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Abstract 

A new six-axis force sensor is described. It has three pairs of elastic elements that 
are orthogonal to each other and cross at the center of the sensor. Each elastic element 
consists of a pair of thin parallel plates which is called a parallel plate structure. From 
the outputs of the strain gauges placed on the elastic elements, the six force components 
are obtained. This orthogonal structure, which is named the three-dimensional 
cross-shape structure, has the following merits. (1) The whole characteristic of the 
sensor is obtainable just by analyzing the force-strain relation of a pair of elastic elements 
on an axis, maing it simpler to design a sensor for a given specification. (2) The 
cross-coupling between the strain gauge outputs and the six force components can be 
made small. (3) It is easy to design a rigid sensor. A prototype sensor has been 
fabricated and it has ben shown that the measured characteristic coincides with the 
analysis based on the beam theory; the cross-coupling is rather small, and the force-strain 
characteristics in all force directions are uniform. A few design considerations are also 
given. 

1. Introduction 

Research is actively being done for the application of robotic manipulators 

to more sophisticated tasks such as assembly, polishing, deburring, etc. For these 

tasks it is desirable to control not only the position of a manipulator but also the 

force exerted by the end-effector on an object [1]-[6]. Force sensors, especially 

general six-axis force sensors, play a key role in the force control. 

Many force sensors have been developed so far [7]-[13], and severar s1x-ax1s 

force sensors are commercially available [13], [10], [11]. However there are still 

several. problems unsolved. First, not much analytical study has hen done because 

of the complexities of elastic elements and large cross-coupling among strain gauge 

outputs for each axial force element. Hence the design of a sensor for a given 

specification of forces and torques sems to have been heuristic and based on the 
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designer's experiences. As for the evaluation of designed sensors, several 

theoretical approaches have been proposed recently [14], [1 SJ. The second 

problem is that many of the sensors need some data processing of the 

measured strain gauge outputs due to the cross-coupling. It is desirable 

to develop a sensor with less cross-coupling for easy application to on-line 

force control. 

In this paper, we propose a new structure for six-axis force sensors. 

which is easy to analyze and has a small cross-coupling in principle. To 

examine the validity of the new sensor structure, the analytical results are 

compared with the measurements of a prototype force sensor. 

2. Force Sensor with Three-Dimensional Cross-Shape Structure 

The conceptual structure of the proposed sensor is shown in Fig. 1. In the 

figure, the top and bottom plates mean the outer covers of the sensor where the 

force is applied. The six hatched squares are elastic elements where forces are 

detected through the strains. The other solid lines are structures which are so 

rigid that it's strain caused by any external force within the sensor specification 

is neglibly small. As the elastic element we adopt the parallel plate structure 

[9], [10] (abbreviated as PPS hereafter). By the pair of PPS on the the X axis 

we detect the force Fz in Z direction and the moment My on the Y axis. Similarly, 

with the other two pairs of PPS on the Y and X axes we detect other force 

Fig. 1 Conceptual Structure of the Proposed Sensor. 
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components: Fx, Mz, Fy, and Mx. An example of the sensor design based on 

the above concept is given in Fig. 2. Fig. 2 (a) shows the overview. (b) and 

(c) show the two parts of the sensor, which are separated just for ease of 

understanding. They have the hatched parts in common. The pair of PPS (thin 

plates on the side of square holes) on the X axis is shown in (b) and the pairs 

of PPS on the Y and Z axes are shown in (c). 

Sensors with the above-stated three-dimensional cross-shaped structure have 

the following merits. 

1) The arrangement of the elastic elements is the same with respect to all 

three axies, and simple. Most of the existing sensors have a Z-axis structure 

different from the other two axes. 

2) By designing the elastic elements on the X axis so that the strains by 

force components Fz and My are much larger than those by other force components, 

(a) Overview (b) PPS on X axis 

z 

(c) PPS on Y and Z axes 

Fig. 2 Structure of Sensor 
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and designing the other elastic elements in the same way, we can make the 

cross-coupling small. Thus there is a possibility of shortening the processing 

time of the measured data. The PPS is a good design from the viewpoint 

above. The design above will also lead to a highly rigid sensor. 

