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Abstract

We consider the H ,-wellposedness of the Cauchy problem for the operator:
) f L 7
—u(t, x)+-Ault, x)+ ¥ ay(x)—u(t, x)+b(x)u(t, x)=£1, x)
ot 2 k=1 6x,,

when an initial value on the plane t=0. We show some sufficient conditions on the imaginary
parts of the coefficients ay(x) for the wellposedness.

I. Introduction

Let L be the Schrodinger type operator given by
(L) Lu(t x)=£u(t x)+£Au(t x)+ i a,‘(x)iu(t x)+ b(x)u(t, x)
’ ot 27 = ox, ’

where A is Laplacian, that is, Au(t, ac)=zz___l %u(t’ x) and the coefficients a,(x)
and b(x) belong to the space B®(R") consisting of all smooth functions on R”
which are bounded with their derivatives of any order.

Let T be an arbitarily fixed positive number. We consider the Cauchy
problem for L: for the given g(x)e H and f(t, x)e C([0, T], H,) find a solution
u(t, x)e C([0, T], H,) of

Lu(t, x)=£(t, %) on [0, T] x R”
©) {

(0, x)=g(x) on R*,
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Here Hw=ﬂ,‘:°=o Hu(R" where Hg(R") is the space of all u(x)e L%(R")

o " . P
axmu(x)eLz(R ) when |a|<k with a norm "“(x)”f=2|a|sk”a7 u(x)||fzand

C([0, T], H,) is the space of all H -valued continuous functions on [0, T]. Here

such that

o, and r

Ox*

we use the following notations: a=(a;, o,, ,0,), |°‘|=Zk=1...,.

gt tan

We say that the problem (C) is H -wellposed if for any f(¢, x) and g(x) there
exists one and only one solution u(t, x) that is an H -valued C' function on
[0, T]. Thanks to Banach’s closed graph theorem the wellposedness implies that
the mapping H x C([0, T1, H,)3(g(x), f(t, x))—u(t, x)e C'([0, T], H,) is con-
tinuous. Hg)- and S-wellposedness are defined similarly.

W. Ichinose [3] shows the following necessary condition for the H_-well-
posedness (see also J. Takeuchi [6]): there exists a constant K such that for
any x and £e R" we have

1 n
N) U;) kzl ai(x+ét)£k dl <K 10g(|§|+2),

where af(x) is the imginary part of gqx) and its real part is denoted
by aR(x).
We suppose that 1-form Y7_  al(x)dx, is closed, that is to say,

k=1

(1.1) ia{(x)—-iai(x)=0
ax,‘ ax,
for any k,l=1,2,---n. Then the function on R" defined by

n 1
(1.2) F(x)=k21 L al(tx)x, dt

satisfies aiF(x)=al(x). If (N) is satisfied, we have
Xk

(1.3) |[F(x)—F(»)| <K log (Ix—y|+2).

Since ;—F(x)=a£(x)eB°°(R”), (1.3) implies that the multiplication by e*f®
X '
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is an isomorphism in Schwartz space S (see [2] or [5] for the definition of
Schwartz space).

On the other hand we define the operator L by

I = etFO o~ 3F ()

=%u(t, x)+ %Au(t, x)+ :;:1 al‘(x)a%ku(t, x) + b(x)u(t, x)

with b(x)eB®. Then, because the coefficients af(x) of —a—u(t, x) are real-valued,
X

0
the Cauchy problem for £

{fu(t, x) =h(t, x) on ([0, T] x R")
u(t, x) =k(x) on R"

©

is S-wellposed and Hg)-wellposed for any [. (See for example R. Dautray and J.
L. Lions [1] for Hy-wellposedness and M. Tsutsumi [8, L.emma 3.1] or Appendix of
this article for S-wellposedness.)

Hence we see that under (N) and (1.1) the Cauchy problem (C) is
S-wellposed. In this article we show

Theorem. If the conditions (N) and (1.1) are satisfied, the Cauchy problem (C)
is H -wellposed.

We prove the Theorem in the next section. The idea of proof is identical
to that of S. Tarama [7]. For any function of R", I f(x)dx means IR.‘ f(x)dx. We
denote by C or Cx suffixed by some letter # an arbitary constant which may be
different line by line.

