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Abstract 

The joint probability distributions are obtained of the extremum value, principal 
curvatures and the angle of their orientation of a random surface described by a 
homogeneous Gaussian random field. The probability density for the extrema is calculated 
as a marginal distribution, and is cast into a Gram-Charlier series in a form convenient 
for numerical calculation. Probability densities are numerically calculated for some 
isotropic spectral densities for an application in the microwave backscattering from ocean 
waves. 
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1. Introduction 
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With a practical application in mind, the probability distributions are obtained for the 

values of extrema of a Gaussian random surface. We can extend Rice's theory for the 

maxima of a stationary Gaussian process [1] to the case of a 2-dimensional (2-D) random 

surface described by a homogeneous Gaussian random field, and obtain a joint probability 

distribution for 4 variables; extremum, two principal curvatures and the angle of their 

orientations at the extremum point. The probability density for extrema, i.e., minima, 

maxima or saddle points, can be given as a marginal distribution by integrating 3 other 

variables. For numerical calculation, it is conveniently expressed as a Gram-Charlier series 

in terms of its moments given by 3-D integrals. The present work was motivated by the 

problem of radio-wave scattering from a random surface. It is closely associated with the 

design of a satellite altimeter using backscattered microwave from ocean waves owing to 

the fact that the scattering takes place mostly at points of extremum, and the scattering 

cross-section is inversely proportional to the Gaussian curvature. However, our results 

could also be applied to a problem concerning image processing. 

* Department of Electronics, Kyoto University, Kyoto, Japan. 
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2. Probability Distribution for Partial Derivatives 

We summarize well known formulas for the sake of definition. Let a random surface 

z = f(x, y) be given by a homogeneous Gaussian random field on a 2-D space, with mean 

0 and the correlation function: 

(1) 

where r = (x, y), l = (1, µ), dl = dldµ, and the spectral density S(l) is unchanged against 

inversion: S(l, µ) = S( - 1, - µ). We assume f (r) is twice q.m. differentiable w.r. t. r. Let 

the partial derivatives off (x, y) be denoted by u = f," v = /y, r = fxx• s = fxy, t = /yy- where 

the subscripts indicate differentiation. Let the 6 x 6 covariance matrix of the partial 

derivatives (z, r, t, s, u, v) at a fixed point be written in the form: 

[R, :J R= 
0 

R -R, - R2 -R3 

- R, Ru R33 R13 

-R2 R33 R22 R23 

-
-R3 R,3 R23 R33 

0 

(z2
) = R = f S(l)dl 

(u2
) = - (zr) = R 1 = f 12 S(l)dl 

(v2 ) = - (zt) = R 2 = f µ2 S(l)dl 

(uv) = - (zs) = R 3 = f lµS(l)dl 

(s2 ) =(rt)= R33 = f 12 µ2 S(l)dl 

(r2
) = R 11 = f 14 S(l)dl 

0 

(2) 

R, R3 

R3 R2 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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(rs)= R 13 = r~.3µS(l)dl 

(t2
) = R22 = f µ 4 S(l)dl 

(ts)= R23 = f lµ 3 S(l)dl 
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(9) 

(10) 

(11) 

In the isotropic case where S(l) = S(A), A= jl2 + µ2, there are further relations: R1 = R2, 

Ru = R22, R3 = R,3 = R23 = 0. 
Let the inverse matrix of R be denoted by 

R;'-[ :, 
A, A2 

A, l A11 A12 A13 

A2 A12 A22 A23 

A3 A13 A23 A33 

1 [ R - R3] R-1 - 2 2 
- ID2I - R3 R, 

D1 = det R1 , D2 = det R2 = R 1R 2 - R~ 

The 6-D Gaussian density function for (z, r, t, s, u, v) can be written 

p(z, r, t, s, u, v) = p 1 (z, r, t, s)p2 (u, v) 

_ 1 { 1 1 -1 } p1 (z, r, t, s) = 
2 112 exp - - z RI z 

(2n:) IDil 2 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

where the exponents in (17) and (18) give the quadratic forms of z = (z, t, r, s) and u = (u, v) 

w.r.t. R11 and R21
, respectively. 

