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Abstract 

By use of the geometrical theory of optics the radiation characteristics of a WGM 
antenna have already been investigated and designed. In order to improve the accuracy 
of the present calculation it was necessary to account for diffraction. Since the 
conventional method based on Kirchhoff-Huygens principle requires much computational 
time and memory, a numerical analysis method has been developed to overcome such a 
difficulty, i.e. the antenna aperture is subdivided into a series of subapertures of small 
area so that the field amplitude can be assumed uniform with the phase either uniform 
or linearly changing. The radiation fields from the subapertures are evaluated by use of 
an appropriate analytical solution. The radiated field pattern of the aperture is 
subsequently obtained by summing the radiation contributions from each of the 
subapertures in turn. Results from the most recent WGM calculations will be presented. 

1. Introduction 

279 

The traditional and orthodox method of computation of the radiation pattern from an 

aperture antenna is to integrate the field over the area of the aperture based on the 

Kirchhoff-Huygens principle [1]. Although this method gives accurate results, it takes 

exceedingly large amounts of computer time, especially when the wavelength concerned is 

short compared with the aperture diameter. 

The present method is presented with the philosophy of substituting some known analytical 

solution for parts of the numerical computation, thus computational time and memory are 

largely saved. For this purpose to be realised, the antenna aperture is divided into a 

number of subapertures with uniform field distribution, whose radiation pattern is expressed 

by an analytical function such as the Fresnel or Fraunhoffer formulae. [2] 

In this case it may be noted that the smaller the area of the subapertures, the more 

accurate the near-field pattern. This is because the accuracy is determined by the factor 

D2 
/ l, where D is the diameter of the subaperture and l is the wavelength. 

Both these methods have been applied to the case of the Whispering Gallery Mode 

Department of Electronics. 
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(WGM) antenna which is currently used for heating and diagnostic purposes of plasmas in 

magnetic confinement type fusion reactors [3, 4]. 

2. Theory of the Subaperture Method 

2.1 Formulation by use of the Fresnel Integral 

This method involves dividing the aperture into a series of rectangular subapertures 

(Fig. 1). It is assumed in the first instance that the magnitude of the electric field (and 

phase) are constant across each subaperture. From subaperture to subaperture the 

magnitude of the field will vary in some predetermined way defined by the type of waveguide 

aperture under analysis i.e. cylindrical or rectangular. Appendix A (See Figs. A2 and A3) 

shows that the radiated field from a rectangular aperture can be expressed in terms of the 

Fresnel integral 

E-field = 0 

~--- ~~ ------, 
I 

I I 

I I 

\._____ ~~ ...... ~":I: -~------' subaperture(p,q) 

Fig. 1 Division of an arbitrary aperture into a series of rectangular subapertures 

(1) 

where 

(2) 

the limits of integration being given in terms of the dimensions of the rectangular aperture 

1X2 = E,[a -fx.l.z;], 1X1 = E,[(- a) -fxAZ;], 
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By use of the Fresnel Cosine and Sine integrals it is possible to express this equation in 

real and imaginary parts 

Re[F(ix, /J)] = C(ix2,ilC(/J2.1) - S(ix2,1)S(/J2,1) 

Im [F(ix, P)] = C(ix2,1)S(/J2, i) + S(ix2,1)C(/J2, i) 

(3) 

(4) 

where C(ix2, 1) = C(ix2) - C(ix1), S(ix2,1) = S(ix2) - S(ixi) and similarly for C(P) and S(/J). The 

Fresnel integral can be used to represent the radiation field for the elemental subaperture 

(p, q) i.e. pth along the x-axis, qth along the y-axis, in the aperture 

e- jkz, 

U pq = ~ (Re[F(ix, /J)] + jlm [F(ix, /J)]) (5) 

In calculating the field at an observation point P(xi, Yi, zi) the average field is taken as the 

field over each subaperture. The problem of a changing phase distribution across the 

aperture will be dealt with in a later section. For the present it is assumed that the 

waveguide aperture cut is in the xy-plane i.e. perpendicular to the direction of wave 

propagation, a plane of constant phase. To calculate the £-field at the point P in the 

observation plane sum over all the £-field contributions from each subaperture. This 

therefore becomes the complete form of the Fresnel subaperture radiation equation. 

Ep = Etx + E;y + Ej,z = L (Ex(p, q)x + E,(p, q)y) U pq (6) 
p,q 

where Ex(p, q) is the x-component of the uniform subaperture field and E,(p, q) is the 

y-component. These values vary with the position of the subaperture in the aperture and 

the type of aperture £-field distribution under analysis. 