3) Due to characteristic 1), all the properties of the sensor are easily derived 

from the properties of a pair of PPS on an axis, making it easy to design a sensor 

that matches a given specification. 

Hence for the design of the sensor shown in Fig. 2, it is enough to formulate 

the relation between the force and strain of a pair of PPS on an axis. Although 

Tani et al. (9] have analyzed a PPS of the cantilever type, the case of a pair of 

PPS in a beam with both ends fixed has not been analyzed. This will be done 

in the following section. 

3. Analysis of PPS 

Fig. 3 shows a model of a pair of PPS. As shown in the figure, it is divided 

into three parts, i.e., the central block part, end block part, and plate part. 

We assume that the central and end block parts are not deformed at all by 

the application of force, and that the plate parts can be modeled as 

cantilevers. Notation d means the distance from the center to the PPS, l is the 

length of the plate, t is the thickness of the plate, b is the width of the plate, h 

is the distance between the center lines of two plates, and hb is the thickness of 

the central block part. Note that hb=h+b. 

The strain on the outer surface of the plate from force F and moment M 

applied on the center of the PPS model will be derived. We consider the three 

End block 
I 

1 

End block 
~ 

t m: I 

1 "-11: , i '\1v: ~------------~ .... --,...--' 
Plate Central Plate 

block 
Fig. 3 Model of PPS 
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cases; 1) force F only, 2) moment M only, and 3) force F and moment M. 
1) Case of Force F Only 

When only a force Fis applied on the center of the PPS model, the deflection, 

when exaggerated, is given by Fig. 4. From the above assumption, plate I can 

be regarded as a cantilever, as shown in Fig. 5. We define the coordinate frame 

e -11 as shown in the figure and assume that the strain is very small. Let the 

force and moment at the free end be / 1 and m1 • Then the bending moment 

M 1(e) at position e is given by 

(1) 

Note that M 1(e) is taken to be positive when it is a clockwise moment. Denoting 

the deflective curve as 11(e) and letting 11'(e)=d11<e)lde, 11"(e)=d211(e)lde2
, we have 

from Hook's law 

(2) 

~I-----~ 
~ I 

Fig. 4 Deformation by Force F 

1J 

½I----=-=- - -- ______ J 

r 1 ➔I 
Fig. 5 Cantilever Model of Plate I. 
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where E is the modulus of elasticity and J is the second moment of area. In 

our case, J = bt3 /12. Integrating (2) under the boundary condition 11(0) = 0, 11'(0) = 0 

yields 

(3) 

(4) 

By the symmetry of the model and the assumption of no deformation of the 

central block, we have the following boundary condition at the free end: 

11'(/)=0 (5) 

From (5) and (3) we have 

(6) 

Considering the force balance of the central block, we have 

(7) 

Hence from (1), (6), (7) 

(8) 

The strain eFl(') on the upper surface of plate I (and plate Ill) is given by 

(9) 

Similarly the strain on the lower surface of plate II (and plate IV) is given by 

(10) 
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2) Case of Moment M Only 

When only a moment M is applied on the center of the PPS model, due to 

the symmetry of plates I ~ IV, we can assume that the center does not deflect, 

that the deflections of plates I and IV are the same, and that those of plates II 

and III are the same as shown in Fig. 6. Therefore we introduce the unknown 

forces at the free ends of the plates as in Fig. 7. Here frn and / 28 are horizontal 

forces, f 1v, f 2v are vertical forces, and m 1 and m2 are moments. 

