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Abstract 

In this paper, we describe a numerical model that is called "the crevice method" 
using a triangular mesh difference to simulate tidal currents in an island basin with a 
large area of beach; the land boundaries move with the shift of the tide, and with 
geometrically complex boundaries. This model is based on shallow water momentum 
and continuity equations. For simulating variational boundaries, crevices which are 
artificially imagined are erected all over the shallows where the bed elevations are 
not lower than the lowest tidal level and where the water depth in the crevices changes 
with the ascent and descent of the tidal levels. For simulating a flow field within 
geometrically complex island boundaries, especially in flow circumstances near the islands, 
the triangular mesh difference is adopted in this model. The second derivative of u, v 
and ~ with respect to time and the semi-implicit scheme are used in the triangular mesh 
difference for the purpose of increasing stability and accuracy, Practical calculation of 
tidal currents shows that this model has the advantages of better stability, higher accuracy, 
shorter calculation time, and it saves computer memory. The calculated results coincide 
reasonably with the measured ones. 

1. Introduction 

171 

The finite difference method (FDM) and the finite element method 

(FEM) are often used in simulating tidal currents. The former usually adopts 

regular rectanglar mesh, therefore, it does not easily fit complex geometries (e.g. 

Jean et al., 1982 and Wensen et al., 1988). The latter uses the triangular mesh, 

but it nodes more computer memory and longer calculating time because it has 

to solve large-scale simultaneous equations (e.g. Kawahara et al., 1978 and Wu 

et al., 1985). In the island basin, there are rather complex boundaries which 

may lead to large spatial variations of the flow quantity, making accurate numerical 

representations of them difficult and sometimes impossible. Thacher (1977) has 

Research Fellow, Global Environment Engineering, Kyoto University, Kyoto 606, Japan (formerly, 
Research Assoc. Dalian University of Technology, China) 

t Assoc. Professor, Global Environment Engineering, Kyoto University, Kyoto 606, Japan 
ttoean, Professor, Global Environment Engineering, Kyoto University, Kyoto 606, Japan 



172 Xiaoling ZHAO, lehisa NEzu and Hiroji NAKAGAWA 

put forward the irregular grid finite difference technique. It shows that irregular 

difference has the advantages of FDM and FEM. Liuzhi (1987) has employed 

the finite difference method with unequal lengths of steps and derived a uniform 

derivative form of the triangular mesh and rectangular mesh. Meakin et al. 

(1988) has used a curvilinear coordinate in the FDM for simulating the 

environmental flow with complex geometries. Rodi et al. (1989) have used 

curvilinear boundary-fitted coordinates and quadrilateral control cells in modeling 

incompressible flows with geometrically complex boundaries. Variational bound­

aries are very popular in practical engineering. Small areas of shallows can be 

excavated to a level lower than the lowest water level and a rough ratio is added 

or the coastline is moved forward by the equilibrium of the flow quantity. 

However, this assumption becomes invalid in regions of large areas of shallow 

beach. Some moving boundary models have been developed (e.g. Gopalakrishnan 

et al., 1983 and Kawahara et al., 1986). Gopalakrishnan (1989) has employed a 

continuously deforming grid to have the boundary nodes always on the moving 

edge of the water body in calculating the flow in regions with large tidal flats. Shi 

(1986) has employed a comprehensive identification method to determine the new 

coastline in every step, but it needs more artificial interference and complex 

calculation. Tao (1984) has employed crevices to model one-dimensional waves 

creeping against a sloping bank. Wang et al. (1986) also used the crevice model 

in rectangular mesh and sucessfully modeled a variational boundary. However, 

he separated the tidal current into two one-dimensional flows in X and Y directions 

and it did not easily fit complex geometries. 

In this study, we apply the crevice method to the triangular mesh difference 

for modeling tidal currents that have not only a geometrically complex boundary 

but also a large area of shallows in which the coastline changes as the tide advances 

and recedes. This model has clear physical concepts, saves computer memory 

resources and is easy to realize in programs. Crevices can be put up all over 

the shallows. Therefore, it is very convenient in solving moving boundary 

problems. The combination of the crevice with the triangular mesh difference 

has been verified as successful by applying it to the practical simulation of tidal 

currents. 

