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Abstract 

In this paper, steady and unsteady shock waves in a bubbly liquid are treated 
numerically. A new system of model equations describing the bubbly flow is applied 
and the detailed flow structure behind a shock front is investigated in detail. It is 
proved that the velocity difference between the liquid and the gas phases induced by 
a stationary shock wave is of order a112

, wher a is the void fraction of the gas-phase. 
Radial oscillation of bubbles tends to produce a oscillatory profile of the translational 
velocity of the bubbles near the wave fronts. Numerical simulation shows that 
oscillatory behaviour of the mixture pressure is significantly suppressed by the trans­
lational motion of bubbles and that the whole shock structure is remarkably affected 
by the velocity difference between the phases especially in the case of weak shocks. 
It is confirmed that the stationary shock wave is realized as an asymptotic solution for 
a shock tube problem with uniform conditions in the low pressure and high pressure 
chambers. 

1. Introduction 

147 

The problem of propagation of shock waves through a bubbly liquid has received 
considerable attention. The speed of a shock wave propagating through a liquid 
containing small gas bubbles was first studied theoretically and experimentally by 
Campbell and Pitcher'- It was shown that the shock front is very thin and that the 
pressure of the mixture is strongly oscillatory behind the strong shock front. The 
speed of the shock wave depends on the shock strength and the void fraction of the 
gas-phase. Eddington2 investigated steady shock waves in a gas-liquid mixture, 
where it was found that the pressure jump across the shock is well predicted with a 
theory under the isothermal assumption. Later, Crespo3 investigated the shock 
structure analytically with some simplifying assumptions. N oordzij• and N oordzij & 

Wijngaarden5 performed experiments of shock propagation in a bubbly liquid and 
found that there are three types of shock structure. They also confirmed analytically 
that the shock structure depends on the shock strength. Tan & Bankoff6 considered 
theoretically the effects of relative translational motion of bubbles. However, in their 
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numerical simulation, the velocity difference is neglected and then a quantitative 

discussion on the importance of the velocity difference was not given. 
Recently Ivandaev7 performed numerical simulations and found that the thermal 

conduction between the liquid and gas phases is very important for attenuation of 
radially oscillatory motion of bubbles, which is consistent with the experimental 

observation. However, in his analysis it is assumed that the volocity difference 
between the 'two-phases is negligible. Beylich & Gi.ilhan8 performed systematic 

numerical simulation and experiment of shock waves in bubbly liquid and obtained 
good agreement between them. In their analysis, however, the effects of the velocity 

difference between the two-phases are neglected and a few empirical parameters are 

introduced to fit the numerical results to the experiments. 

In many previous papers, the effects of the velocity difference between the two 
phases on the stationary shock waves are assumed to be negligible. This assumption 

is not always appropriate. Although in general the thermal dissipation plays the most 

important role in determining the shock stucture, the effect of the relative trans­
lational motion of the bubbles can not be neglected, especially for weak shock waves. 

This is because any shock is responsible for a finite value of the induced velocity of 

the mixture far downstream of the shock. In the relaxation region, velocities of the 
two phases are different and then the adjustment process of the velocity difference 

due to the drag force, determines the total length of the relaxation region. Dispersion 

and dissipation processes associated with the expanding and contracting motions of 
bubbles usually affect the shock structure in the region near the shock front. These 

discussions suggest that the shock structure cannot be determined precisely without 

considering the effect of the velocity difference between the two phases. 
It is also important to point out that, strictly speaking, stationary shock waves 

cannot be realized experimentally, owing to the presence of gravitational force. The 

buoyance force is always responsible for the rising motion of bubbles in the liquid. In 
the experiment in a vertical shock tube, the rising velocity of the bubbles may be 

much larger than the bubble velocity induced by the shock wave. Moreover, the 
mixture pressure always changes along the shock tube owing to the gravitational 

force and further even the initial conditions are not uniform both in the high and the 

low pressure chambers. In such a situation, we can never expect to realize any 
stationary shock. Only in the cases of a mixture composed of gas bubbles and a liquid 

with very large viscosity, can we use a horizontal shock tube and get the uniform 
initial conditions necessary to realize a stationary shock wave. Practically, however, 
the mixture composed of gas bubbles and a highly viscous liquid is a rather extreme 

example. Theoretical analysis of unsteady shock waves is, therefore, inevitable for 
precise discussion or evaluation of experimental results in the vertical shock tube. 
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In the present paper, a new system of model equations describing the bubbly flow 
proposed previously9 is applied for the analysis of weak shock waves. First, station­

ary shock waves in a bubbly liquid are treated. The detailed flow structure behind 
a shock front and the effect of the velocity difference between the two phases on the 
shock structure is investigated numerically. Numerical simulation will show that 
oscillatory behaviour of the mixture pressure is significantly affected by the relative 

translational motion of bubbles. Next, the shock tube problems are treated and the 
unsteady behavior of the shocks is discussed. It will be confirmed that the stationary 

shock is definitely obtained as an asymptotic solution to the shock tube problem. All 
the numerical simulations are performed on a supercomputer Fujitsu VP-2600 in the 

Data Processing Center of Kyoto University. 