Thus to calculate the radiated power from the aperture at the observation point P(xi, Y;, z;) 

1 2 
P(xi, Yi, zi) = 2elE I 

where Ej, = 0. 

= ~E(IEW + IE;12 + IEi,12) 
2 

2.2 Calculating the Approximated Subaperture E-field 

(7) 

To find the average field in each subaperture a simple sampling technique is employed (Fig. 2) 
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Fig. 2 Field sampling over the subaperture (p, q). 

(8) 

E ( ) = ~ Ey(x0 , y0 ) x W, 
y p, q L, 

N=t Ns (9) 

where N. is the total number of sampling points in each subaperture and W, is the weighting 

value assigned to each point. If sample point P0 (x0 , y0 ) is on the side of the subaperture 

at the juncture of two subapertures then W, = 1/2. Similarly if it is located at a corner 

W, = 1 / 4 and if located inside the boundaries of the subaperture W, = 1. It should also 

be noted that if the sample point is on the boundary of the aperture and if the field is 

not equal to zero it is assigned a weighting value of 1. 

The validity of this method will be proved by comparing the computational results with 

the known analytical ones in two cases as follows. 

Example 1-The uniformly illuminated single slit 

Using the Fresnel integral, as shown above, the radiation field for a uniformly illuminated 

single slit was calculated at the observation plane z; = 30 mm for an aperture of width 

2a = 10mm at a wavelength of A.= 3mm, (Fig. 3(a)). It is useful to compare this with the 

analytical solution of the same problem (Fig. 3 (b)). The most important point that can 

be taken from these two patterns is that close to the centre of the aperture, on the main 

lobe, there is good agreement between the two calculations. However as we move further 
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(b) Analytical solution. 

Fig. 3 Comparison of the power profile for a uniformly illuminated slit 

from the aperture axis it is found that the disparity between the calculations becomes 

larger. Such a phenomenon is expected since in the derivation of the Fresnel integral from 

Huygens equation, see Appendix A, the paraxial condition is assumed i.e. the observation 

point is limited to be close to the aperture axis. 

Example 2-The rectangular waveguide aperture 

In this case it is assumed that the field distribution in the aperture is that of the fundamental 

TE10 rectangular waveguide mode. The aperture has length 2a along the x-axis and 2b 
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Fig. 4 Calculated field distribution from the TE, 0 mode. 
(zi = 24)., }. = 3.0mm, a= 5.0mm, b = 2a) 
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along the y-axis. The polarisation of the E-field is along the y-axis. The form of the field 

is given by the expression 

E = A cos ~ (
nx0 ) 

Y 
O 2a (10) 

(11) 

where A0 is an arbitrary constant. Fig. 4 (z; = 241) shows the radiated field pattern from 

a rectangular aperture that was divided into 100 subapertures. It is of interest to note 

that as is expected in the x-direction the side-lobes have been supressed due to the fact 

that the field in the guide is tapered along the x-axis. 
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Fig. 5(a) Calculated field distribution from the TE~ 1 mode. 
(z; = 6)., ). = 3.0mm, a= 5.0mm) 
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Example 3-The circular waveguide aperture 

The form of the E-field for a TEmn waveguide mode (E, = 0) in cylindrical coordinates 

(p, 1/J, z) is 

E . wµH 0 [ J m(kcp)] . ( ,/,) =J-- m--- sm m.,, 
p kc kcP (12) 

(13) 

where J~(X) is the derivative of the mth order Bessel function, kc= x~.I a is the cut-off 

wavenumber, a is the waveguide radius and H 0 is an arbitrary constant. Therefore using 

eqn. (6) it is possible to find the field at the observation point P(x;, Y;, z;). Fig. 5 shows 

the calculated radiation field pattern for the TE01 mode. In this case a= 5.0mm, A.= 3.0mm 

and z; = 6l The lack of 'smoothness' in the calculated curve is not due to the Fresnel 

integral but simply to the spacing between the calculated data points. 