2. Establishment of Mathematical Models 

The governing equations of tidal currents are shallow water equations. Their 

form will change after the crevices are erected. In this study, the crevices are 

erected using a different concept from others who employed rectangular mesh and 



Numerical Simulation of Tidal Currents 173 

the crevices were set up in the mesh in an exposed region. First, it is assumed 

that there are many vertical and horizonal crevices in all of the shallows and that 

they extend to the water area. The bottom elevations of the crevices are lower 

than the lowest tidal level. Therefore, seawater in the water area can fl.ow into 

the shallows. We are not concerned with the actual fl.ow in the realistic 

crevices. The purpose of the crevices is only to draw water through the shallows 

to the fixed boundary under the condition of the equilibrium of water 

quantity. Afterwards, water in the crevices is spread all over the shallows to 

create a continuous water region. Then we use the triangular mesh splitting on 

the whole basin. The difference from the preceding methods in putting up the 

crevices is the density of the crevices and their position. Fig. 1 shows the 

positional relations of the mesh and the crevices. For obtaining the crevice 

parameters at each point on the triangular mesh, the density of the crevices should 

far exceed that of the triangular mesh. Assume the length of the shortest side 

of the mesh is L and the length of distance between the crevices is Le. Let 

Kc=Lc/L (in Fig. 1, Kc= 1/50); we can draw the conclusion that the error from 

the positional difference of the intersecting points of the mesh and that of the 

intersecting points of the crevices in calculating the water depth can be ignored, 

provided the coefficient Kc is small enough. 
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Fig. 1 Arrangement of the crevices 

DEFINITION OF CREVICES 

C 
C' 

In Fig. 1, the crevices that are artificially imagined are set up m x and y 
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directions m the whole shallows. The shape of the crevices IS shown m Fig. 

2. The crevice width per unit width is defined as 

f(z) = { B + (1-B) exp [(X(z--zb)] z~zb 
(1) 

1.0 z>zb 

where, B and (X are the parameters of the crevice, z is the water level, zb is the 

elevation of the seabed, z, is the elevation of the water surface and z 0 is the 

elevation of the crevice bottom. 

Zs 
r 

L 
Fig. 2 Definition of the crevice function 

ESTABLISHMENT OF GOVERNING EQUATIONS AFTER 

THE CREVICES ARE CONSIDERED 

For deriving the governing equations after the crevices are considered, an 

arbitrarily chosen element is shown in Fig. 3. The sectional areas vertical to the 

x and y axes are defined as Ax(z) and Ay(z) respectively. 

Ax(z)=f z, f (z) dydz=dy f z, f (z) dz 
zo zo 

I z, 
Ay(z)= f (z) dxdz=dx I z, 

f (z) dz 
Zo Zo 

The water depth on the shallows can be simplified as 

h = Ax(z) 
X dy 

Therefore, hx = h,. 

it can be written as 

h = Ay(z) 
' dx 

Let h = hx = h,, h is the water depth in the shallows and 
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Fig. 3 An element after the crevices being set up 
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(2) 

A new element that is shown in Fig. 4 can be formed by this simplification. Its 

bottom elevation is a function of the water surface elevation. Here, we use z/ 
to express its bottom level; zb• can be expressed as 

z/=z.-h (3) 

It will change in every calculated time step. We use Fig. 5 to simulate this change. 

Integrating from the bottom to the surface for the simplified element in Fig. 

4 and conducting the average in the vertical direction, the Navier-Stokes equations 

can be changed into the following form 

OU OU OU o( guQ -+ u-+ v--fv+g-+-=0 
ot OX oy OX c2h 
ov ov ov o( gvQ -+ u-+v-+ fu+g-+-=0 
ot OX oy oy c2h l (4) 

which are momentum equations which include the influence of the crevices. Where 

( is the water level; u and v are the velocities in x and y directions respectively; 

1 
c=-h 1l6 ;Q=Ju2 +v2

• For elements in Fig. 4, the net discharge entering the 
n 

element is 
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and the increase in the discharge is 

0( Ozb• 
{---) x [f(z)dxdy+f(z)dydx-f(z)dxf(z)dy] at at 

where z/ is changed with ~ on the beach. The total change of water volume 

in z direction can be obtained by using the element shown in Fig. 3, because z 0 

is a constant.Let F(z) = 2f(z)-[f(z)]2. A continuous equation can be obtained on 

the basis of the conservation law of mass. 