2. Basic Equations 

2.1 Conservation equations 
We consider a one-dimensional flow of a mixture composed of an incompressible 

liquid with small gas bubbles dispersed in it. It is assumed that the bubbles remain 

spherical throughout the flow, have locally uniform size and do not breakup or 
coalesce ; that the pressure within each bubble is uniform ; that no phase change takes 

place ; and that the temperature of the liquid remains constant throughout the flow. 
Under these assumptions, the governing equations for a one-dimensional un­

steady flow are given as9 

where 

! (1-a)+ Jx [(l-a)u1]=0, 

a a at(pga)+ ox (pgaUg)=O, 

! [(l-a)ui]+ Jx [(1-a)u/+p]=O, 

Db?+ :r ~t (kr)-(l+ l) D.[)~
1 + ~; 1x (apg)+ fa 1x ( ir) 

9 € 
- Re kR 2

' 

r=-l-=Ra 
pg 

(2) 

(3) 

(4) 

(5) 
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t::=Ug-Ut 

and 

(6) 

(7) 

(8) 

Here the time t, the space coordinate x, the fluid velocity u, the pressure p, the gas 
density pg, the bubble radius R, and the coefficients of diffusion force and replusive 
force, DM and H, are nondimensionalized by Ro/Vo, Ro, Uo, p1Ul, pgo, Ro, (4/3) 
TCRo3 p1Uo2

, RoUo, respectively, where Uo is a reference velocity. The subscript zero 
denotes the uniform flow conditions ahead of the shock front and the subscripts g and 
l denote the gas phase and the liquid phase, respectively. The parameter A in the 
added mass coefficient of a spherical bubble kin Eq. (7) is given by Wijngaarden' 0 as 
A=Z.78. The bubble Reynolds number in Eq. (4) is defined by 

Re (9) 

The parameters DM and H, first introduced by Batchelor", are quantities that can 
be determined, at least in principle, from the detailed study of hydrodynamic interac­
tions between bubbles. Unfortunately, these forces have not yet been evaluated 
theoretically. However, these parameters mainly affect the hyperbolicity of the 
system, but do not affect appreciably the main flow properties9

• In the following 
analysis, therefore, DM and H are assumed to be small positive constants. 

2.2 Equations of expanding motion of bubbles and of the state of the gas. 
Since the gas inside each bubble is compressible, two more equations are needed 

to close the system. These are the momentum equation for radial motion of each 
bubble and the equation for the state of the gas inside the bubble. The first is given 
in the nondimensional form as 

P -p=R DiR +-1( DgR )
2 + 4'\JI'. l DgR 

g Dt2 2 Dt Re R Dt ' (10) 

which is the so-called Rayleigh-Plesset equation, where the parameter '\JI' is a 
correction factor due to the dissipation processes in the gas and the liquid phases. 
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The second is given by 

01) 

where n is an effective polytropic exponent of the gas. The nondimensional parame­

ter r is defined by 

r - Po --u.2· Pt o 
02) 

Strictly speaking, the gas temperature and the density inside the bubble are not 

uniform even under the reasonable assumption of uniform gas pressure12
• But to 

make the problem tractable numerically, some averaging of the gas density over each 

bubble is inevitable. This averaging process is closely connected to the evaluation of 

the thermal damping. The thermal damping is introduced by considering the temper­

ature field of the gas inside a bubble. Such an analysis has been given, for example, 

by Prosperetti 12
• His result can be incorporated with the equation for the state of the 

gas, Eq. 01), to the first approximation by putting 

03) 

for a nearly isothermal shock, and 

= + /n[l+®A(X)] a =11.D[z[ ( _ )-(r-1>-l] ds n r 1 , ~A 4 pg z s 112 
npg 1r o s 

(14 a) 

04 b) 

for a nearly adiabatic shock, wher 

05) 

Here Xg and Xg are the thermal conductivity and diffusivity of the gas, respectively 

and Cpg is the specific heat at constant pressure. In the nearly isothermal and 

adiabatic cases, the gas density pg in the above equations is defined as an averaged 

density over the bubble. Obviously, the parameter n is not constant and changes its 

value throughout the flow. 
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Since the shock wave has a finite strength, the flow conditions upstream of the 

shock front are different from those far downstream of the shock. It is reasonable 
to expect that the gas phase will behave nearly adiabatically near the shock front (n 

- r) but nearly isothermally far downstream (n-1). Then neither of Prosperetti's 
results, Eq. (13) and Eq. (14), can be applied to the whole flow region. It has to be 

stressed that the shock structure cannot be analyzed separately but the whole flow 
region must be solved simultaneously. In light of this, in the present paper n is 

approximated to be a constant in the range from 1 to r, and moreover, as in the 
analysis of Noordzij & Wijngaarden5, the damping factor W in Eq. (10) is approx­

imated to be a constant given by the linear analysis of Devin 13 as 

(16) 

wher ov, OR and or are the damping factors due to the liquid viscosity, the acoustic 
radiation by bubbles in the liquid and the thermal dissipation in the gas, respectively. 

These are given by 

3( r-1) ( µg )112_1_ 
12 pgrPrg (J)l/2 Rr (17) 

where the subscript r denotes some reference conditions and w is the resonant 
frequency of a bubble defined by 

(18) 

In these equations, µ is the viscosity, C1 the speed of sound in the liquid and Pr8 the 
Prandtl number of the gas. 

