
Mem. Fae. Eng., Kyoto Univ., Vol. 57, No. 3 (1995) 93

Task Modeling by the Keywords Extracted from Manual
Pages

By

Toshikazu NISHIMURA*, Michihiko MINOR** and Katsuo IKEDA*

(Received March 31, 1995)

Abstract

A task modeling method using keywords related to the functions of commands for in­
telligent user interfaces is proposed. A task model is a description of functions and opera­
tions of the computer.

The task model is described as the name of a task in our method. We define the name
of a task as the minimal set of common keywords which definitely distinguish the task. For
the name of a task, keywords indicating the concepts of each command are needed. Since
the order of the number of the keywords is that of the number of the commands, it is much
easier to implement this method than a procedural knowledge based one.

We also propose a method to extract the keywords automatically from the manual
pages, the on-line reference manuals for UNIX. Since almost every command is associated
with manual pages, the task names can be easily updated when a new command is added to
the system.

To show the effectiveness of the task names and the keywords extracted from the
manual pages, we direct our attention to users' command histories. We show the effec­
tiveness of these keywords by showing the relationship between the tasks in the history and
the task names through statistical analysis.

1. Introduction

This paper describes a method of task modeling for experts using keywords related

to the functions of commands for intelligent user interfaces. We also analyze the

keywords extracted automatically from manual pages to show that they are suitable for

our method.
An intelligent interface is to bridge the gap between a user and a computer and to

support dialogues between them. A task model is a description of functions and opera­

tions of the computer. This is one of the most important components of intelligent inter­

faces since all user support, such as plan recognition, automated macro execution,

customizing tools, user help and so on, is based on task models.

An intelligent help system, which is to assist users with advice suitable for their goal

inferred from their inputs and questions, is a sort of intelligent interface and also has a

* Department of Information Science, Kyoto University, Kyoto 606--01, Japan
** Integrated Media Environment Experimental Laboratory, Kyoto University, Kyoto 606--01, Japan

94 Toshikazu NISHIMURA, Michihiko MINOH and Katsuo IKEDA

task model in it.

Since novices lack the knowledge of plans to reach their goals and usage of com­

mands, most intelligent help systems are for novices and the task models in them are

described as procedural knowledge bases. For example, UNIX Consultant (UC) is an in­

telligent help system which can answer users' questions about UNIX file systems in

English. The task model in UC is a description of structures of plans for users' goals.

Neo-Assist5> and Command Interface Shell6>, which are intelligent help systems on

UNIX, also incorporate descriptions of structures of plans as their task models.

Descriptions of structures of plans are suitable for symbolic reasoning, and are

natural and easy to understand7l. However, they are hard to implement in practical use

since the order of the number of plans is that of the number of permutations of com­

mands and there are too many plans to be described by the system designers. Moreover,

most systems can not update their task model automatically and can not respond to

unknown commands.
Schiele et al. propose a method to update a task model by inferring the task structure

from the interaction protocols8>. The method mainly depends on inductive reasoning

with some heuristics and can be used for task analysis. However, all the functions of the

target commands are needed for this method and the system will not work on unknown

commands.

Moriyon et al. propose a method to generate help automatically from the model us­
ed to implement the interface. Their method is to develop the interface and its help con­

sistently. However, it is not suitable for commands in ordinary computer systems since

the number of commands is much larger than that of the interface parts.

Those task models are not suitable for ordinary UNIX computer systems since they

will not work for user defined commands and such commands are frequently added to

the system. Moreover, task models described as procedural knowledge bases are not
suitable to support experts since they have an abundance of knowledge of plans to reach

their goals and of usages of commands.

Thus we propose a method to describe a task model for intelligent interfaces for ex­

perts. We define a task as a set of commands. In our method, the function of a task is

described as the name of the task. We define the name of a task as the set of keywords
related to the function of the task which distinguish the task definitely. Though

keywords corresponding to each command are described by the system designer, it is easy

to implement the method since the order of the number of the keywords is that of the

number of commands and the number of commands is rather smaller than the number of

permutations of commands.
We also propose a method to extract the keywords automatically from the manual

pages, the on-line reference manuals for UNIX. Since almost every command is

Task Modeling by the Keywords Extracted from Manual Pages 95

associated with manual pages, the task names can be easily updated when a new com­
mand is added to the system.