2. Proof of Theorem. In the following we assume that (N) and (1.1) are
satisfied.

First of all, we decompose the data g(x) and the right hand side of the
equation f(¢, x) to the sum of functions in S or in C([0, T, S) in the following
way. We choose ¢(x)e C®(R") satisfying ¢(x)=>0, ¢(x)=0 for |x|]=1 and
j¢(x)dx=1. Then we have

g(x)=[p(x—y)g(x)dy

and



146 Shigeo TARAMA
ft, x)=[d(x—)f(t, x)dy.

Since g(x)e H,, [resp. f(t, x)e C({0, T], H,)] and ¢(x—y) vanishes for |[x—y|=>1,
we see that ¢(x—y)g(x) € S [resp. ¢p(x—y)f(t, x)e C([0, T1, S)] and ¢(x— y)g(x) [resp.
¢(x—y)f(t, x)] is an S-valued [resp. C([0, T], S)-valued] continuous function of
y€eR",

Since the problem (C) is S-wellposed under conditions (N) and (1.1), we
have a solution u(t, x)e CY([0, T, S) of

Luy(t, )= d(x—)f(t, ) on ([0, T] x R")
) { :

u(0,x) =¢(x—y)g(x) on R

The S-wellposedness implies that u(¢, x) is a CY([0, T, S)-valued continuous
function of ye R".
We will show that the function u(¢, x) defined by

u(t, x)=j u,(t, x)dy

is a solution of the problem (C).
First we remark that, for any integer />0,

(2.1) C g <] o —»)eC)iEdy <CligO)II?

and
2.2) c-lj‘ lIf(s,')IIfdssJ j tll¢(-—y)f(s;)llz’dsdysCfllf(sx)ll:’ds-
0 o 0
Indeed, noting jd)(x—y)dy:l, we have
leC) = f ( j ¢>(x—y>g(x)dy) (jcb(x—z)gw dz)dx
=f dw f dy f¢(x—y)g<x)¢(x—y—w)z&5 dx,
noting ¢(x)=0 for |x|>1

j daw jdy f (x| x—y— whg()|dx
lwi<2

from which, using Schwarz inequality, we can draw the left side inequality of
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(2.1) for I=0.
On the other hand, Fubini’s Theorem implies a right side inequality of (2.1) for
[=0. Similarly (2.1) for any />0 and (2.2) can be shown.

Lemma 1. There exists an integer N >0 such that we have, for any integer 1>0,
zeR" and te[0,T],

t
2.3) ¢ =2t ), <Cr<z—y> _"_1<||¢(' —y)g(t,')||¢+~+fo
16C =36 )i d)

where the constant C, is independent of z, y and t.

For the proof of Lemma 1, we use the following lemma, whose proof, which
is sketched in the appendix of this note, is similar to that of Proposition 7 of S.
Tarama [7] (see also T. Kato [4, Section 8]).
Lemma 2. For the solution v(t,x)e C'([0, T1, S) of the problem (C) with k(x)e S

and h(t, x)e C([0, T, S) we have the following: for any integers N and 1>0, ye R"
and te[0, T}

t
2.4) n<-—y>N'u(t,->u,sc,,N(u<-—y>"k<t>n.+~+j0 D < —y>h(s, ) lran ds),

where the constant C,y is independent of y.

Proof of Lemma 1. In this proof C or C; y denotes a constant which is independent
of yeR".

We note that the function v(¢.x) =exp(%F(x))uy(t,x) is a solution of the problem
(€) with
1
(x) = exp(F () (x — g(x)

and

(e, %) =expGF -, %)
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For any integer />0,
19— 22, = 1~ exp( — S F etz
since ¢(x)=0 for |x|>1
<C exp(— PNt ),
<C exp(—%F(z))<z—y> M < —y>No(-—2)v(e,);
<C exp(——%F(z))<z—y> M< =y >N, ),

from (2.4)

N x

SCix exp(—5F(a) <z—y>"
N 1 ! N
(1 <=y>" expGFONC~eOlont [ I<=y>
expGFONC — 96w @),
since ¢(x)=0 for |x|=>1,
<Ciy exp(%(—F(z) +FO)) <z—y> ¥ x
(16C =26+ [ 1666 ),
since we have, from (1.3), exp(%(—F(z)+F(y)))sC<z—y>*K, by taking N>

%K+n+1,

<Ciy<z—y> —"—1(||¢(""y)g(')||z+1v+fo & —3)f(s, )i+ n ds). U
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As we remarked above, u(t,x) is a CY({0, T, S)-valued continuous function.
Thus for any r>0

[, wodvecio, 7, 5)
Iylsr
Since, for any r>0, I|z|5r+l ¢(x—2)dz=1 on |x| <7,

u,(t,x)= d(x—2)uy(t, x)dz on |x|<r
|z|<r+1

and
Nty (2, M Hapitxer™1x <y < I lp(- —2)ult,), dz.

|z]<r+1

Schwarz inequality and (2.3) of Lemma 1 imply that
[ ] 18C=2n ds dy
lz{<r+1
4
<C (J\<z—y>_2"_2 dy) X
lz|sr+1

t 4

(Jvoc—sreentendy+e [ [ 16¢ =5 Meen dy as)

from (2.1) and (2.2)

<C(IgOfon-+[ U Mo ds)*.