3. The Whispering Gallery Mode Antenna 

3.1 Introduction 

Currently there is great interest in the application of gyrotrons to the area of ECRH 

(Electron Cyclotron Resonance Heating) of plasmas in magnetic confinement type fusion 

reactors. Recently the Whispering Gallery Mode (WGM) has been employed for this 

purpose. The reason is that the WGM has smaller problems of mode competition and 

through its use higher output powers and frequencies ( ~ 1 MW, ~ 100GHz) can be achieved 

from the gyrotron. This mode is a helically winding mode propagating along a cylindrical 

waveguide. For ECRH a uniformly polarized gaussian beam is required for efficient 

heating. Therefore some modification of the output beam is required. This can be 

accomplished by use of the WGM quasi-optical reflector antennae. This is composed of 

a helically-cut output waveguide and a cylindrical-parabolic reflector. Such an antenna has 

been previously investigated and designed by use of geometrical optics (GO). To improve 

the accuracy of the design and to make a more complete comparison between theory and 

experiment, diffraction has been taken into account. Although several studies exist to model 

such a problem, these do not easily lend themselves to the treatment of this case. It was 

therefore necessary to develop a generalized numerical analysis technique. 

3.2 The Whispering Gallery Mode 

High-order circular electric TEmn (m » n, n ~ 1 or 2) modes are excited in the whispering 

gallery mode (WGM) gyrotrons. The rays from these high order rotating waveguide modes 
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Fig. 6(b) The WGM ix-cut Vlasov antenna 
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form a modal caustic which is a circular cylinder of radius Pmn in the waveguide (Fig. 6(a) 

and (b)) 

m 
P =-a mn 1 

Xmn 
(14) 

where a is the waveguide radius. 

In this case the clockwise rotating wave will be dealt with. The electromagnetic field of 

the TEmn mode is determined by the longitudinal magnetic field component H,, which is 

written in terms of the cylindrical coordinate system (p, tf,, z) as 

(15) 

where A,!.= 2nA(- 1r(kc/wµ)exp(jf m), the + sign indicating rotation in the clockwise 

direction, and A is an arbitrary constant. The E- and H-field components in the p- and tf,

directions are given by 

E + = ,wµA+ J' (k ) -jmt/1 -ifJ• "' J mn m cP e e 
kc (16) 

E+ = - wµm A+ Jm(kcp) e-iml/le-J/J• 
p k; mn p (17) 

H + _ /JmA+ Jm(kcp) -jmt/1 -j/Jz .,, - -k2 m.---e e 
C p (18) 

H + = .f!_A+ J'(k ) -jmt/1 -ifJ• 
p } mn m cP e e 

kc (19) 

The mode propagates in a circular waveguide winding helically with a pitch angle 

OB= arcsin( i) (20) 

The WGM waveguide is terminated with a helical IX-cut the field being radiated into space 

at pitch angle OB from the straight edge of the waveguide. In order to analyse the radiation 

output from the IX-cut, the surface S (at </> = n/2) is chosen as the radiaing aperture. This 

is due to the fact that all the rays emanating from the modal caustic pass through this 

surface. The dimensions of this aperture are L 0 along the z-axis and from Pmn to a along 

the y-axis. 

sinOw 
L0 = 2na cot OB -

Ow (21) 
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Fig. 7 Calculated field distribution from the TE~ 5•2 mode 
(Far-field, X; = 9.5m, f= 140GHz, a= 12.8mm). 

m 
0w = arccos-

X~. 
(22) 

The radiating aperture is parallel with the propagation direction of the mode. Thus the 

phase change from subaperture to subaperture would have to be accounted for. 

Fig. 7 shows the results of calculation for the TE15 , 2 mode from the WGM a-cut, this 

being the far-field pattern (a= 12.8mm, f = 140GHz and L 0 = 193.0mm). One of the 

problems that was found by computation of the WGM was that the position of the beam 

centre, as expected by geometrical optics, and that observed from calculation differed. It 

was concluded that this problem arose from the fact that the Fresnel integral could not 

accurately compute the correct field distribution for an antenna that had a linear change 

in phase across the aperture plane i.e. the angle of the radiation from the aperture normal 

was too large. 

In order to overcome the problems encountered in applying the Fresnel integral to the case 
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of the WGM it was necessary to interchange the subaperture equation for a more suitable 

function accounting for the linear phase variation in each subaperture. 

4. Asymptotically Evaluated Subaperture Formula 

4.1 The Fourier Transform Method 

Appendix B it was shows that the radiated field can be expressed in the form 

(23) 

where k · r = kxx + kyy + k,z and f(kx, ky) is still to be found. 

