, Xiao Kang YUAN, Toru SATO and lwane KIMURA

memory blocks to M processors, and 3) program and timing. Collision among CPU's can

be prevented only by combining these three methods.

6 Experiments and results

6. 1 Experimental setup

First, programs for serial Viterbi decoding algorithm (shown in Fig. 4) are designed

and tested on a single microprocessor. The Z-80A microprocessor is used to carry out Vi­

terbi decoding. The programs are designed by assembly mnemonic, and then translated into

machine codes by computer. These machine codes are then stored in EPROM's as com­

mands for CPU's. The assembly mnemonic has the advantages of

1 . saving the internal memories and CPU resources,

2 . having a very high program executing speed,

3 . directly using all the resources in a system, and

4. knowing the exactly executing time of CPU.

Second, programs for parallel Viterbi decoding of two CPU's are designed and circuits

for two-CPU parallel Viterbi decoding are designed and tested. The two-CPU parallel

Viterbi decoder is based on the Z-80A microprocessor. One CPU is borrowed from the Z-

80A microprocessor system including a CPU, a PIO, an SIO, a CTC, an internal clock, a

power on reset circuit etc.. Circuits for the other CPU system (including an EPROM, a

PIO, an SIO, an organization network etc.) are designed. Combining these two parts by an

CPU

Fig. 8 Parallel Viterbi decoding using two microprocessors.

Parallel Viterbi Decoding Implementation by Multi-microprocessors 117

organization network we get the parallel Viterbi decoder. The parallel Viterbi decoder using

two CPU's is shown in Figure 8.

Two CPU's use the same external clock. The CPU in the Z-80A microprocessor

system is the main CPU and the other CPU is the sub-CPU. The sub-CPU works only in

parallel Viterbi decoding. The main CPU does everything : receive codewords, control the

sub-CPU in synchronization, do parallel Viterbi decoding, send out decoding information,

and determine whether decoding is finished or not. So the main CPU is a control CPU of

the parallel Viterbi decoding system.

When the data transmission rate is higher than the decoding speed, codewords are tem­

porarily stored in a RAM. After solving the previous group of codewords, CPU's process

the present group of codewords stored in the RAM. When the transmission rate is lower

than the processing speed, the CPU's will wait for the codeword.

6. 2 Experimental results

Viterbi decoding speed is determined in two ways:

1 . By programs. Programs are designed by assembly mnemonic. Every instruction

has an exact execution time. By computing the execution time of instructions in

the decoding programs we can know the decoding speed.

2 . By test. Another way to get the decoding speed is directly testing the decoding

speed.

All of the elements are commercially available chips. Z80A CPU's are used, and the

clock frequency is 4 MHz. For serial decoding of one microprocessor the decoding speed is

20 kbits/s. For parallel Viterbi decoding of two CPU's the decoding speed can reach 38

kbits/s. It is expected that for the parallel Viterbi decoding of 8 CPU's the decoding speed

can reach 120 kbits/s.

7 Conclusion

In this paper the implementation of parallel Viterbi decoding and the problems which

need to be considered in parallel Viterbi decoding by microprocessors have been discussed.

Multiple microprocessor architecture is used which results in a decoder of moderate

complexity and cost as compared to a specially proposed Viterbi decoder made by VISI.

The presented method of implementing the Viterbi algorithm allows the use of hardware

with a limited processing speed to achieve a very high throughput rate.

References

1) A. J. Viterbi; IEEE Trans. Inform. Theory, IT-13, 260 (1967)

118 Hui ZHAO, Xiao Kang YUAN, Toru SATO and !wane KIMURA

2) N. J.P. Frenette est; IEEE Journal SAC, SAC-4, 160 (1986)

3) P. G. Gulak and E. Shwedyk; IEEE Journal SAC, SAC-4, 142 (1986)

4) G. Fettweis and H. Meyr; IEEE Trans. Commun., COM-37, 785 (1989)

5) P. G. Gulak and T. Kailath; IEEE Journal SAC, SAC-6, 527 (1988)

6) R. Schweikert and A. J. Vinck; IEEE Trans. Commun., COM-39 (1991)

7) H. Zhao; "Parallel Viterbi Decoding Implementation by Use of Microprocessors", Masters degree

dissertation, Shanghai University of Science and Technology, P.R. China (1988)

8) J. K. Omura; IEEE Trans. Inform. Theory, IT-15, 117 (1969)

9) G.D. Forney Jr.; IEEE Trans. Inform. Theory, 18, 363 (1972)

10) A. J. Viterbi and J. K. Omura; "Principles of Digital Communication and Coding", McGraw­
Hill, New York (1979)

11) G.D. Forney, Jr.; Proc. IEEE, 61, 268 (1973)

12) Shu Lin and D. J. Costello, Jr.; "Error Control Coding: Fundamentals and Applications",

Prentice-Hall, New Jersey (1983)