Strictly Eqs. (16-18) cannot be applied with sufficient accuracy to any nonlinear 

shock wave with a finite strenght. Of course, we can solve the temperature field 
within a bubble exactly as in the Prosperetti's paper12 for a spherical bubble. 
However, the sphericity of the bubble itself is an approximation. For a deformable 

bubble, it will be very difficult to determine the temperature field even numerically. 
In the present study, only weak shocks ( with pressure ratios less than 1.15) are 
treated and attention is mainly paid to the fleets of translational velocity slip between 
the two phases. Such a situation will, therefore, justify the use of Eq. (16) in 
conjunction with Eqs. (17) and (18) as a damping factor and of Eq. (11) with a 
constant effective polytropic exponent n in the range from· 1 to r, at least for 
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qualitative discussions. 

Here it will be worthwhile to point out that Prosperetti's result yields a thermal 

damping factor similar to Eq. (16). For the nearly isothermal shock (D~l), Eqs. 

(10) is not substantially affected by rewriting Eq. (11) and (13) as 

r( r-1) Re 4/3 

20r D pg 

(19) 

(20) 

In this case, the damping factor '\JI'' should include only the contributions from the 

viscousity and the acoustic radiation, and then '\JI'' can be put to '\JI''= 1 + 1/JA. 

3. Stationary Shock Waves 

3.1 Numerical scheme 
For stationary shock waves, the coordinate system Ct, x) is transformed into Ce, 

17) by 

(21) 

where Us is the speed of shock wave defined later. After straightforward but lengthy 
manipulation, Eqs. (1) to (4), Eqs. (10) and (11) in conjunction with Eqs. (5) to (7) 

are rearranged by making use of the relation iJ( ) / iJTJ = 0 to yield 

1 .!l/}_ 1 dpg e ( Aao df] 
/3 de +pg de - Usflpg 1 +Aaof] de 

1 ~) 
pg de 

+ (1 +l) p2 2 (1- ao)2 
.!l/}__ 9 p2 s13____£__ 0 c22) 

ao k pg (1- aof])3 de ReKUs pg Us -

d
2 
pg _ l1_ _L( dpg )2 

_ l_ .!l/}_ dp g + (~) /3 s13 dpg + 3r 132 w3Ai!_ = o 
de2 6 pg de fl de de ReUs pg de Us2 pg r 

Ug= Us( fl~g -1) 
ao(/3-1) 

u1= Us (l - ao/3) 

- 2 (f]-1) 
p-r- Us ao(l - ao) (l - ao/3) 

(23) 

(24) 

(25) 

(26) 

(27) 
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(1- ao) (/31 - /3) 
(1- ao/3) (/31 -1) 

(1- ao/31) (/3-1) 
(1- ao/3) (/31 -1) pgi• 

/3-1 
(l-ao/3) 

The above system is subject to the boundary conditions 

at x= -oo, 

at x=oo, 

(28) 

(29) 

(30) 

(31) 

(32) 

Numerically the shock front is assumed to be located at x=O. The subscript 1 
denotes flow conditions far downstream of the shock. In these equations, the diffusion 

and the repulsive forces are neglected. This is because the steady solution is free 

from ill-posedness of the system as an initial value problem and moreover these 
forces do not affect appreciably the flow properties. Later, a more quantitative 

discussion about the effects of these forces will be given. 
For the existence of stationary shock waves, pg1 must be greater than pgo (=1). 

Since the detailed discussions about the locus of solution curves near the shock front 

and the downstream boundary in the phase plane is given in Refs. 3, 6 and 8, we will 
not dwell on this problem any more here. 

Since Eqs. (22) and (23) in conjunction with Eqs. (28) to (31) constitute a system 

of simultaneous ordinary differential equations for /3 and pg, they can be solved for 

the boundary conditions (32). Once these are solved, the solution can be substituted 
into Eqs. (24) to (27) to determine Ug, u,, p and pg. 

Before proceeding to the numerical simulation, we will derive some important 
information analytically from the above equations in the case of the small void 
fraction ao. From Eq. (31), we have 
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(33) 

with which Eq. (22) in conjunction with Eq. (29) yields 

/3pg=l +O(ao). (34) 

When this is substituted into Eq. (29) again, we get 

(35) 

In many previous papers, the velocity difference has been neglected as a small 

Table 1 Physical constants for Po= 1.0135 X 10' 
Nim', T 0 =15.0 °C 

Air Water 

p.., = 1.23 kglm' p,=l.0Xl0'kglm' 

Cpg=l.006X·l0' Jlkg. K µ 1= 1.002 X 10-• kglm. s 

y=l.4 C,= 1.5 X 10' mis 

Prg=0.72 

µ 8 = 1. 78 X 10-s kglm. s 

K 8 =2.41 x 10-2 Jim. s. K 

quantity of order ao. Obviously this is not the case. For example, ao112 =0.l for ao= 

0.01, and further the velocity difference for ao=0.01 is not always small and so cannot 

be neglected as in Refs. 2, and 6 to 8. This is one of the most important results in this 

paper. Our numerical results will support this result. 

3o2 Results and discussions 
In what follows, numerical simulations are performed for a bubbiy liquid com­

posed of air and water. The physical constants are listed in Table 1, where To is the 

temperature of the undisturbed mixture. The reference velocity Uo is put to 10 m/s 
so as to make the parameter r order unity for analytical and numerical convenience. 