This equation states that an arbitrary electric field in the half-space z ~ 0 can be represented 

as a spectrum of plane waves since f(kx, ky)e- Jl<-r represents a plane wave with field amplitude 

/ propagating in the direction of the propagation or wavenumber vector k. In Appendix B 

the z-component of the wavenumber vector is defined as k; = k; - k; - k;. This means 

that lkl = k0 • For k; + k; > k; the propagation constant k, is imaginary and the plane 

waves in this part of the spectrum are exponentially decaying or evanescent in the 

z-direction. These evanescent waves make up the near-zone field in front of the 

aperture. Only those plane waves that come from the part of the spectrum corresponding 

to values of k; + k; inside the circle of radius k0 in the kx - k, plane contribute to the 

radiated field, since only these waves are outward propagating waves. 

When z = 0 the solution for the x and y components of the electric field must equal the 

assumed known aperture tangential field. Thus if/, represents the tangential (x- and y-) 

components of/ then 

E.(x, y) = E,0 • (x, y, 0) 

=-1-ff'° '(k k)e-ikxx-}kyYdk dk 
4 

2 Jt X' y X y 
7t - <X) 

This expression can be recognised as a 2D-Fourier transform and thus 

f,(kx, ky) = Ux(kx, ky), fy(kx, k,)] 

= f I. E.eJkxX + }kyy dx dy 

(24) 

(25) 

so I, is given in terms of the Fourier transform of the aperture field. From eq. (B9) f. 
can be found 

(26) 
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In this way the vector f can be determined and using Eqn. (23) E(x, y, z) is calculated. 

4.2 Asymptotic Evaluation with a Linear Phase Variation 

Provided eq. (23) can be evaluated we now have a formal solution for the electric field 

everywhere in the region z ;,:: 0. In the radiation zone, where r is large compared with J.,0 

i.e. k0 r is large, this becomes possible. In general we are concerned with the far-zone field 

therefore it is possible to take the asymptotic value of eq. (23) as r tends to infinity. The 

result of this asymptotic evaluation is found in the appendix of Chapter 4 of ref. ([7]) and is 

jk0 cos0 'k • • . 
E(r) ~ --- e- 1 or f(k.sm 0 cos <p, k.sm0 Sill </J) 

2rcr 
(27) 

where 0 and <p are the spherical coordinate angles, kx = k0 sin 0 cos <p and ky = k0 

sin 0 sin </J. This result shows that the far-zone radiation field, which is the diffraction 

pattern of the aperture field, is simply related to the Fourier transform of the aperture field 

by kx and ky. In the evaluation of/, the integrals over x and y are taken over all portions 

of the z = 0 plane on which non-zero values of the tangential electric field exist. If Sa is 

an opening cut in a perfectly conducting screen, then everywhere outside Sa there will be 

zero tangential electric field. 

The magnetic field in the radiation zone is given by 

(28) 

Now assume a linear phase variation for a rectangular subaperture of dimensions (2a x 2b) 

(29) 

for lxl ~ a, IYI ~ b. 
The reason for taking only the x-component of. the aperture field and choosing a phase 

variation in the y-direction will become clear when applying this technique to the case of 

the WGM antenna. The aperture distribution therefore becomes 

Hence if we let u = kxa, v = kyb, v0 = Pb we obtain 

jk0 4abE0 cos 0 _ 'k sin u sin (v - v0 ) 
E(r) = ----- e 1 0 r -- ---- a,, 

2rcr u v - v0 

(30) 

(31) 

This therefore becomes the new subaperture equation that accounts for the linear phase 

variation in the WGM aperture. The factor E0 is the magnitude of the constant subaperture 

£-field, either Ex(p, q) or Ey(p, q). 
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As was stated previously the radiation distribution calculation for the WGM helically-cut 

aperture failed due to the fact that the chosen subaperture equation (Fresnel integral) could 

not properly account for the linear phase variation along the length of the WGM 

aperture. However this is inherently accomplished by utilising eq. (31). The results of the 

calculation are shown in Fig. 8 for the TE15•2 WGM at 140GHz (A= 2.14mm) from the 

helical ix-cut in the yz-plane at X; = 50.A.. (Compare with Fig. 7) 

In this case the calculated beam exit angle corresponds to 08 = 26.4° as expected by 

geometrical optics. 

z 

-100 0 100 200 

Fig. 8 TE 15 _2 WGM radiator calculation in the YZ-plane (Xi= 50 J) 

5. Conclusions 

We have proposed a numerical computation method suitable for analysing aperture antennae 

which have rather complicated field distributions, such as ones used for ECRH. The 

principle is to divide the aperture into a number of small regularly shaped areas, so that 

some known functions can be used to obtain analytical radiation patterns from each 

subaperture. The radiation pattern to be obtained is given by the sum of the contributions 

of each subaperture. Thus a reduction in computational time is expected, because analytical 

solutions are used instead of time-consuming numerical integration by a computer. 
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This technique requires virtually no memory storage for computation, unlike similar 

computation methods relying upon the use of the Fourier Transform (FT). Also the FT 

methods, such as the Plane Wave Expansion method, must evaluate the radiation pattern 

on a plane parallel with the aperture plane. No such restriction exists for the subaperture 

method. 