z'R11 Z = Az2 + 2(A 1 r + A2t + A3 s)z + A 11 r2 + A 22 t2 + A33 s2 

+ 2(A 12 rt + A 13 rs + A23 ts) (19) 

(20) 
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3. Probability Distribution for Extrema and Curvatures 

Extrema and Curvature of Surface At a point of extremum of the surface we have 

u = 0, v=O (21) 

Let p be the radius of curvature of the curve formed on the intersection of the surface 

z = f(x, y) and a vertical plane with an angle 0 with x axis. When 0 is so chosen as to satisfy 

tan20=--. --5,05,-2s ( n n) 
r- t' 4 4 

(22) 

then p takes a maximum or minimum value, which is a root of the equation, 

1 1 
~ - (r + t)- + (rt - s2

) = 0 
p2 p 

(23) 

Let l/p1 = r0 , l/p2 = t0 denote the maximum and minimum curvature, which are, 

respectively, given by 

1 r + t J( r - t )
2 

2 
P1 = ro = -2- + -2- + s 

Obviously, the principal curvatures r0 and t0 satisfy the relation, 

r0 + t0 = r + t 

where (26) gives the mean curvature and (27) the Gaussian total curvature. 

If we write (r, t, s) in terms of (r0 , t0 , 0), we have 

r = r0 cos2 0 + t0 sin2 0 

s = (r0 - t0)sin0cos0 

By the coordinate rotation (x, y) ➔ (x', y') 

x = x' cos 0 - y' sin 0 

y = x' sin 0 + y' cos 0 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

we obtain the transformation (u, v) ➔ (u', v'), in the same form as (31), and the transformation 
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(r, t, s)--+ (r', t', s'): 

r = r' cos2 0 + t' sin2 0 - s' sin 20 

t = r' sin2 0 + t' cos2 0 + s' sin 20 

s = !(r' - t') sin 20 + s' cos 20 
2 

Particularly, when 0 is chosen as in (22), we have 

r' = r0 , t' = t0 , s' = 0 
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(32) 

(33) 

and the relations (28)-(30). We denote the parameter regions for maxima, minima and 

saddle points by R's as defined by the following inequalities: 

Rmin:ro >0 to>0;rt-s2 >0, r>0 

Rm.,:r0 <0 t0 <0;rt-s2 >0, r<0 

; rt - s2 < 0, 

(34) 

Probability Distribution for Extrema and Curvatures By the coordinate transformation 

(r, t, s, u, v)--+ (r0 , t0 , 0, u', v') according to (31)-(30), the volume elements are transformed as 

follows: 

I 
8(r, t, s) I drdtds = ---- dr0 dt0 d0 

8(r0 , t0 , 0) 

= lr0 - t0 l(l + sin2 20)dr0 dt0 d0 

dudv = du'dv' 

so that we can rewrite the probability distribution in the following manner: 

p1(z, r, t, s)p2 (u, v)drdtdsdudv 

= p1(z, r0 cos2 0 + t0 sin2 0, r0 sin2 0 + t0 cos2 0, (r0 - t0)sin0cos0) 

(35) 

x p2(u'cos0- v'sin0, u'sin0 + v'cos0)lr0 - t0 l(l + sin2 20)dr0 dt0 d0du'dv' 

(36) 

With this form of probability distribution, we can apply Rice's method for the maxima of 

a stationary process [1] to the case of a homogeneous random surface. With the angle 0 

fixed, we seek an extremum along the curve· on the surface by which the principal curvature 

is defined. The value of u'(v') at the distance dx'(dy') from the extremum point where 

u' = v' = 0 in a fixed direction 0(0 + n/2) is given by u' = - r0 dx' (v' = - t0 dy'). Therefore, 

the probability that the random field has an extremum within a small volume dzdxdy at 

the point (x, y) with the parameters (r0 , t0 , 0) in an infinitesimal region dr0 dt0 d0 is given by 
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dz r du' r dv'p3(Z, ro, to, 0; u', v') = dzdxdylrotolP3(Z, ro, to, 0; 0, 0) (37) 
J lroldx' J ltolY' 

times dr0 dt0 d0, where dx'dy' = dxdy = dr, and r0 t0 = rt - s2 is the Gaussian curvature by 

(27). Obviously the distribution is uniform with respect to the spacial coordinate (x, y). 