8( 1 o(uh) 1 o(vh) -+- --+- --=0 
ot F(z) ox F(z) oy 

dy 

/ 

I 
I 
I 
I 

I 

dx 

}-------

Fig. 4 The simplified element 

h 

Fig. 5 The water depth on the beach by simplification 

3. Numerical Method 

(5) 

SPLITTING FROM OF MATHEMATICAL MODEL 

Let the function change linearly in the triangular element 
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f(x,y)=a+bx+cy 

Hence, of/ox=b, of/oy=c. The coefficients band c can be obtained by substituting 

the values of points a, b and c of triangle @ shown in Fig. 6 into the linear 

equation and solving it; that ts 

Here 

fe=a+bxe+cye 

1 
b=-

IDI 

1 fa Ya 
1 fb Yb 
1 fe Ye 

1 Xa Ya 

1 
c=-

IDI 

IDI = 1 xb Yb = 2Ak,Ak is the area of triangle ®· 

1 Xe Ye 

Liu et al. (1987) has determined that the partial derivative in the triangular 

mesh has the same form as that in the rectangular mesh, that is 

ofl fe-fb 

OX@ Xe-Xb, 

ofl fa-fd 

oy@ Ya-Yd 
(6) 

Obviously, if the splitting is regular, the triangular mesh difference can turn into 

the rectangular mesh difference automatically. Therefore, it makes the combina­

tion of these two kinds of meshes possible. Their combination is of important 

significance for simulating the tidal current with a small part of the complex 

boundary and a large part of the water region. 

The derivative at an arbitrary point on the mesh is the average of derivatives 

of the elements around it. 

n 

where, A= L Ak, Ak is the area of triangular element®· This situation is shown 
k=I 

in Fig. 7. 
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DIFFERENTIAL SCHEME 

a 

b 

.l. C 

Fig. 6 The derivative in a 
triangular element 

Fig. 7 The derivative in an 
arbitrary point 

This paper adopts the triangular mesh difference in which the second derivative 

of u, v and ( with respect to time and the semi-implicit difference scheme are 

used for increasing the stability of calculation. Let 

V;(x,y) =Alx,y) + B;(x,y)t + C;(x,y)t2 (8) 

A;, B;, C; can be obtained by following conditions 

aui=(aui)" 
at at 

By substituting A;, B; and C;, Eq. (8) can be changed into the following form 

U-= U-"+(OU;)" +-1-[u.n+ I_ u."-(OU;)"At]t2 
' ' at At2 ' ' at 

(9) 

Eq. (4) can be written as semi-implicit forms as follows: 
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Eq. (9) is substituted into Eq. (5), and Eq. (10) and Eq. (5) are integrated from 

0 to llt. The difference equation can be expressed by 

where 

DE=A1 X B2-A2 X Bi, 
A 1 = 2 + (ou/ox)"llt+gQ"llt/(c2h"+ 1), 

B 1 =[(ou/oy)"-j]llt, 

C 1 = 2u" + (ou/ot)"llt-gllt(o(/ox)"+ 1 . 

Similarly, the coefficients A 2 - C 2 can be obtained. 

ANALYSIS OF ERRORS 

(11) 

If a difference equation is converged into a differential equation, the differential 

equation must satisfy conditions of permissibility and stability. The error of 

triangular mesh difference is the algebraic sum of the errors produced by splitting 

of every differential operator. 

From previous analysis, we know that the partial derivative at an arbitrary 

point in the triangular mesh is the average of the partial derivatives of the elements 

around it. In fact, the partial derivatives of these elements are different from 

that at this point in these elements. Now, we analyse the errors produced by 

using the partial derivative of an element to represent that of a point in a triangle. 