The fourth-order Runge-Kutta-Gill method was adopted for the numerical 

simulation of stationary shock waves. Undisturbed flow conditions for the air-water 

mixture are Po=:= 1.013 x 105 N /m2
, To= 15 ·c, ao=0.05, Ro=0.5 mm. The shock 

strength is controlled by specifying the pressure ratio Pi! Po and the effective 
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Fig. 1 Stationary shock waves for n= 1.0: a pi/ Po= 1.0933, b 
P1IP0=1.l, C P1IP0=1.15. 

polytropic exponent n. 

In Fig. 1, pressure profiles are shown for P1/Po=l.0933, 1.10 and 1.15. for n=l.O, 

where the damping coefficients '1' evaluated from Eq. (16) in conjunction with Eqs. 

07) and (18) for Pr=(Po+Pi)/2, pgr=(pgo+pg1)/2, and Rr=(Ro+Ri)/2 are 115.3, 
115.1 and 114.4, respectively. The shock speeds Us in m/s for these three shocks are 

48.29, 48.43 and 49.52, respectively. These show three type of flow patterns as first 
found experimentally by Noordzij & wijngaarden5

• Profiles of the pressure, the 

velocities and the void fraction are shown in Fig. 2 for P1!Po=l.ll. 

In many previous studies, the velocity slip e= Ug - u1 is set to zero, because the 

effects of e on the structure was assumed to be negligible. As stated previously, 
however, this is never the case. To prove this, the correspoding shocks for the 
mixture model are calculated by replacing Eq. (22) by Ug = u1 or 
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Fig. 2 Shock structure of a stationary shock for p,/Po=l.11 
and n = 1.0 ; a pressure, b void fraction, c bubble and 
liquid velocities. 
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Fig. 3 Effect of effective polytropic exponent n ; a n = 1.0, 
p,/Po=l.l, b n=y(=l.4), p,/Po=l.l. 
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(36) 

The results are shown in Fig. 3a for P1IP0=1.l and n=l.0. Obviously, the difference 
between the shocks in Figs. lb and 3a is remarkable. The effect of velocity difference 

c is locally very small but it is cumulative. The whole shock structure must be 

determined simultaneously and then the cumulative effect becomes important. Owing 
to the relative translational motion of bubbles, the pressure oscillation and the peak 

pressure near the shock front are effectively suppressed and the shock layer is also 

remarkably elongated. 
Using Eq. (22) in conjunction with Eq. (29), the shock thickness d can be roughly 

estimated to be d - ReUsk/9. For the shocks considered here, the shock thickness 

is about 1200. Since the reference length Ro was taken to be 0.5 mm, the shock 

thickness d is about 0.6 m, which is much less than the numerical results shown in 
Figs. 1 and 2. This may come from the fact that the shock in the bubbly liquid is not 

a. 
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Fig. 4 Pressure distributions for '1'=1.0(,y.=,y,-=0. 
0) ; a p,/ Po= 1.085, b p,/ Po= 1.11, c p,/ Po= 1.15. 
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only dissipative but also dispersive. Further, the shock thickness or the shock 
structure cannot be estimated by the viscous dissipation only. Empirically the shock 

thickness d was found to be estimated by d=ReU.k/9 ao112 which yields d ~ 3 m for 
the present cases and is quite consistent with the results in Figs. 1 and 24

• 

To investigate the effect of the polytropic exponent n, a shock for the mixture 

model is shown in Fig. 3b for n=l.4 and P1!Po=l.l. Obviously the main features are 
very similar to the shock in Fig. 3a. It was confirmed that in general the value of n 
put to a constant does not affect the flow pattern at all, but affects the shock speed 

and the frequency of pressure oscillation near the shock front. This means that the 
flow pattern depends mainly on the pressure ratio P1! Po and the damping factor '1". 

It has been pointed out that the effect of the thermal dissipation is of primary 

importance for the atenuation of the bubble oscillation. In order to investigate this 
situation, the pressure profiles are shown in Figs. 4a to 4c for P1! Po= 1.085, 1.10 and 

1.15, respectively, where the dissipations due to the thermal conduction and the 
acoustic radiation are neglected ('1"=1.0). The corresponding results for 'IJl=l.0+ ef!n 

a. 
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Fig. 5 Pressure distributions for '1' = 1.0 + ,h ( ,rr = 0. 
0); a P,/Po=l.085, b p,/Po=l.11, c p,/Po=l.15. 
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Fig. 6 Distributions of void fraction a, bubble 
belocity Ug, liquid velocity u,, and expanding 
velocity of bubbles VR for p,/ Po= 1.15 and '\It= 

1 + V/R· 

are shown in Figs. 5a to 5c, where only the thermal dissipation is neglected. 

Comparison among the results in Figs. 1, 4 and 5 suggests that the thermal dissipation 
plays the most important role in the suppresion of the oscillatory behavior of the 

mixture pressure. It has to be stressed, however, that the pressure profile for P1! Po 
= 1.085 is not appreciably affected by the thermal and acoustical dissipation. This 
means that the structure of weak shock waves is mainly controlled by the viscous 

drag due to the velocity difference between the two phases. 
Obviously the bubble oscillation is important for relatively strong shocks as 

shown in Figs. 4 and 5. In Figs. 6a to 6c, distributions of the void fraction a, the 
bubble velocity u 8 , liquid velocity u1 and the expanding velocity of the bubble VR are 

shown for P1/Po=l.15 and "\Jl=l+¢,R. This shows that the bubbles oscillate 
significaltly near the shock front. This oscillation is responsible for the pressure 
oscillation as shown in Fig. 5c. Compared with the result in Fig. le, the pressure 

oscillation is remarkably enhanced without the thermal dissipation. In spite of this, 
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it is interesting that the average or the global behavior of the shock layer is almost 
independent of the thermal and acoustical dissipations. 