From (37) we can derive various probability distributions by integrating it over an 

appropriate parameter region. For instance, we can obtain a joint distribution of maxima 

and Gaussian curvature g = r0 t0 • 

Similarly, the probability that the random field has a min, max or saddle point in the 

volume dxdydz is obtained by integrating (37) over the region of (r0 , t0 , 0) given by (34): 

f oo f oo f"/4 Pmin(z)dzdr = dzdr dr0 dt0 d0lr0 t0 lp3 (z, r0 , t0 , 0; 0, 0) 
0 0 -n/4 

(38) 

= dzdrff drdtdslrt - s2 1p(z, r, t, s; 0, 0) 
rt>s 2 ,r>O 

(39) 

Pma,(z)dzdr = dzdr f 00 dr0 f 00 dt0 f':
4 

d0lr0 t0 lp3 (z, ro, to, 0; 0, 0) (40) 

= dzdrff drdtdslrt - s2 lp(z, r, t, s; 0, 0) 
rt>s2 ,r<O 

(41) 

By (17) and (36) we have p3 (z, - r0 , - t0 , 0: 0, 0) = p3(- z, r0 , t0 , 0, 0), so that we obtain 

Pm .. (z)dzdr = Pmin(- z)dzdr (42) 

The equality (42) is due to the symmetry of Gaussian distribution. 

P •• iz)dzdr 

=dzdr[f
0 

dr0 f
00

dt0 +f
00

dr0 f
0 

dt0 ]f"
14 

d0lr0 t0 lp3(z,r0 ,t0 ,0;0,0) 
- oo O O - oo - n/4 

(43) 

= dzdrff drdtdslrt - s2 lp(z, r, t, s; 0, 0) 
rt <s2 

(44) 

4. Moments and Gram-Charlier Expansion 

Gram-Charlier Expansion Numerical integration of (38)-(44) can be performed since the 

integrand is positive and well-behaved. In this section, instead of integrating for every 

value of z, we express P(z) as a Gram-Charlier series in terms of its moments, which we write 
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n=l,2,3,-·· 

(45) 

where M denotes the normalizing constant. We write the Gram-Charlier expansion as: 

(46) 

2 1 [ (z - µ)
2

] G(z-µ;a)=--exp -----/bra 2112 
(47) 

(48) 

(49) 

where G(z - µ, 112) denotes the Gaussian distribution with mean µ = M I and the variance 

a = M 2 - Mr, and (48) gives n-th order Hermite polynomial and (49) the generating function 

of Hermite polynomial. 

The coefficient b., which can be obtained using the orthogonality of h., 

b. = - h.(z - µ; a 2)P(z)dz, 1 f"' 
M -oo 

n = 0, 1, 2,··· (50) 

can be given in terms of the moments up to n-th order, where, b0 = 1, b1 = b2 = 0. For 

instance, 

b3 = M 3 - 3M 1 M 2 + 2Mf 

b4 = M4 -4M1 M 3 - 3Mi + 12Mf M 2 - 6Mf 

(51) 

(52) 

Moment Generating Function We calculate the moment M. by means of the moment 

generating function, 

1 f"' q,(v) = (evz), = M _ 
00 

evz P min(z) dz 

From (16)---(18) and (39) the probability density can be written as 

P(z) = t lrt - s2 lpi(z, r, t, s)p2 (0, 0)drdtds 

(53) 

(54) 

(55) 
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(56) 

(57) 

(58) 