To show the effectiveness of the task names and the keywords extracted from the
manual pages, we direct our attention to users' command histories. We consider a series
of commands in the history to be related to one of the user's goals, so the set of the com­
mands should have a name. Thus we can show the effectiveness of the task names and
the keywords by showing the relationship between the tasks in the history and the task

names.
Section 2 describes the definition of our task names. We propose a method to ex­

tract the keywords automatically from the manual pages in section 3. Section 4 discusses

the effectiveness of the task name and the keywords. Finally, we present conclusions and
note related future works in section 5.

2. Task Names

We consider a case where a user issues multiple commands to accomplish his task.
The task in this situation is described as a tree structure, where the root node represents
the user's end goal and other nodes represent sub-goals. Each leaf node in this structure
represents a command or a use of a command and contains knowledge related to the com­

mand.
Since many experts have an abundance of knowledge of plans to reach their goals

and of usages of commands, it is not necessary to support features like the structure of a
user's plans, usages of commands and the execution order of commands leading to the

goal. So we omit these from the task models and define the description of the situation
as the correspondence of the set of executed commands to the name of the set describing
the user's goal.

We define a task as a set of commands. We call the number of elements in a task the
size of the task. We assume each task involves executing two or more commands.

When a user hears the name of a command, he may associate other words. For ex­
ample, he may associate words like file, print jobs, printer, font and so on for "lpr", the

command for printing out files in UNIX. These words are descriptions of the concepts
related to the command. The relation between commands and these words is a many-to­

many correspondence.
Let's consider the situation where a user issues multiple commands to accomplish a

task. The words a user associates with the task are related to the user's plan. These
words are the common concept related to the commands, i.e. the elements of the task,
when we assert that the command combination does not affect the concept.

Thus we can use the concepts related to a user's goal as the common keywords when

96 Toshikazu NISHIMURA, Michihiko MINOH and Katsuo IKEDA

the keywords indicating the concepts of each command are assigned to the command in
advance.

However, the common keywords themselves are not sufficient as the name of a task
since some tasks have identical common keywords. For example, when the set of com­
mon keywords for a task Tis K, all subsets of Thave K as the set of common keywords.

Thus we define the name of a task as the minimal set of common keywords which
distinguishes the task definitely. When there is no such set for a certain task, the task
does not have a name. A different name is given to a different task.

All we must prepare for this method are the keywords for the concepts of com­
mands. Since the order of the number of keywords is that of the number of commands,

it is much easier to implement this method in practical use than to implement the task
models as procedural knowledge bases.

Our method for the task model is formally defined as follows:
Assume that the number of commands is finite. Uc denotes the set of all commands

and 2uc denotes the power set of Uc. Keywords are finite-length character strings. We
assume that the set of all keywords Ux is a finite set. 2uk denotes the power set of Ux.

f': Ux-2uc denotes the mapping of the set of keywords onto the power set of Uc.

J'(k) is the set of commands which are assigned a keyword k, provided that Vk 3 Ux,

I J'(k) I :2:2.
f: 2uk-2uc denotes the mapping of the power set of keywords onto the power set of

Uc which satisfies the following conditions:

1. ft</J)= Uc.

2. ft{k})=f'(k).

3. /{K)=/{K1) n /{K2), where K ~ Ux and K=K1 U K2•

Definition: t(C) which satisfies the following conditions is the name of task C.

1. t(C) C Ux.

2. ftt(C))=C.

3. /{S) ::> C for all S c t(C).

3. Extraction of Keywords from Manual Pages

One of the most important issues of our task modeling is the keywords related to the
function of the task. One way to construct the keywords and the mappings is that the
system designer describes them. However, the system designer must update the
keywords and the mappings in this method when a new command is added and the

Task Modeling by the Keywords Extracted from Manual Pages 97

system is extended. Instead, we attempted to extract the keywords from the manual page

of the reference manuals of the UNIX system automatically when the system is extended.

The method to extract the keywords is as follows.

1. Remove comments and heads in manual pages and cut them down into words.

2. Restore conjugations to bare infinitives and derivatives (inflections, declension)

to underivate. Remove articles, auxiliary verbs and conjunctions since they are

not specific to the commands.
3. Remove words which appear only once on each page since some manual pages

have references related to other commands.
4. Remove words which do not appear in the manual pages of the other commands

since these words can not be used for a task name. The remaining words are the

keywords.