4. Unsteady Shock Waves 

4.1 Numerical scheme 
Next we consider a shock tube problem, where the undisturbed conditions in the 

low and high pressure chambers are uniform. After a diaphragm separating two 

chambers is ruptured, compression waves propagate in the low pressure chamber and 

rarefaction waves propagate in the high pressure chamber. For a single gas-phase 
flow, such a shock tube problem is well understood analytically, as well as numeri­

cally, at least for an ideal gas. But for the bubbly liquid, the situation is quite 

different. As far as the authors know, there have been no papers treating the shock 
tube problem of bubbly liquid analytically. This may be accounted for by the 

important fact that the construction of a system of model equations is very difficult. 
Mathematically, hyperbolicity or well-posedness of the system is of crucial impor­

tance. Fortunately, the governing equations (1-4), in conjunction with Eq. (5-8), 

constitute a well-posed system as an initial value problem, if the coefficient of the 

diffusion force DM is chosen as a small positive constant9
• 

Here we apply an Total-Variation-Diminishing (TVD) scheme developed by 

Chakravarthy & Osher14, which has proved to be very effective for the numerical 
analysis of a supersonic gas-particle flow 15

• Although the present system can be a 

hyperbolic system, the TVD-scheme cannot be applied directly because the momen­
tum equation of bubbles, Eq. (4), is not given in the conservation form, which is 

essential for the successful application of the TVD-scheme. So some rearrangement 

of the momentum equation is needed. We rewrite Eqs. (1) to (4) as 

k+ aJ =h at ax 
qr=[(l-a), apg, (1-a)uz, kac], 

(37) 

(38 a) 

F=[(l-a)uz, apg(uz+e), (1-a)u/+rpgn, kaeug+nrao</J+ apgDM], 

(38 b) 

hT=[o, 0, W, -kae~~l 

aw 9 ] 1-a - Re apgRe ' (38 c) 
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where 

</J= f pgn-zdpg, (39) 

W= a 'p -p)=(l- ) D1u1 +lb_ ax'-g a Dt ax• (40) 

and the superscript T denotes transpose. In the momentum equation of bubbles, Eq. 
(4), the relation 

_a_lb__ j_</J_ nr pgn-, ( - ) apg 
1-a ax -nraoax + (1-a) apg ao+aoa ax' (41) 

was used to get the above rerranged system. In this equation, the first term on the 
right hand side can be written as a(nrao¢)/ax and the second term may be very small 
at least near the shock front, because apg - ao=O (aa2) as was shown in the previous 
chapter for the stationary shock waves. We can also get a relation aui/ax=O(ao) 

from Eq. (1). From these, it is obvious that the two terms, including the first-order 
space derivatives in Eq. (38 c), are very small for small ao. Further although the 
original momentum equation of bubbles is not given in the conservation form, the 
rearranged equation can be used to approximate a conservation law in the numerical 
simulation. 

For more precise discussion of the rearranged system, the characteristic speeds 
v of the system are obtained from 

det(A-vl)=O, 

where I is the unit matrix and A is given by aJ I ap as 

A= 

0 

( 
4k-l 

pg E 2k au1) 
1-a 

(1-a) C2-u/ 

0 

~l-a)C2 

pg 

where C is the sound speed of the mixture defined by 

(42) 

1 0 

0 
, (43) 
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a(l-a) · 

Eq. (42) is rewritten as 
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where X = u1- 11. The hyperbolicity of the system requires 
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(44) 

(46) 

which is different by order ao from the corresponding requirement for the original 

system9
• Numerically it was also confirmed that two eigenvalues 11, associated with 

the pressure waves, and the remaining two associated with the voidage waves 
obtained from Eq. (45), are different from those of the original system by order al 
and ao, respectively. It has to be stressed that the system of Eqs. (37) to (40) is 

mathematically the same as the original system of Eqs. (1) to (7). The approximated 

eigen-values or the speeds of pressure and voidage waves are used only for numerical 

convenience. 
Before application of the TVD-scheme, one more task remains to be solved. The 

right hand side of Eq. (37), Eq. (38 c), has terms with a factor W including time 

derivatives. These must be rewritten in terms of space derivatives. 
With Eqs. (1) and (4) in conjunction with Eq. (40), we have 

(48) 

where 
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_ _Q_[2c(1-2a) 
ax 

c(l-a)] ou1 _ _Q_[c2(z--l )]k 
Zk ox ox Zk ox 

(49) 

These are substituted into Eq. (10) in conjunction with Eq. (5) to yield 

p=p -aoW -bW+aa2pg +b opg 
g ax ox2 ax 

11 pg-
2

'
3

[ a< + )]
2 

4-q, 1 a< + )+ 1 -5/3,1. c5o) 
18 a2 ax Ut a€ 3Re a ax Ut a€ 3 pg 'f'· 

This is again substituted into Eq. (40) to yeield 

aµ+( aa +b)aw +( ab -l) w-aY'.1h-( aa +b) a
2
pg -( ab) apg 

ox2 ax ax ax ox3 ax ox2 ax ax 

11 pg -213 a a2 4-q, 1 a2 

+ 9- a2 ox (u1+ac) · ax2 (u1+ac)+ 3Re a ox2 (u1+ac) 