We first consider plate I, which can be regarded as a cantilever as shown in 

Fig. 8. Assuming that the vertical deflection due to frn is negligible, as in (1), 

(3) and (4), the bending moment M 1(e) due to f 1v and m1 , and the deflection 

curve 17 1(e) satisfying 17 1 (0)=0, 17 1'(0)=0 are given by 

II IV 
Fig. 6 Deformation by Moment M 

f f1H f. 
. lV8'~ . f'-V 

m1 m~lf1v I M 2 H 

m2 m,. 
(.a:::===:---... 

f2H 
f2v ·-·&·-· 

/ i,.... __ _::=::::;:f=23:v3' ( f,. H ! f 1 v m L~ 1 

/j i==-------1----'-r., ;,ic:=====:::::_--~~ 
f 2 H ffl 2 fl 2 . f 2 V f~ H f 1 V 

Fig. 7 Unknown Forces for the Case of Moment M Only 

__________ __. 

Fig. 8 Cantilever Model of Plate I 
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(11) 

(12) 

(13) 

On the other hand, the horizontal deflection e 1 at the free end due to frn is given by 

(14) 

Now we consider the boundary condition at the free end. If the central 

block part rotates by an infinitesimal angle IX, the horizontal deflection e 1 and the 

vertical deflection 17 1 (l) should satisfy 

1'/1 (/) =1Xd 

and the inclination at the free end should satisfy 

1'/1'(/)= -IX 

(15) 

(16) 

(17) 

Hence from (12), (13), (14) and the boundary conditions (15), (16), (17), we obtain 

3([ + 2d) 
f1v= l(2l+3d) m1 

3hl 
frn t2(2l + 3d) m1 

(18) 

(19) 

Similar argument holds for plate II. Defining the coordinates as shown in 

Fig. 9 and letting 17 2 (e) be the deflection curve due to f 2v and m2 , and letting e2 

be the horizontal deflection of the free end due to f zH, we obtain 

(20) 

(21) 
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3([+ 2d) 2 ----m 
1(21+ 3d) 

(22) 

3hl 2 

f2H = t2(2l + 3d) m 
(23) 

Since '1 1'([) = 'li'(l) due to the assumption of non-deformation of the central block 

part, we have m1 =m2 from (12), (20). Hence from (18), (19), (22), (23), we 

obtain f1v=f2v, f1H=f2H-

The equilibrium equation of moments acing on the central block part is 

M=h<J1H+f2H)+2d<J1v+f2v)+2(m, +m2) 

= 2hf1H + 4df1 v + 4m1 

Hence from (18), (19), (24) 

Substituting (25) and (18) into (11) yields 

(24) 

(25) 

(26) 

The strain llM1(e) on the upper surface of plate I (or the lower surface of plate 

IV) is given by the sum of the strains by M 1(e) and ftH as 

(27) 

1/ fl V 

, .A.---=-==~- _ -=----=-=::=-=-- ~ m 2 -· --- ' ➔ 
------- ____ J e 
Fig. 9 Cantilever Model of Plate II 
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3[hz2-2tl([+ 3d)+6t(2d+[)e] 

eMi<e>= Ebt[6h212 +8t2(3d2 +3dt+z2>J M 
(28) 

Similarly the strain eM2(e) on the lower surface of plate II (or the upper surface 

of plate I I I) is given by 

(29) 

3) Case of Combination of Force F and Moment M 

We assume that the deflections are small such that the strain e( e) for the 

case of combined F and M is given by the superposition of the cases of F only 

and M only. For plates I and IV, from (9), (10), and (28) we have 

(30) 

where the sign ± takes + for plate I, and - for plate IV. Similarly, for plates 

II and I II, we have 

(31) 

where the sign ± takes + for plate II and - for plate III. 

The PPS structure was originally introduced as a structure which is easily 

deformed by forces normal to the plates but is hardly deformed by moments 

about an axis in the transversal direction of the plates. But the above analysis 

shows the possibility of measuring both· forces and moments by a proper choice 

of dimensions of the PPS. Notice that the sensors developed by Hitachi 

Construction Machinery Co., Ltd. [10] and Fujitsu Laboratories, Ltd. [11] already 

exploit this fact. Hence the result of this section would be applicable to the 

analysis of these sensors. 