Hence
(t, )= [ (e, 2)dye OO, 1, Hoodl RY)
Since u(t, x) is a solution of the problem (C,), we see that

2t € CQO, T), Ho-10R)

and u(t, x) is a solution of the problem (C), where we used
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[ 100, 51y = [ $x—ypetdy =gt
and
[ d—site, wyay=sie, .

Further, it follows from (2.3) and Hausdorff-Young inequality, since
j<x> "1 dx< 4+ 00, that

2

¢( —2)u,(t,)l, dv} dz<C, ( o —3eOItn dy+
J(J ) a==ci
' L [ 16 =sts. Wt dy )

from (2.1) and (2.2)

<G, (ng<-)||f+~+ j T ds)

and for any r>0
2
J‘|z|zr<J\"¢(.—z)uy(t")"? dy) dz<
—_— -n—1 . . t B oy
C |z|2r(f<z y> Nd(- =) Fen dy+Jt L<z y>
Ip( —»)f(s, B n ds dy)dz_

Thus we see that

u(t, x)= lim L I<'J d(x—2)u(t, x)dy dze C([0, T, Hy))

ro>+o

and
@.5) ||u(t,-)||fsc,(||g(->uf+~+ Lnﬂs,-)nm ds).

The above arguments are valid for any integer />0 and u(f,x) satisfies
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Lu(t, x)=f(t, x). Thus u(t, x) is a solution of the problem (C) belonging to
c\([o, T1, H,).

Concerning the uniqueness of solutions, we remark first that the following
Cauchy problem (C#*) for the formal adjoint L* of L:

L*u(t,x)=

_%u(t, x)—1Au(t, x)—k‘; (x)—u(t x)+( Zl aj(x)-i-b-(x)) u(t,x)

satisfies (N) and (1.1).
Thus the following backward Cauchy problem (C*) for L*:
L*u(t,x)=f(t,x) on[0,T]x R"
(% {
u(T,x)=g(x) on R"

is also S-wellposed, from which we see the uniqueness of solutions for the problem
(C), (See for example S. Mizohata [5, Proof of Theorem 4.2]). Hence the
problem (C) is H -wellposed. The proof of Theorem is completed.
Appendix. In this appendix we sketch the proof of Lemma 2. We consider
only the operator L whose coefficients afx) are real valued.

Lemma 2 results from the following lemma.

Lemma A. For any integers N>0 and u(t, x)eC'([0, T, S) we have
N :
(Al) J;"<x>1 u(l, x)"N—j
& ; N o[t .
C (Bl <0, Dl-st 3, [1<x>) Luts, -, o),

where the constant C depends only on T and the translation invariant norm of the
coefficients, i.e.

" i 0" .
zlal M (Zj= 0 squeR”laxaaj(x)| + Squek"laxab(x)D with M =max{N,1}.

Let L, be defined by

Lou(t, x)= z%u(t, x)+ %Au(l, x)+ kil a(x +y)5a;-u(t, x) +b(x + y)u(t, x).
= k
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Then the inequality (A.1) for L, is valid with the constant C which is independent
of ye R", from which we draw Lemma 2.

Proof of Lemma A. We remark that

(A.2) lla(2, )l < (IIu(O, x|l +J I Lu(s, x)IldS),
[}

. 1,
where ||| is a L?>-norm and C= ), supstnla—aj(x)l+supx€Rn|b(x)|.
j=1,m xj
of
Let Op(N) be a linear space generated by all the operators x“é—ﬁ with
x

loj + 1Bl < N. Then we see that, for any T e Op(N), the commutator [A,T]=AT—TA
o

belongs to Op(N) and that [aj(x)a—,T] and [b(x),T] can be written by a linear
X,

j
combination of products of some element in Op(N) and the derivative, whose

order is at most N, of afx) or b(x). Hence for any a and  satisfying |x|+|B|< N,

i o
Lx"ggcwﬂu(t,x) = x“a xﬂLu(t,x)

(A.3)
Y]

0
+ Y Capys(0)a—ult, x)
Y +3} <N ox

where C, ;. 5(x) can be written by the linear combination of the derivatives of
aj(x) or b(x) of order at most N.
We see Lemma A from (A.2) and (A.3). O

5 Xy
6xj’ <ex>
B®(R"), we can show, by using an argument similar to the proof of Lemma A,

Noting that, for any jk=1,--,n, [ jl=kj,k(sx) with some k;,(x)€e

the following estimates, which with Lemma A imply the S-wellposedness of the
problem (C): for any integer N and 0<e<1

N
(A1) I Yt )l -
j=0 <é&x>
<
N  <x> .. N [t <x> .
c ( THEZY womlos+ 3 Lu(qpy Lu(s,9)ly- ds),
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where the constant C is independent of e.

(1
{21
{3
(4]

(3]
(6]

[7]
f8l
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