11 a (pg-2'3
) [ a ]2 4-q, 1 aa a + 18 ox a2 • ox (ui+ac) - 3Re a2 ox. ox(ui+ac) 

_ _l_Q_( -5/3,1.)=0 
3 ax pg 'f' ' 

(51) 

where 

pg -2/3 ( _!!_) _ pg -2/3 [ _!!_ (1- a)] aa 
a 3a(l-a) l+ k 'b- 3a(l-a)2 l+ k + 2k2 ox (52) 

Obviously Eq. (51) is a second order partial differential equation for W with respect 

to x. Mathematically if the spatial distribution of flow quantities is given, the 
quantity W is obtained as a solution to Eq. (51) for the appropriate boundary 

conditions far upstream and far downstream of the wave region. 
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Now we summarize the numerical procedure : 

i) For specified initial conditions at t=0, the distribution of Wis solved numeri­
cally with Eq. (51). The boundary conditions for Ware W=0 in the regions 

outside the wave. A Successive-Over-Relaxation (SOR) method is used in the 
present paper. 

ii) With the solved W, all terms in the right hand side of Eq. (37), Eq. (38 c), are 

calculated for the specified conditions. 

iii) Finally the TVD-scheme is applied to determine a, pg, u1 and Ug, which are 
substituted into Eq. (11) and Eq. (50) to evaluate pg and p, respectively, at time 

t = ilt, where ilt is a small time increment satisfying the Courant-Friedrichs­
Levy (CFL) condition, 

(53) 

In this TVD-scheme, Eq. (45) is solved numerically by a modified Bairstow 

method to get the four eigenvalues v, which are used to evaluate the right and left 
eigenvectors given in Appendix A. The accuracy of the TVD-scheme is second-order 

in space and time. 

iv) The procedured ( i )-(iii) are repeated to get a solution at any specified time 

t. As described above, one time-step requires many computations and further 
one run requires much computing time even on the supercomputer. 

For comparison, a numerical solution for the mixture model was also obtained 
by a similar method. In this case, Eq. (4) is replaced by Eq. (36) and then Eqs. (1) 

to (3), (5) to (7), (10) and (11) in conjunction with Eqs. (16) and (17) constitute a 

closed system, which can be solved relatively easily (see Appendix B). 

In the shock tube problem, the initial flow conditions in the high and the low 
pressure chambers separated by a diaphragm must be specified. These are specified 
as follows; 

u1=ug=0, a=ao, pg=l, p=pg=r, in the low pressure chamber, (54a) 

u1=ug=0, a=a2, pg=pg2, p=pg=Pz, in the high pressure chamber, (54 b) 

where the diaphragm is located at x=0 and the subscript 2 denotes the high pressure 

chamber. The conditions denoted by the subscript zero are the same as those used 
in the calculation of stationary shocks. Since the initial states are assumed to be in 

thermal equilibrium and the temperature is uniform throughtut the whole initial flow 
region in both the high and low pressure chambers, we consider two cases, 
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diaphragm 
water l 

0 0 0 0 0 0 0 0 
0 0 0 

a 0 0 0 
0 

0 0 0 0 0 0 0 0 0 0 

low pressure chamber high pressure chamber 

0 0 0 0 0 0 0 0 0 

b 0 0 0 0 
0 

0 0 0 0 0 d 
0 0 0 

piston 

Fig. 7 Initial conditions for shock-tube problem. 

Pi=rpg2, a2=ao/ pg2, 

ao/ pg2 
(1-ao)+ao/ pg2 · 

-

(55) 

(56) 

First both chambers are occupied by the same mixture in the conditions described by 

the subscript zero. After the two chambers are separated by a diaphragm, some 

water is introduced slowly into the high pressure chamber to get the pressure P2 as 
in Fig. 7a. In this case, we have the first condition (55). If after the diaphragm is 

introduced, a piston located at the end of the high pressure chamber is pushed slowly 

into the chamber as in Fig. 7b, we have the second condition (56). Since the initial 

void fraction is chosen to be 0.05, the difference between the two conditions is very 
small, and it was confirmed that the numerical results do not appreciably depend on 

the conditions. 

4.2 Results and discussions 
First of all, it was confirmed that no flow property is appreciably affected by the 

values of DM and H in the ranges 0.002 < DM < 0.05 and 0 ~ H < 0.01, respectively, just 

as in Ref. 9. All the numerical results shown later are for Po=l atm, ao=0.05, Ro= 

0.5 mm, DM=0.01 and H=0.001. 
It is interesting to investigate the distribution of an initial discontinuity just after 

the rupture of a diaphragm. In Fig. 8, a time history of the pressure profile is shown 

for Pi/ P1 = 1.2 and n = 1. The pressure is slightly oscillatory near the shock front but 
it is relatively much more oscillatory behind the rarefaction waves. This may come 
from the fact that the sharp increase in pressure at the shock front produces a strong 
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Fig. 8 Time history of pressure profile for P2! p, = 1.2 and n = 1.0. 