5.1 Future Plans 

Comparison of the results calculated by this technique will be made with experimental 

results obtained from other institutes. To improve this method further some constraints 

imposed on the program will be removed. 

(1) The next stage will be to improve the accuracy of the near-field calculation. 

(2) To apply this technique to the reflector as well as the radiator so that a more accurate 

WGM antenna calculation can be made. 

(3) To aim to reduce further the computational time. 

This method would then be applied to more complicated antenna structures and a theory 

would be established which could be conveniently used to analyse antenna systems in areas 

of scientific research other than plasma physics applications. 
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A Derivation of the Fresnel Integral 

The mathematical formulation of the Huygens-Fresnel principle for a slit of width I: in an 

infinite plane illuminated by a spherical wave is given below 

U(P) = f J h(P, P0 ) U(P0 )ds (1) 

where U(P0 ) represents the complex amplitude of either the electric or magnetic field strength 

on the slit aperture and U(P) is the corresponding field amplitude at the observation point P. 

The weighting function h(P, P0 ) is given explicitly by 

1 exp (- jkr) 
h(P, P0 ) =-:-- ---cos (n, r) 

JA r 
(2) 

where r is the length of the vector r pointing from P to P0 • 

Now eq. (1) may be interpreted as implying that the field at an observation point P arises 

from an infiniy of fictitious 'secondary' point sources located within the aperture 

(Fig. Al). It should be noted that the amplitude is reduced by the obliquity factor 

cos(n, r). Also the phase of the secondary source at P0 , on the aperture, leads the phase 

of the incident wave by 90°. 

By using the integral form of the Huygens-Fresnel principle above it is possible to derive 

n 

Fig. Al Kirchhoff formulation of diffraction 
by a plane screen 
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a simple solution for the case of a plane wave incident normally upon a slit of dimensions 

2a along the x-axis (Fig. A2). [6] The field at the observation point P(x;, Yi, z;) on the 

right hand side of the slit is required. If the analysis is restricted to the situation of the 

observation point P being far from the aperture and close to the aperture axis then it is 

possible to set the obliquity factor cos (n, r) = 1. The aperture field amplitude U(P0 ) is in 

this situation restricted to being a function of the x0 -component only and is represented 

by the function g(x0 ). Also the elemental area ds is equivalent to the area dx0 dy0 on the 

aperture. 

Thus the radiation field can be expressed in the integral form of the Huygens-Fresnel principle 

1 Joo Joo e-jkr 
U(x;, Y;) =-;- g(x0 ) -dy0 dx0 

JA. -oo -oo r 
(3) 

where x0 , y0 is the aperture coordinate system, g(x0 ) is one component of the amplitude 

distribution of the electric or magnetic field, exp ( - jkr /r) represents a spherical wave 

diverging from a point focus on the aperture and r = J[zf + (x0 - x;)2 + (y0 - yy]. The 

problem in this case is to find an analytical solution of the integral 

f
oo e-jkr 

I= --dy0 - oo r 

For Yo= 0 it can be seen that the projection of r in the xz-plane 

p = J zf + (x0 - x;)2 

therefore 

(4) 

(5) 

(6) 

By changing the variable of integration from y0 it becomes possible to analyse the integral 

I. Thus let 

Yo - Y; = psinh(t)} 
sinh (t) = •'-2•-' 

Thus the integral I reduces to the form 

[ = f 00 e- jkpcosht dt 
- 00 

The form of this integral can be found from the general Hankel function integral 

'.f 2 ·e + vnj/2 f,00 
H~) (x) = 'J e±ixcosht cosh Vt dt 

7t 0 

(7) 

(8) 

(9) 
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where I= 1 or 2. Choosing (I= 1) is equivalent to an argument of e+ixcosht and (I= 2) 

to e- Jxcosht. Thus by choosing v = 0 and allowing x = kp it can be seen that the radiation 

integral reduces to integration over x0 only 

U(x;) =; f"' g(x0 )H&2>(kp)dx0 

)/4 - <X) 

where H&2>(kp) is the zeroth order Hankel function of the second kind. 