Eq. (6) can be written as 

1 fa" Ya 

1 f/ Yb 

1 J/ Ye 

1 
=-

applying it at o point in element ® using the Tayler formula 



180 Xiaoling ZHAO, Iehisa NEZU and Hiroji NAKAGAWA 

~ a a mfo} 
+Yab L, (x,o-a +Y,o-a) I 

m=I X y m. 

Therefore, the coefficient of aJ0/ax is: 

1 
2Ak (yb,Xao + Y ,aXbo + Yabx,o) 

1 
= -(yb,Xa + Y ,axb + Yabx,) 

2Ak 
=1 

The coefficient of aJ/ay is: 

1 

2Ak (ybcYao + Y,aYbo + YabY,o) 

1 
= 2Ak (ybcYa + YcaYb + YabY,) 

=0 

The coefficients of the second derivative are: 

a2Jo. 
ax2 • 

a2Jo. 
ay2. 

a2Jo. 

axay° 

1 2 2 

4
A (y,aXba + YabX,a ) 

k 

1 2 2 

4Ak (y,aYba + YabYca ) 

1 

2
Ak (y,aXbaYba + YabX,aY,a) 

They are not all zero. Therefore, the partial derivative in this model has O(h) 

order precision. Moreover, it can be proved that error is the smallest at the 

center of gravity of a triangle. If h-+O, then O(h')-+O because r~ 1. So the 

difference equations converge to differential equations. 

4. Boundary Conditions 

The analytical domain is surrounded by land boundaries, including the island 

boundaries, and an artificial boundary that is called an open boundary. Generally, 

the perfectly reflective condition is imposed at the land boundaries. 

On the other hand, the velocities normal to the land boundary are zero, that 
-+ 

is, Vn=O, which is shown in Fig. 8; where x-y is the calculating coordinate 
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and A. - n 1s the boundary coordinate, they are the tangential and the normal 

directions of the land boundary respectively. 

If the velocities are U; and V; in a time step, the velocities at the boundary 

will be corrected by the boundary condition. The transformation from X - Y 
coordinate to A. - n coordinate is 

(
A.}=(sin0;-c~s0;} (yx) 
n cos0;-sm0; 

Here, un=O, Ui =u;sinO;-V;cos0;. In the next calculated time step, Ui will be 

resolved into x and y directions. The normal direction n of the land boundary 

at cornor points is defined as the normal direction of line ab linked by the middle 

points of two sides of the boundary elements next to the calculated point i, which 

is shown in Fig. 9. 

Usually, the periodic water elevation and velocity are given at the open 

boundary. The initial condition is to assume water elevation and velocity to be 

constant. If the amplitude of tidal functions changes at the open boundary, 

progressive waves will be generated and propagate towards the land boundary. 

When they meet the land boundary, they will reflect and the reflected waves will 

propagate towards the open boundary where they will overlap with the incident 

waves. Kadama et al (1989) have invented a method to treat incident wave 

conditions in shallow water equations. The simplest method to determine the 

open boundary conditions is to measure a few water elevations at controlling 

points and to calculate the water elevations of the mesh points at the open 

y 

n 

Fig. 8 Land boundary condition Fig. 9 The direction of n 
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Fig. 10 The map of simulated basin 
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boundary by the use of linear interpolation. However, before we do this, we 

must analyse the characteristics of tidal waves in a calculated basin because it 

can lead to a difference in the tidal phase. 

5. Applications of the Numerical Method 

STATEMENT OF CALCULATED BASIN 

Recently, with the development of islands along the seashore, the complex 

boundary problems in simulated tidal currents become more and more 

important. The numerical model of tidal currents in this study has been verified 

to be a useful way to determine the tidal level and velocity in regions with complex 

boundaries. 

The simulated basin includes three parts of moving boundary regions under 

tidal forcing, one big island and four small islands. So the boundary conditions 

have not only moving boundaries but also geometrically complex boundaries. 

Moreover, there are three open boundaries which are controlled by measured 

tidal levels. The whole area of the basin is about 565 km2
• The total area of 

the islands is about 15.79 square km2
• The shallows area is about 90 km2

• The 

beaches develop from the land boundary on the western side of the basin and 

the western side of the biggest island to the middle. Tide stations are set up at 

points 1, 2 and 3. Velocity stations are put up at points 13 and 38. The figure 

of the calculated basin is shown in Fig. 10. 