0.05 

a 

0 

Fig. 9 Time history of void-fraction profile for P./Po=l.2 and n=l.O. 
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contraction and acceleration of bubbles which results in effective dissipation. The 
corresponding result for the void fraction a is shown in Fig. 9. Near the shock front, 

the void fraction is much more oscillatory than that of the pressure. As in the case 

of the shock tube problem of an ideal gas, a contact surface is clearly seen in this 
figure. As was discussed by Prosperetti & Wijngaarden16

, the so-called Riemann 

invariants do not exist in the bubbly liquid and these wave profiles are not self­
similar. 

Closer investigation of unsteady waves, profiles of the pressure, the void fraction, 
the bubble velocity and the liquid velocity are shown in Figs. 10a to 10d, respectively. 
First, we can see that the slope of the rarefaction waves gradually flattened with 

time. This is consistent with the experiment of Campbell & Pitcher1
• Second, the 

whole wave region is unsteady and the shock front is decaying with time. The rate 
of decay is however very small. Third, the wavy oscillation of the void fraction near 
the shock front is appreciably suppressed with time, but the situation is completely 
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Fig. 10 Time evolution of flow field after rupture of a dia­
phragm for pz/ Po= 1.2, n = 1.0; a pressure, b void frac­
tion, c bubble velocity, d liquid velocity. 
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/ p1 /p0 s1.11 

740 

L ___ ...;;:,,,~::::::::: __ ..,_=======1=•0=9=3=3=:::r:====j 
0 100 200 X 300 400 500 

Fig. 11 Time-convergency of shock front for p,/ Po= 1.2 and n = 1.0 ; 
--- unsteady shock at !=148, ----- unsteady shock at !=740, 
-- stationary shock. 
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different in the region just downstream of the rarefaction wave. Fourth, the induced 
bubble velocity is much larger than the liquid velocity17

• Due to the viscous drag 
between the two phases, the bubble velocity becomes minimum in its magnitude near 
the central part of the waves. On the contrary, the magnitude of the liquid velocity 
becomes maximum near the wave center. 

The pressure profiles near the shock front are shown in Fig. 11 and compared 
with stationary solutions for p,/Po=l.093 and 1.11 obtained in the previous chapter. 
Obviously, the unsteady shock is decaying with time and approaching a stationary 
one. It has to be stressed that we cannot know the pressure ratio p,/ Po of the 
stationary shock which the unsteady shock approaches asymptotically. Only when 
the asymptotically time-converged solution is obtained, the flow conditions denoted 
by the subscript 1 are found for the specified conditions in the high pressure chamber 
denoted by the subscript 2. In the present case, however, the relaxation region of the 
velocity difference e= u8 - u, is very long further it will be almost impossible to get 
a fully time-converged solution. One reason is that one run for t = 7 40 in Fig. 11 

1.2 
p a t-148 296 444 
1.1 

Lo 

0.05 

a 

b 

0,04 

0 

u 

C 

-0.1 

3000 0 -3000 

Fig. 12 Time evolution of flow field for mixture model after 
rupture of a diaphragm for Jh/Po=l.2 and n=l.O; a 
pressure, b void fraction, c mixture velocity. 
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1.1 

p 

1.0 ,-:::;:_ ____ ,__ _____ ..__ ____ __. 

0 100 X 200 300 

Fig. 13 Time-convergeny of shock front for mixture model 
for P.,/Po=l.2 and n=l.O; ----- unsteady shock at/= 
148, --- unsteady shock at / = 444, -- stationary 
shock for p,/ Po= 1.0933. 

required more than two hours of computing time on the supercomputer. 

For comparison, a numerical solution to the mixture model (u1= Ug= u) for the 

same initial conditions as those for the previous solutions was performed and the 
results are shown in Fig. 12a to 12c. Obviously the shock front is very oscillatory and 

the amplitude of the oscillation becomes larger with increasing time in the early stage 

of the evolution, but for a long time it asymptotically tends to converge. In this case, 

the central part of the profiles remains almost constant for t > 148 and we can find the 
conditions denoted by the subscript 1 used in the calculation of stationary shocks. 

For example, the present result yields PilPo=l.0933 for Pz/P1=1.2. To show more 

clearly the time-convergency of the shock front, the unsteady pressure profiles for Pzl 
Po=l.2 are compared with a stationary shock for P1!Po=l.0933 in Fig. 13. We can see 
a satisfactory time-convergency of the unsteady shock with the corresponding 
stationary shock. This is very important numerically as well as theoretically. The 

steady and unsteady shocks were calculated with comletely different numerical 

schemes. In spite of this, the good agreement between the stationary shock and the 
unsteady shock for large t suggests sufficient reliability and accuracy of the present 

numerical schemes and the results. 
Finally, one more important finding is described here. By comparison between 

the results in Figs. 10a and 12a, we can clearly recognize that the shock propagation 
to the left and the rarefaction wave propagating to the right in Fig. 10a are appre­

ciably faster than those in Fig. 12a. This result is quite consistent with a theoretical 

prediction that the speed of pressure waves in the bubbly liquid for Ut"=I= Ug is faster 
than that for u1= Ug. 
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5. Conclusion 

Weak shock waves in a bubbly liquid were calculated numerically. Results for 

stationary shocks indicate that the relative translational motion of bubbles affects 

appreciably the whole shock structure. Three types of shock structure are found 

numerically for a mixture with relative translational motion of bubbles. It is interst­

ing that the translational motion of bubbles cooperates with the dissipations due to 

the thermal conduction in the gas and acoustic radiation in the liquid to suppress 

effectively the oscillatory behaviour near the shock front. 