(59) 

where L and Q denotes a linear and a quadratic form of r, t, s, respectively, and the 

integration domain R denotes Rmin• Rm.., R,ad defined by (34), according as P represents 

P min, P max, Psad, respectively. Upon substituting (56) into (53), we make use of the formula; 

foo -d(z2-2Lz) in d(L+l,_)2 in dL2 vL+.l2. 
tl>(v, L) = e"e 2 dz= -e2 A = -e2 e 2 A 

-oo A A 
(60) 

-in 1 L2 ~ v• h ( . 1 ) - -e L.... - L --
A n=O n ! • , A 

(61) 

where the righthand is obtained using the generating function of the Hermite polynomial 

(49). Then we can calculate the moment generating function <p(v) expanded in powers of v; 

1 f"' <p(v) = - evz P(z) dz 
M -oo 

=- tl>(v,L)lrs-t2 le 2 drdtds 1 f -dQ 

MN R 

(62) 

1 in 00 v" f ( 1 ) -d<Q-L2) = - - I - lrt - s2 lh. L, - - e 2 drdtds 
MN A n=O n! R A 

(63) 

Comparing this with ( 54) we get the moment Mn as the coefficient of v" / n ! : 

1 inf -d(Q-L2) M = - - lrt - s2 le 2 drdtds 
N A R 

(64) 

1 inf ( 1) -d(Q-L2) M. = - - lrt - s2 lh. L, - - e 2 drdtds, 
MN A R A 

n = 0, 1, 2,··· (54) 

Some low order moments are 



Probability Distribution of Maxima of Random Surface 201 

1 !§1Cf -6.(Q-L2) M 1 = - - lrt - s2 1Le 2 drdtds 
MN A R 

(66) 

1 !§1Cf ( 1) -4{Q-L2) M2 =- - irt-s2 1 L2 +- e 2 drdtds 
MN A R A 

(67) 

1 !§1Cf ( 3 ) -4{Q-L2) M3 = - - irt - s2 1 L3 + -L e 2 drdtds 
MN A R A 

(68) 

1 t7C I ( 6 3 ) -4\Q-L2) M4 =-- - irt-s2 1 L4 +-L2 +- e 2 drdtds 
MN A R A A 2 

(69) 

where L and Q are given by (57) and (58), respectively. That the quadratic form in the 

exponent of the integrand is positive; 

Q' = Q- L2 > 0 

is obvious if we put z = L in the equation, 

z2 
- 2Lz + Q ~ 0 

(70) 

(71) 

which is the quandratic form with respect to the positive definite matrix R- 1
• Since the 

integrand of (65) is a well behaved function, even the 3D integration over the domain 

Rmin• Rmax or R .. d could be numerically performed if necessary. 

Method of Integration for Moments The 3D integration of (39), (41), (44) or (65) is not an 

easy task. Here, using the transformation of variables (28H3O), we bring the 3D integration 

w.r. t. (r0 , t0 , 0) to the sum of 1D integrations after integrating termwise over (r0 , t0 ). 

First we deal with P min(z) and then P max(z) is given by P min(- z). The integral for 

moments (65) is written as 

M. = fff lrt - s2 11/1.(r, t, s)drdtds 
rt>s2 

r>O 

1 /§71: ( 1) -4\Q-L2) t/1.(r, t, s) = -- -h. L, - - e 2 

MN A A 

By the transformatin (28H3O) and (35) we have 

"" l/l.(r0 , t0 , 0) = t/1.(r, t, 0) 

(72) 

(73) 

(74) 

(75) 
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where the integration w.r.t. (r0 , t0 ) is written 

(76) 

(77) 

/'-,. 