SIMULATION AND RESULTS 

The calculated region is divided into two parts by comparing the bed elevation 

and the lowest tidal level, one part will be exposed in the calculation and another 

part will always be in the seawater. We first erect the crevices in all of the 

shallows in which the bed levels are higher than the lowest water level. Afterwards, 

the whole basin is split by using the triangular mesh. The triangular mesh has 

the advantage of arbitrarily densifying, so smaller mesh can be used in complex 

geometries. Mesh splitting is shown in Fig. 11. Boundary conditions can be 

classified into open boundaries, fixed boundaries and moving boundaries. The 

moving boundaries can be turned into fixed boundaries by setting up crevices in 

the shallows; the velocities normal to the boundaries are zero. The tangential 

components of the velocity are resolved into u and v for calculation in the next 
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step. The initial conditions of calculation are 

((x, y, t)=(0(x, y, t), u=u0(x, y, t), v=v0(x, y, t) 

where, ( 0 , u0 , v0 are assumed arbitrarily. After a few cycles of computation, 

the actual initial values can be provided. 

The time step is chosen by use of the Courant condition. In Fig. 11, there 

is the smallest element on the western side of the biggest island. The shortest 

distance between two mesh points is about 600 m, the average depth in this 

region is about 1 m, and therefore 

As 600 
At::;-==---· .190 s 

- Jgh J9.8xl 

A time step of 120s is chosen here. The calculating frame is shown in the following: 

(=(0 = 1.60 m, u=u0 =0.03 m/s, v=v0 = -0.03 m/s 

u0 , v 0 , ( 0 , F (z). are known 

calculate ao/ax, o()/ay 

calculate ;.+ 1, F (() • .,. 1, h.,.. i, 

(iJ(/iJx), (iJ(/iJy) • .,., 

calculate u"+ i, Vn+ 1 

The whole simulated region involves 255 nodes. Among them there are 67 nodes 

in the crevices (No. 1-67) and 70 nodes on the land boundary (No. 30-99). 

Fig. 12 shows a comparison of measured and calculated values of tidal levels. 

Fig. 13 shows the comparison of measured and calculated velocity values in 
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m 
D island 

Fig. 11 The figure of scheme splitting 

No. 13 and No. 38 stations. 

Fig. 14 shows the comparison of calculated values and measured values of 

velocity directions at No. 13 and No. 38 stations. The calculated values obviously 

show a left rotation flow, which is consistent with the practical tidal currents. When 

the tide rises, the main current direction of the tidal current is northwest at point 

13 and northeast at point 38. When the tide falls, it is southeast at point 13 and 

southwest at point 38. From the elliptical figure of the tide, we draw the 
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Fig. 12 Comparison of tidal levels at station 2 
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Fig. 13 Comparison of the velocity values at stations 13 and 38 
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Fig. 14 Comparison of velocity directions at station 13 and 38 
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12 

conclusion that the directions of computational tidal current coincide well with 

the measured ones; both their main axes are consistent and the calculated one 
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has also the characteristic of left rotation. 

Fig. 15 shows the flow field in high tide and low tide. From this figure we 

find that the velocities on the beach are almost zero and the coastline moves 

towards the water region when the beaches are eexposed. During high tide, the 

water body flows on the beaches and the coastline moves back. 

July 28, 13:00 July 28, 20:00 

Velocity scale 
0 1.0 
~ 

Fig. 15 Flow field figure 

6. Discussion 

(1). The influence to the balance of water quantity and momentum due to the 

existence of the crevices 

We are concerned with the influence of the crevices on the balance of water 

quantity and momentum. Because the crevices are erected on the beach, an 

artificial increase of water body can cause a calculation error. But this error is 
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very small and its influence on the whole basin flow can be obviated by the 

following comparison. Moreover, we find that the flow field near the island and 

the beach is reasonable judging from the flow field figure. 