Shock tube problems have also been solved numerically. For the mixture model, 

it was confirmed that an unsteady shock same as above approaches asymptotically 

with time the corresponding stationary shock. This situation is substantially the case 

even for a mixture with relative translational motion of bubbles. The shock layer, 

however, becomes very long and then a large amount of time or a long distance will 

be needed for the shock to be stationary after the rupture of a diaphragm. This 

suggests that it is very difficult to realize a stationary shock experimentally. The 

shock speed depends appreciably on the relative motion of the bubbles. Experimen­

tally it is absolutely necessary to measure the shock speed very carefully and 

accurately to confirm the steadiness or unsteaduness of the realized shock in the 

laboratory. 

Appendix A. Hyperbolicity of the system 
Although the hyperbolicity of the system was discussed in the previous paper9, 

here we discuss it more precisely and prove that a slight modification is needed in the 

previous result. 

We define a function F(X) by 

with which Eq. (45) can be written as 

F(X)=O. (A2) 

For a solution X to the above equation, the left and the right eigenvectors /=(/1, /2, 
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/1= lk_!!a(X+c)+ (l-p;)c2(X+u1)[DM+ p~2(1-a)c2] 

(l-!)c2 (X2+3cX +2c2)(X + u1), 

!2= _ ____k__(X +2c), pg 

ri=l, 

r2 (1-p~) C2 [X2 -(l - a) C2
]. 

r3= -(X-u1), 

r 4= - ~ (4k-l)+ t~~ (l-!)c2 (X +c)[X2-(l-a)C2
]. 

(A3) 

CA 4) 

Since Eq. (A 2) has four real distinct roots under the condition (46), we have four left 

eigenvectors and the corresponding four right eigenvectors. Denoting any two 
solutions to Eq. (A 2) by X and Y, the left eigenvector I for X and the right 

eigenvector r for Y satisfy 

(l-:)C
2 

lr=(X+ Y)(X2 + Y2)+3c(X2 +XY+ Y 2
) 

+ { 2c2
- pgfM - c 2

[ 1 + k~g (1-a) ]} (X + Y) 

For X=I= Y, we have a relation by making use of F(X)-F( Y)=O 

cC2(1+ 12/)=(X+ Y)(X2+ Y2)+3c(X2 +XY+ Y2) 

+{2c2- pgfM - c 2 [1 + k~g (1-a)]} (X + Y), 

(A5) 
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with which we have lr=0. Next for X= Y, Eq. CA 2) becomes 

(l-a)C2 /r=4X3+9cX2+2{2c2- pgDM 
k k 

-c2
[ 1 + k~g (1-a)]} X-cc2(1 + 12t) CA6) 

The right hand side is equal to dF/dX which is not zero at X satisfying F(X)=0, 

because F(X)=0 has four real distinct roots. This means that the system has four 
linearly independent eigenvectors and that the system is totally hyperbolic. In the 
previous paper, it was concluded that the system is hyperbolic if F(X)=0 has four 
real roots, which is not sufficient. More strictly Eq. C45) must have four distinct real 
roots for the system to be hyperbolic. 

It is also important to describe the fact that the solution X in the expansion 
series with respect to small velocity slip c in the previous paper9 is not appropriate, 
because the convergence of the series is not good. So this time the solution to F(X) 

=0 is solved purely numerically. 

Appendix B. Governing equations for the mixture model 
For the mixture model, Eqs. Cl) to C3), C5), C7), Cl0) and Cll) are rearranged as 

follows: 

k+ af =h at ax ' 
qT=[(l-a), ap8 , (l-a)u], 

F=[(l-a)u, apgu, pg+(l-a)u2
], 

hT =(0, 0, W), 

0 0 1 

A= of= 
a a - l-a pgu u 

oq l-apg 

nr pg•-u2 nr~ 2u a a 

' 

pg -2/3 a2 w + { a [ pg -213 ] + pg -2,3 ( aa )} aw 
3a(l-a) ox2 ax 3a(l-a) 3a(l-a)2 ax 8x 

CB 1 a) 

CB 1 b) 

CB 1 c) 

CB 1 d) 

CB 2) 

{ a [ pg -
213 

( aa )] } + ax 3a(l-a)2 ax -l W 
pg -2,3 a3pg { a [ pg -2,a ] 

3a(l - a) ox3 
- ax 3a(l- a) 
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+ pg -213 ( aa )} 1:.b_ a [ pg -213 ( aa )] 1h._ 
3a(l - a)2 ax ax2 - ax 3a(l - a)2 ax ax 

_ l pg-2'3(au)(a2u)- 1 a (pg-2'3)(au)2 
9 a2 ax ax2 18 ax a2 ax 

+~ [lh_l( aa) (_2!!__)] =O 
3Re a ax2 a2 ax ax ' 

- pg-2,3 aw 
p-pg- 3a(I-a) ax pg -2/3 ( aa) w 

3a(l-a)2 ax 
+ pg -213 lh_+ pg -213 (k) apg +l pg -213 ( au )2 

3a(l -a) ax2 3a(l-a)2 ax ax 18 a2 ax 

Eigenvalues II of the matrix A are easily obtained as 

v=u+C, u, u-C, 

where 

nj}g 
a(l-a) · 
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