Here (77) is obtained by interchanging the variables r0 , t0 in t/J., which amounts to the 

transformations 0-+ 0 + n/2, cos 0-+ - sin 0, sin 0-+ cos 0. This implies that the region for 

integration is expandable to - n/4:,;; 0:,;; 3n/4, or to O:,;; 0:,;; n. Thus, (74) is further 

rewritten as 

(78) 

(79) 

where we have made the change of variable (r0 , t0)-+ (s0 , t0): 

(80) 

In this manner the linear and quadratic forms Land Q w.r. t. (r, s, t) are cast into the linear 

and quadratic forms w.r.t. (t0 , s0) as follows: 

1 
L = L(t0 , s0 ) = - -(ait0 + {3s0) 

A 

- 1 2 2 Q = Q(t0 , s0) = -(yt0 + 2bt0 s0 + es0) 
A 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 
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Thus, the quadratic form in the exponent of (73) is written 

A(Q - L2
) = etl + 211toso + ,sl 

IX
2 

IX/3 /3 2 

e=r--, '1=()--, '=6--
A A A 
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(88) 

(89) 

We note that h.(L, - 1 / A) is a polynomial in L and accordingly that it is a polynomial 

in (t0 , s0). Using the formula 

f
oo dxfoo dyx•yme-cx>+2axy+y>) = ~ t (- ~a)' r(n + r + 1 )r(m +; + 1) 

0 0 4,-o r. 2 
(90) 

I'(n + 1) = n ! 

( 1) ✓n r n+- =(2n-1)(2n-3)···3·1~ 
2 r 

which may be rewritten as 

we can perform the integration (79) termwise w.r.t. (t0 , s0) after expanding 

(92) 

in terms of powers of t0 , s0 , and using (91). In this way the integral (79) is reduced to 

the sum of integrals over 0, which can be numerically computed. 

In a similar manner we can calculate the moments for P,.d(z). We first write 

M. = fff lrt - s2 11/t.(r, t, s)drdtds 
rt<52 

= f"
14 

(1 + sin2 20)d0[ 1
00 

dr0 f
0 

dt0 + f
0 

dr0 
100 

dt0 ] -,c/4 JO -00 - 00 J 0 
,,,...._ 

x lr0 t0 (r0 - t0)11/t.(r0 , t0 , 0) 

= f"
14 

(1 + sin2 20)d0 
100 r roto(ro + to) [1/t.(- ro, to, 0) 

-,.,4 Jo o 
,,,...._ 

+ l/t.(r0 , - t0 , 0)] dr0 dt0 (93) 
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1 
L = L(r0 , t0 ) = - -[oct0 + P(r0 - t0 )] 

A 

1 
= - -[(oc - P)to + Pro] 

A 

1 2 2 = -[(y - 2b + e)t0 + 2(b - eht0 + er0 ] 
A 

(94) 

(95) 

(96) 

Therefore, substituting these into (93), we can perform the integration over (r0 , t0 ) to have 

the sum of 1D integrals w.r.t. 0. 

5. Spectral Model for Ocean Waves 

In this section we give some examples of spectral density and its related quantities. 

Such a spectrum is intended to be a model spectrum for possible ocean waves, because we are 

interested in the probability distribution for the extrema and curvatures of the ocean waves 

which undergo irregular undulating motion with a certain average wave length and wave 

direction. 

For the purpose of application we are taking up four types of spectrum; Gaussian 

and rational spectral types combined with isotropic and anisotropic ones. The Gaussian 

spectrum has a rapidly decreasing spectral tail with fewer short wave components, which 

physically means that the wave has few ripples and a very smooth surface. A rational 

spectrum, on the other hand, has a longer spectral tail and more short wave components, 

which implies a rougher surface with more ripples on the wave. The correlation length or 

the spectral width is described by a parameter t. In order to model a spectrum for ocean 

waves, S(l) should have a spectral peak at the spatial frequency ),_=Ill = AP corresponding 

to the average ocean wave lenght, which in turn is closely related to t. An isotropic 

spectrum S(A), A = .J },_ 2 + µ 2 implies the omnidirectional waves under windless conditins. 

An anisotropic spectrum S(l) = S(A, <p) with the spectral peak in the direction <p = ({Jo 

implies the directional waves related to the wind direction. In what follows we will list four 

types of spectral model together with brief comments, and tabulate their parameters, 

correlation function and several spectral moments which equal the covariances between the 
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partical derivatives of the random surface. 