As stated earlier the analysis is restricted to the case of 

(1) kp » 1 and 

(2) zr » (x0 - x1)2, 

(10) 

the latter condition being referred to as the paraxial condition. Applying these conditions 

to the Hankel function gives us the one dimensional (1D) form of the Fresnel integral. 

(11) 

It is now possible using eq. (11) to formulate an expression for the 2D-Fresnel equation 

for a uniformly illuminated rectangular aperture of dimensions 2a along the x-axis and 2b 

along the y-axis. 

Thus eq. (11) takes the 2D form 

U(x;,Y;)=-e-Jkz, e 2 di; e 2 di'/ j . f •i _ flI,2 f Pi _ p1~2 

2 
•1 P, 

The variables of integration being given by 

¾, (x0 - f,)z;)2 = e2 
} 

¾,(y. _ JyJ..z;)2 = 112 

where fx = x;/ J..z;, J;, = y;/ A.Z;. 

The limits of integration are 

The Fresnel integral has the form 

Joo jl!x> 
F(C() = 

0 

e 2 dx 

(12) 

(13) 

(14) 
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where the Fresnel integral is related to the Fresnel cosine and sine integrals by 

F(a) = C(a) + jS(a) 

where C(a) is the Fresnel cosine integral and S(a) is the Fresnel sine integral. 

Thus the radiation field from the rectangular aperture can be expressed as 

U(x;, Y;) = Le-ik••([C(ct2) - C(a1)] - j[S(a2) - S(ai)]) 
2 

x ([C(P2) - qp1n - j[S(P2) - s(P1rn 

(15) 

where F(a, P) = Re [F(a, p)] - jlm [F(a, P)] the real and imaginary parts being represented 

by 

Re[F(a, P)] = C(a2.1)C(P2.1)- S(a2.dS(P2.1) 

Im[F(a, P)] = C(a2,1)S(P2.1) + S(a2.dC(P2.1) 

(16) 

(17) 

A plot of the radiation profile from a uniformly illuminated rectangular aperture as calculated 

by the Fresnel integral is shown in Fig. A3. This field distribution will subsequently be 
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Fig. A3 Calculated field distribution from a uniformly illuminated rectangular 
aperture. 
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used as the subaperture radiation profile for calculation of complicated aperture £-field 

distributions, as detailed in section (2). 

B The Plan Wave Expansion Method 

This method uses the fact that any electromagnetic wave can be described as a sum of 

plane waves (Fig. Bl) [7]. In order to do this it is first necessary to define the two 

dimensional Fourier Transform (FT) F1(kx, ky) and inverse FT for the function J;(x, y) 

X 

y 
z 

z =o 

Fig. Bl Coordinate system for Fourier Transform analysis of aperture. 

J;(x y)=-
1-ff00 

U(k k)e-ikxx-jk,Ydk dk 
t ' 47t2 - 00 x• y X y 

In the free-space region which contains no electric charge or current 

V-E=O 

Separating into component form 

[ 
02 02 0

2 ] -
2 

+ -
2 

+ -
2 

+ k; E(x, y, z) = 0 ox oy oz 

(1) 

(2) 

(3) 
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oEx(x, y, z) oEy (x, y, z) oE,(x, y, z) 
----+----+----=0 

ox oy oz (4) 

taking the Fourier transform of both of these equations with respect to x and y we obtain 

[ 
0
2 

2 2 2 ] oz2 + (k0 - kx - ky) E(kx, ky, z) = 0 

0 
kxEAkx, ky, z) + kyEy(kx, ky, z) + j - E,(kx, ky, z) = 0 

oz 

It is assumed that the tangential components of the electric field on the aperture surface 

are known and are denoted by Ea. E(kx, ky, z) is the FT of the electric field wrt. x and y. 

Let 

(5) 

We therefore obtain 

o2E(kx, ky, z) + k2E(k k ) = 0 
oz2 z x• y, z (6) 

which has solution of the form e±ik,z. Since the field should consist of waves propagating 

outwards along the z-axis only the function e - ik,z will be valid. Thus the general solution is 

E(kx, ky, z) = f(kx, ky)e- jk,z 

Using eq. (7) in eq. (4) we find that 

or, 

kf=O 

where k is the vector with components kx, ky, k,. 

Using the inverse FT relations the solution for the electric field can be expressed as 

E(x y z) = - 1-ff 00 E(k k z)e- ikxx- jk,y dk dk 
, ' 47t2 - 00 X' y, X y 

where k · r = kxx + kyy + k,z. 

(7) 

(8) 

(9) 

(10) 