4. Measurement of Strain Distribution 

To examme whether equations (30) and (31) can be used for the analysis 

and design of sensors, the distribution of strain on the surfaces of plates are 
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measured for a prototype six-axis sensor with dimensions b = 10 (mm), d = 15 

(mm), h=9.4 (mm), l=8 (mm), and t=0.6 (mm) (hence hb=10 (mm)) . Fig. 10 

shows the prototype sensor. The three-dimensional cross-shaped structure and 

the top and bottom covers are connected by screws. Strain distributions of the 

PPS in the X and Y axes are measured using the strain gauges placed on the 

center line 2 mm apart as shown in Fig. 11 . The length of each gauge is 1 mm. 

Measurements are shown in Fig. 12 and 13 . The strain distributions, drawn 

with solid lines, of the PPS in the Y axis, agree rather well for both F y and M 2 

with the analytical distributions, drawn with broken lines, calculated from 

(30) . However that of the PPS in the X axis for moment My has some discrepancy 

with the analysis. This discrepancy would probably be caused by (A) deformation 

due to the lack of strength of the central part shown in Fig. 2 (b), or (B) by an 

insufficient constraint at the screw connections between the end blocks and the 

bottom cover. Figures 12 and 13 show that equations (30) and (31) can be used 

for the analysis and design of force sensors if we pay a little attention to the 

above two points (A) and (B) . It can also be seen that the best place for placing 

the strain gauge is the boundary between the central block and the plate. 

Fig. 10 Overview of Prototype Sensor 
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Fig. 11 Position of Strain Gauges for Measuring the Strain 
Distribution 

E 

1,0 

-1.a End 
block 

\ Plate \ 

\ 
\ 

\J 
(a) Fz=-1.0 kg 

(b) My= 1.0 kgf·mm 

Measurement 

Analysis 

Central block 

Fig. 12 Strain Distribution of PPS in X Axis 
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E 

0 

•1,0 
End 
block 

2,0 

1,0 

0 

Plate 

Measurement 

-····--·· Analysis 

Central block 

(a) Fr= -1.0 kg 

0 8 

(b) Mz= 1.0 kgf·mm 

Fig. 13 Strain Distribution of PPS in Y Axis 

5. Study of the Effect of End Block Constraint on 
Strain Distribution by Finite Element Method 

61 

It was observed in the previous section that the strain of the PPS on the X 
axis for moment My is larger than that calculated by (30). In order to examine 

the effect of the end block constraint on the strain distribution, which was pointed 

out as a possible cause of this discrepancy, the distribution was calculated by the 

Finite Element Method (FEM) under different end block constraints. Fig. 14 

shows complete constraint on both position and orientation of the end blocks, 

and Fig. 15 shows a weak constraint where the horizontal displacement and rotation 

of the end blocks are free. Broken lines in the figures are analytical distributions 

calculated by (30). From the figures it is seen that the response to force F does 
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not vary very much but that the strain for moment M is much larger in the case 

of weak constraint. From this fact, we can tell the following two points. 

(1) If we want the ratio R=IMIFI of force F and moment M, which give 

the same strain at ~ = l, to be large, it is important to make the end block 

constraints as complete as possible at the stage of design and fabrication. 

E 

xu- 4 

1.0 

0 

,• l • 0 

1.0 

0 

I 

End 
block 

□ □ I 
(a) Constraint 

FEM 

----------· Analysis 

e 

Central block 

(b) F= 1.0 kg 

(c) M=l.0 kgf·mm 

Fig. 14 Strain Distribution by FEM under Complete End-Block Constraint 
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(2) If we want the ratio R small, one approach is to design the end block 

constraint to be weak. 

0 

ID 

End 
block 

(a) Constraint 

FEM 

-------- Analysis 

Central block 

(b) F= 1.0 kg 

(c) M=l.0 kgf·mm 

Fig. 15 Strain Distribution by FEM under Weak End-Block Constraint 
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6. Compliance Matrix 