5.1 Isotopic Gaussian Spectrum-Omni-directional Wave Model Spectral Density 

S(A) = ~e-r2
A

2
, A= J;,. 2 + µ2 (Gaussian) (97) 

2n:K0 

S(A) = ~A2me-f2A
2

, m = 1, 2, ... (Omnidirectional Wave Model) (98) 
2n:Km 

where Km denotes the normalizing constant given by 

m = 0, 1, 2, ... (99) 

(97) shows a simple isotropic Gaussian spectrum, whereas (98) gives a spectrum for an 

omnidirectional wave model. 

Spectral Peak Frequency 

✓m 
A=-

P / ' 

Correlation Function 

✓m 
m=0, 1,2, ... , t=A 

p 

ioo r2· 
R(r) = Jo Jo eiA•rs(l)d)., d). = AdAdq> 

=---- F m+l·l·--R m! ( r
2 

) 
Km 2/2(m+ I) I I , , 4/2 

1 oo (m+n)!( r2)n 
=R, L ,2 --2 ' 

m,n=o (n.) 4/ 
m = 0, 1, 2, ... , 

Rexp(- ~) 
4/2 

R(1-~)exp(-~) 
4/2 4/2 

(100) 

(101) 

(102) 

(103) 

(104) 

(m = 0, Gauss) (105) 

(m = 1) (106) 
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[ 
r2 1 ( r

2 
)

2
] ( r2 ) R 1 - - + - - exp - -

2/2 2 4/2 4/2 (m = 2) 

[ 
3r

2 
3 ( r2 )2 1 ( r2 )3] ( r2 ) 

R 1 - 412 + 2 412 - 6 412 exp - 412 (m = 3) 

where 1 F i(a; y; z) denotes the confluent hypergeometric function: 

I'(m + n + l)r2• F ( 1 2 1 2;412) m+n+ · n+ -r 
22n+ I /2(m+n+ 1) I'(2n + 1) 1 1 

' ' 

I'(y) 00 I'(a + n) z" 
1F 1(a;y;z)=I'()LI'( )' 

(X n=O ')' + n n. 

Larger m gives more oscillatory correlation function. 

Covariance Matrix 

R = R(O) = (z2
) = f S(l)dl = 2n f' S(A)AdA 

3 Km+ 2 3(m + 2)(m + 1) 
=R- --=R------

8 Km 8t4 

(107) 

(108) 

(109) 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 

(116) 

(117) 
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1 Km+l (m + 2)(m + 1) 
=R---=R------

8 Km 8/4 
(118) 

(119) 

5.2 Anisotropic Gaussian Spectrum-Directional Wave Model Spectral Density 

(120) 

where Km and L. are given by 

(121) 

L. = cos2" cpdcp = 2n ----f ln (2n - 1) !! 

0 (2n) !! 
(122) 

The spectrum with n = 0 corresponds to isotropic omnidirectional waves, and n ~ 1 

gives anisotropic directional waves in the direction cp = cp0 . Larger n implies the stronger 

directivity of waves, and therefore, n = 1 corresponds to the weakest directivity. 

Correlation Function 

I'" r2n 
R(r, 0) = Jo Jo iArc••<9 -q,> S(A, cp)AdAdcp (123) 

In what follows we gives the quantities for the weakest directional wave model n = 1 which 

can be easily calculated. 

Spectral Density (n = 1) 

S(A, cp) = ~ cos2(cp - cpo)A2me-t2A2 
nK,. 

roo r2n 
R= Jo Jo S(l,cp)AdAdcp 

Correlation Function (n = 1) 

(124) 

(125) 
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(126) 

(127) 

which can be written in terms of the hypergeometric function, but is expressible as a sum 

in terms of r"e-'21412 when m is small. The first term in (127) is the isotropic part and 

the second the directional part. 