The maximum percentage (K;n) of water quantity (llq;n) entering into the 

crevices, out of the whole water quantity (AQ;n) entering into the basin per hour 

when the tide rises, is obtained by 

The maximum percentage (kout) of water quantity (/lq0 u,) going out of the 

crevices, out of the whole water quantity (AQ0 u,) going out of the basin per hour 

when the tide recedes, is 

(2). Application and dissemination 

The flexibility of this model comes from the combination of the crevice model 

and the triangular mesh difference. No matter how many beaches there are in 

the basin, the flow in it can be easily simulated. It can not only treat the beach 

in the calculated basin but also dispose of all of the exposed area under the 

condition of satisfying the calculating precision. This advantage increases its 

applied range. For example, there are many islands in the calculated basin, but 

their areas are very small compared with the area of the whole basin and as we 

are not extremely concerned with the flow around the islands, we can set up the 

crevices on the islands to create a water region for calculation. 

(3). Choosing the crevice parameters e and tX. 

There are two important parameters in the crevice model, that is, e and tX. e 
1s the value of j(z) when z«zb. The value of tX determines the slope of the 

crevice sides. The bigger tX is, the quicker the crevice narrows along its 

depth. Here O < e < 1 and tX < 1. Because the water quantity in the crevices is 

increased, we hope the error of water quantity will be as small as possible. That 

means that we want to choose the values of a small e and a big tX. But the 

calculation will become unstable if the water depth in the shallows is too small. In 

this paper we assume e=0.02 and tX=2.3. 

(4). The superiority compared with FEM m simulating complex geometries. 
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These two kinds of method are flexible in simulating geometrically complex 

boundaries. But the advantage of this model is evident for large computational 

regions because it need not solve large scale simultaneous equations and the 

elements or the nodes have no order. So it can save calculation time and reduce 

some preparation work. 

(5). The advantage compared with the rectangular mesh difference m leading 

into a closed boundary condition. 

Regular rectanglar mesh asks for simplifying a fixed land boundary into a 

broken line paralleling x and y axes respectively. The boundary condition is 

that the velocities normal to the land boundary are zero, that is, u = 0 or v = 0 

at boundary points. But in triangular mesh difference, the velocities normal to 

the practical boundary are assumed to be zero. So this model not only can model 

a complex boundary but also can more reasonably introduce a closed boundary 

condition. 

(6). Applying the automatic splitting technique 

Automatic splitting is to split the mesh by using a computer after inputting 

some data about boundary messages in the simulated basin. 

The derivative of an arbitrary point is the average of the derivative of elements 

around it, so we hope the difference of the side lengths in a triangle is not very 

big. The mesh is densified near complex boundaries. It is the principle of 

automatic splitting. If it were used in this model, we would reduce large amounts 

of preparation work and this model would acquire wider application in practical 

engineering. 

Conclusions 

The method presented here not only has the advantages of FDM and FEM 

but also can simulate moving boundaries with complex geometries. The mesh 

can be densified arbitrarily and the numbers of elements and nodes has no order, 

which is different from FEM and can reduce some preparation work. It can 

save more calculation time than FEM or FDM in simulating the tidal current 

with complex boundaries. The moving boundary model used here is easy to 

realize in the program. 

The crevice method m the triangular mesh, in which the second derivative 

of u, v and ( with respect to time and semi-implicit difference scheme are used, 
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has better stability, especially in the variational boundaries. 

By comparing the water quantity per unit time entering into the crevices 

with that of entering into the basin, the existence of the crevices has less influence 

on the equilibrium of water quantity and momentum. 

The calculated values coincide well with the practical ones. 
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Appendix II Notation 

Calculated point 
n Number of calculated time steps 
At Calculated time step 
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Calculated time 
Tidal level 
Velocity of tidal current in x direction 
Velocity of tidal current in y direction 
Water elevation in the crevices 
Water depth 
Elevation of seabed 
Elevation of crevice bottom 
Elevation of seabed after simplification 
Elevation of water surface 
Function of the crevice 
2f(z)-[f(z)] 2 

Parameter of the crevice 
Angle of x - y coordinate and n - ). coordinate 
Parameter of the crevice 
Area of a triangular element 
Maximum percentage of water quantity entering into the crevices 
out of the whole water quantity entering into the basin. 
Water quantity entering into the crevices. 
Water quantity entering into the whole basin. 