Based on the results in Sections 4 and 5, six strain gauges S1 ~ S 6 have been 

placed at the positions shown in Fig. 16 (on the boundaries between the central 

block and the plates). To make the connections between the end blocks and the 

outer covers tighter, liquid thread lock has been used on the screws connecting 

them. From the measurements of these strain gauge outputs for each force 

component, the relation between the applied force and the resulting strain has 

been obtained in the form of a compliance matrix. The compliance matrix is 

defined by 

r,=CF (32) 

where F=[Fx, Fy, F2 , Mx, My, Mz]T, (kgf, kgf·m) is the force vector consisting 

of forces along axes X, Y, Z and moments about these axes, and f,= [r,1 , r,2 , ···, 

r,6]T is the strains at the sensing points S 1 ~ S 6 caused by F. Since the desired 

ratio between the maximum measurable force components and moment components 

varies depending on applications, the force vector F is normalized as follows by 

an arbitrarily selected standard force unit FN and the corresponding standard 

moment unit MN• which are regarded as of the same magnitude. 

(33) 

Then we obtain 

(a) PPS on X axis (b) PPS on Y and Z axes 

Fig. 16 Placement of Strain Gauges S 1 ~S6 
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(34) 

where C is the normalized compliance matrix given by 

(35) 

Under an ideal situation where each sensing point responds only to the force 

components mentioned in section 2, C (and hence C) should have the form 

0 0 • 0 • 0 

0 0 • 0 • 0 

• 0 0 0 0 • 
C= (36) 

• 0 0 0 0 • 
0 • 0 • 0 0 

0 • 0 • 0 0 

where • means a non-zero value. 

The compliance matrix C of the prototype sensor has been obtained as follows. 

-0.047 0.026 -1.540 0.664 -26.883 -0.284 

0.032 -0.003 -1.717 -0.182 26.109 1.000 

-1.565 -0.036 -0.024 0.049 1.899 25.463 
ex 104 = 

-1.193 0.117 -0.072 0.451 -2.151 -20.347 

0.004 1.544 0.045 26.120 0.335 -0.409 

0.006 1.124 -0.087 -22.814 -0.171 -0.450 

(37) 

By choosing F N and MN as 

FN= 1 (kgf) (38a) 

MN=0.0587 (kgf·m) (38b) 
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the normalized compliance matrix is given by 

-0.047 0.026 -1.540 0.039 -1.578 -0.017 

0.032 -0.003 -1.717 -0.011 1.533 0.060 

-1.565 -0.036 -0.024 0.003 0.111 1.505 
ex 104= 

-1.193 0.117 -0.072 0.026 -0.126 -1.194 

0.004 1.544 0.045 1.533 0.020 -0.024 

0.006 1.124 -0.087 -1.339 -0.010 -0.026 
(39) 

The value MN has been selected as the ratio between the average magnitude of 

responses for the force components and that for the moment components, i.e., 

letting C=[Cij], MN has been given by 

(40) 

Note that the value ME obtained from (30) and (31) as the moment which gives 

a strain of the same magnitude as F N = 1, ts 

(41) 

MN given by (40) is about 56% of ME. The reason for this difference between 

the analytical and measured values will probably be that the peak of the strain 

distribution is smaller, for the force, due to a smoothing effect, and tends to 

become larger than the analysis, for the moment, due the incomplete constraint 

of the end blocks. 

The cross-coupling is now examined. Let us define a scaler IX; (i = 1,2) by 

max{IC;1l,IC;ii,IC;4l,IC;61} 
IX;= min{JC;3l,JC;51} ' 

i=1,2 (42) 

Note that the elements m the numerator and the denominator correspond, 

respectively, to elements "0" and elements '*' in the i-th row of matrix C m 

(36). We also define IX;, i = 3,4,5,6, similarly. Then IX; is a measure of 
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cross-coupling at the i-th sensing point. From (39) the values of tX; for the 

prototype sensor are obtained as 

Hence the maximum cross-coupling is 10.6% and the average is 5.9%, which are 

reasonably small. 

One measure of uniformity of the sensor response with respect to the direction 

of the applied force is the condition number of C [14]. Since the singular values 

of Care given by {2.341, 2.233, 2.186, 2.143, 1.750, 1.638}, the condition number 

is 1.429. This figure is smaller than those of various force sensors discussed in 

ref. [14], which range from 3.16 to 15.38, meaning that the prototype sensor has 

a very good directional uniformity in its response. 