Covariance Matrix (n = 1) 

Km+I 112" 2 2 m+l 2 R1 = R-- - cos q,cos (q, - q,0)dq, = R--(1 + cos q,0 ) 
Km n o 4/2 

(128) 

Km+ I 1 f 2" . 2 2 m + 1 . 2 R2 = R-- - sm q,cos (q, - q,0)dq, = R--(1 + sm q,0) 

Km n o 4/2 
(129) 

Km+ 1 1 f 2" • 2 m + 1 . R3 = R-- - cosq,smq,cos (<p - q,0)dq, = R--2-sm2q,0 
Km n O 4/ 

(130) 

Km+2 112" 4 i R 11 = R-- - cos q,cos (q, - q,0)dq, 
Km n o 

(m + 2)(m + 1) ( 5 2 1 . 2 ) = R 
4 

-cos q,0 + -sm q,0 
/ 8 8 

(131) 

R Km+2 l f 2" . 4 2 
22 = R-- - sm q,cos (q, - q,0)dq, 

Km n o 

(m + 2)(m + 1) ( 1 2 5 . 2 ) = R 
4 

-cos q,0 + -sm q,0 
/ 8 8 

(132) 

Km+2 1 f 2" 2 . 2 2 (m + 2)(m + 1) 
R33 =R-- - cos q,sm q,cos (<p-<p0)d<p=R 

4 ~ n O U 
(133) 

Km+2 1 f 2" . (m + 2)(m + 1) . 
R13 =R--- cos3 q,smq,cos2(q,-q,0)dq,=R 

4 
sm2q,0 

Km n O 8/ 

(134) 
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Km+2 1 f2
" , 3 2( )d R23 = R-- - cos<psm <pcos <p - <p0 <p = R13 

Km n o 
(135) 

5.3 Rational Isotropic Spectrum-Omni-directional Wave Model Spectral Density 

R A2m 
S(A) = -- ----

2nKm, (A2 + K2)1 + 1 , 

t = 3, 4, ... 

where the normalizing constant Km, is given by 

Spectral Peak Frequency 

A =" p 

(136) 

(137) 

(138) 

(139) 

The condition for (137) is due to the condition that f (r) be differentiable up to the second 

order partial derivatives. 

Correlation Function 

R foo A2m+1Jo(Ar) 
R(r)=- ----dA 

K (A 2 2)1+1 ' 
ml O + K 

R(O) = R, t ;;,: ,m + 1 (140) 

which is expressible in terms of the hypergeometric function 1 F 2 but we omit the 

details. When m = 0 we can calculate as follows: 

R 
----(Kr)' K (Kr) 
21 - 1(t-l)! ' , 

~ R[l -(t- 2)!2'- 3(Kr)2] 

t=l,2, ... 

r--> oo 

(141) 

(142) 

(143) 

(144) 
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Covariance Matrix 

where 

R -R1Km+2,1 
33- - ---

8 Km, 

m+ 1 

t-m-1 

Km+2,, 4 (m + 2)(m + 1) 
---=K---------

Km, (t - m - l)(t - m - 2) 

5.4 Anisotropic Rational Spectrum-Directional Wave Model Spectral Density 

(145) 

(146) 

(147) 

(148) 

(149) 

(150) 

(151) 

R Aim 
S(A <p)- cos2"(<p <p )----, - ~KL - o (A2 + i)' + t , 

t~m+l, m, n=0,1,2, ... 
mt n K 

(152) 

Covariance Matrix 

(153) 

(154) 

(155) 

Km+i,,(5 2 1. 2 ) R 11 =R--- -cos<p0 +-sm<p0 
Km, 8 8 

(156) 
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R - R1 Km+2., 
33- - ---

8 Km, 

R R R 1 Km+2,I • 
13 = 23 = - ---sm2cp0 

8 Km, 

(157) 

(158) 

(159) 

6. Example of Probability Distribution for Extrema 

Lastly, we show some examples of the probability distributions P min• P max and P,ad calculated 

for the isotropic Gaussian and rational spectral densities. The Gaussian spectrum (98) and 

the rational spectrum (137), together with the correlation functions, are shown in Figs. 1-4 

for m = 1, 2, 3, 10, with R = 1 and with the spectral peak position normalized as 

AP= 1. The parameter m specifies the spectral form of the ocean waves; a larger m implies 

a sharper spectral peak and more wavy correlation function (ordinary Gaussian spectrum 

with m = 0 is shown only for comparison). We have shown the rational spectrum only for 

the case t = m + 3. 

Figs. 5-8 show the probability distributions P min(z) and P,aiz) corresponding to the 

Gaussian and rational spectra shown in Figs. 1 and 3. P max(z) is shown only for m = 0 in 

0.5 _m= 
AP = 1.0 m=1 ·--

m=2 
0.4 

r 
.. _ .... m=3 
---- m=10 

,....._ 0.3 

I \ 
< ........ 
(/) 

0.2 \ 0.1 ..... -
,._ 

\ ~'-';:: .... 
0.0 ~ -

0 2 3 

A 
Fig. 1 Gaussian Model Spectrum. A =Ji2+"µ2, 

t = 1 (m = 0), t = j;;(m = I, 2,--·). 
Peak spatial frequency normalized as 

AP= Fmft = I. R = I. 

1 .0 
AP = 1.0 

0 0.8 m = 
m 1 

0.6 m 2 

1\ 
m = 3 

,......_ 0.4 1i 
'- 1\ ........ 

'0\ O::'. 0.2 ,, 
0.0 1\ .-···------'\ ..... -,,:::• /// 

-0.2 :::. 1/' ··---·· 

-0.4 
0 2 4 6 8 10 

r 
Fig. 2 Correlation Function for Gaussian 

Model Spectrum. r = J x 2 + y2
, R = I. 
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I,. m + 3 --- m 1 

~ = 1.0 
__ m - 2 __ m 3 
__ m = 10 

0.2 

< ._,, 
Vl 

0.1 

0.0 
0 2 3 

A 

Fig. 3 Rational Model Spectrum. A= J}. 2 + µ 2
, t = 

m + 3 (m = 1, 2, • • • ). Peak spatial frequency 

normalized as Ap=KJm/(t-m-1)=1.R 
= 1. 
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Fig. 5 Probability distributions P m,n(z) and 

P max(z) (Gaussian Spectrum). R = I. As 
P max(z) = P min( - z), P max(z) is shown 
only for m = 0. 
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Fig. 7 Probability Distribution P m,n(z) (Ration­

al Spectrum). t = m + 3, R = I. P max(z) 
= Pmin(- z). 
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Fig. 4 Correlation Function for Rational 

Model Spectrum. r = J x2 + y2, R = I. 
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Fig. 6 Probability Distribution P,.d(z) (Gauss­

ian Spectrum). R = I. 
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Fig. 8 Probability Distribution P,.d(z) (Rational 
Spectrum). t = m + 3, R = I. 
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1 .o 
0.9 

0.8 

0.1 

0.6 
..,9 

0.5 .? 

' 0,4 

0.3 

0.2 

0.1 

0.0 
-4 -3 -2 -1 0 2 3 4 5 

z 
Fig. 9 Joint Probability Distribution P min(z, 1 /r0 t0 ) (Gaussian Spectrum) R = I, 

m = 1. r0 t0 = rt - s2
: Gaussian curvature of minimum point. 
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Fig. 10 Joint Probability Distribution P,.d(z, 1/r0 t0 ) (Gaussian Spectrum) R = I, 
m = 1. r0 t0 = rt - s2

: Gaussian curvature of saddle point. 
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Fig. 5, since P ma,(z) = P min(- z). Figs. 9 and 10 show the examples of the joint distribution 

Pmin(z, g) and P •• iz, g) for z and Gaussian radius of curvature g = 1/r0 t0 , which are 

calculated for the Gaussian spectrum in Fig. 1 with m = 1. Similar but broader distributins 

are obtained for the rational spectrum, but are omitted here. 

References 

[ 1] S. 0. Rice: Mathematical analysis of random noise, BSTJ 24 (1945). 