7. Design Considerations Based on Analysis of PPS 

One complaint often heard about force sensors available in the market today 

1s that the maximum measurable moment is too small when compared with the 

maximum measurable force. In this section the effect of various parameters of 

PPS on the ratio R of force and moment which give the same strain at ~=I will 

be discussed based on the analysis given in Section 3. The effect of inclination 

of the pair of plates will also be analyzed from the viewpoint of R. Note that 

R has the unit of length. This ratio R would be an important index for evaluating 

the force sensor structure. 

From (10) and (28), the ratio R is given by 

R 
3h2l2 + 4t2(3d2 + 3dl +12) 

2t[hl + 2t(3d + 2/)] 
(44) 

Fig. 17 shows the effect of the parameters d, h, I, and t near the nominal values 

given in Section 4 on the ratio R. From the figure it is seen that when d and 

t are smaller, and when h and I are larger, the value R becomes larger. For 

example, if we set t=0.5 and /=9 instead of t=0.6 and 1=8, while keeping h 

and d at their nominal values h=9.4 and d=15, then we have R=153.3 (mm) 

from (44), meaning that R is increased 47% from its nominal value 104.4 (mm). 

Another conceivable way of increasing R may be to modify the PPS design 

to the one shown in Fig. 18, in which the pairs of thin plates are not parallel. In 

the following we will analyze this structure and compare the value of R with that 
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of PPS. 

The inclination of the pair is represented by the angle 0 in the figure and 

other parameters are defined similarly to the case of PPS. We first consider the 

case where only a force F is applied on the center of the structure. The model 

ts again given by Fig. 8 except that the boundary conditions now are given by 

(45) 

R(mm) R(mm) 

zoo zoo 

100 100 / 
0 0 

0 5 10 15 20 25 d(mm) 0 5 10 15 h(mm) 

(a) Parameter d (b) Parameter h 

R(mm) R(mm) 

zoo zoo 

100 100 

0 0 
4 6 8 10 12 1 (mm) 0 0. 4 0. 8 t(mm) 

(c) Parameter 1 (d) Parameter t 

Fig. 17 Effect of Parameters on R (-e-: Nominal point). 
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Fig. 18 Model of Inclined Plate Structure. 

(46) 

instead of (15)-(17). Using these conditions the strain eFl(~) on the upper surface 

of plate I is given by 

(47) 

where S 8 =sin0 and C 11 =cos0. We next consider the case where only a moment 

M is applied. The boundary conditions are 

(48) 

(49) 

and (17). After a lengthy but straightforward calculation, we obtain 

a0 = [3(1 + 2dC8 -hS8)(2dC8 -hS8) +1(41 + 6dC8 - 3hS8)]t2 + 312(hC8 + 2dS8)
2 

(52) 

Hence we have 

R e0 (lS8 +3tC8) 

{6[t(4l+ 6dC8 -3hS8) +l(hC8 +2dS8)] (t2C/+i2S/)} 
(53) 
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R(mm) 

-20 -15 -10 -5 0 5 10 15 0(deg) 

Fig. 19 Effect of 0 on R 

Fig. 19 shows R as a function of 0 for the nominal values of other 

parameters. From the figure it can be seen that 0 = 0°, which corresponds to the 

PPS, and is very close to the best angle 0 giving the largest R. 

8. Conclusion 

A s1x-ax1s force sensor with a new structure, which can be called the 

three-dimensional cross-shape structure, has been proposed. The parallel plate 

structure (PPS) has been adopted as the elastic element. The force-strain relation 

of a PPS model has been obtained analytically by the beam theory. This result 

has been compared with the experimental result for a prototype sensor. It has 

hen shown that the prototype sensor has small cross-coupling and good directional 

uniformity. The validity of the three-dimensional cross-shape structure is not 

lost even when the PPS of the elastic elements is replaced by some other structure, 

for example, by a single elastic plate. 

The authors would like to thank Mr. M. Kodama and Mr. M. Arao of Omron 

Tateishi Electronics Co. for fabricating the prototype sensor. 
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