Table 1 shows examples of the keywords extracted for our experiment described

later. These keywords seem appropriate as associations from the commands.

Table 1. The examples of keywords

Command

vi

!pr

Keywords

character classification command

contain edit editor environ ex file

flag input option set tag test text

variable vi view

character contain copy data

example file font job name option

page print produce send specify

spool standard use

4. Keywords Analysis

It is important to evaluate the keywords since they are automatically generated.

This section describes a method for evaluating the keywords.

In our method, the tasks that can not be definitely distinguished by any set of

keywords have no name. Since the number of names is very small compared with the

number of tasks as shown later, random tasks should not have a name while the tasks for

the user's goal should have a name.

98 Toshikazu NISHIMURA, Michihiko M!NOH and Katsuo IKEDA

The quantitative analysis of the keywords by the system designer is very hard since
the order of the number of tasks is about n to the power m, where n is the number of com­
mands and mis the maximum size of a task. Though the evaluation of the application us­
ing our task model may show the effectiveness of the keywords, it is difficult to evaluate
the keywords independently.

Thus we utilize sequences of commands in the history for the evaluation of the
keywords. Most sequences of commands aim to accomplish the user's goals. The
keywords are effective for our task model when most of the tasks in the history have a
name, while not effective otherwise.

We call the command set which consists of sequences of commands in the history a
task in the history. We discuss the effectiveness of the keywords by showing the relation­
ship between the tasks in the history and the existence of a name for tasks.

4.1 Statistical Analysis
Let N denote the number of tasks . N=nc Cn1, where nc is the number of com­

mands, n1 is the size of a task, and C denotes the combination function. Let Tn denote
the number of tasks with names whose size is n1• Let Th denote the number of tasks in
the history of size n1• Let Tnh denote the number of tasks in the history with names
whose size is n1•

When Tn= Th= Tnh• the tasks in the history and tasks with names are identical.
However, Tn= Th= Tnh is not always true since all sequences of commands in the history
are not for the same tasks. Thus we will show the relationship between the tasks in the
history and tasks with names by a statistical analysis.

Let us consider the following two trials A and B and set up a null hypothesis H 0 •

Trial Tas~or;h

>~
Tasks with names

In the history
Tasks with names Tn

0 Task without names

e Task with a name

(a) Trial A

Tnh

Tasks with names
Tasks In the history

Th
In the history

0 Task not found in the history

e Task in the history

(b) Trial B

Tnh

Fig. I . The concepts of the trials A and B

Task Modeling by the Keywords Extracted from Manual Pages 99

Trial A The number of tasks is N. Among these, Tn tasks have names. Among the Th

tasks in the history, Tnh tasks have names.
Trial B The number of all tasks is N. Among these, Tn tasks are in the history. Among

Tn tasks with names, Tnh tasks are in the history.
Null hypothesis Ho The results in Trial A and Bare coincidental. There is no relation bet­

ween a task found in the history and the existence of a name for that task.

Figure 1 shows the concepts of the trials A and B. If H 0 is statistically rejected, it
shows the relationship between the tasks in the history and tasks with names.

The probability p that a random task will have a name is Tnl Nin trial A based on H 0•

Thus the expectation m of the number of tasks with names and its standard deviation a
in trial A are as follows:

The m and a in trial B are as follows:

Since the distribution of the probability variable Tnh can be regarded as a normal
distribution N(m, a), the distribution of the probability variable T' is N(0, 1) where
T'=(Tnh-m)la.

4.2 Experiment and Discussion
We have collected about 400,000 lines of history from dialogues between 18 col­

leagues in our laboratory and a computer. We conducted experiments on the commands
which were used at least twice and which have manual pages. There were 280 such com­
mands on these commands. First, we extracted the keywords from the manual pages of
these commands. The number of keywords was 1280. Second, we extracted the tasks in
the history and the tasks with names. Table 2 shows the number of these tasks. The
maximum size of a task is limited to 4 because Tnl/ was 0 when the size of tasks was over 4.

The number of tasks with names is much smaller than that of all tasks in table 2.
This implies that the task names are rare. Though some of the tasks in the history have
names, the number of tasks with names and the number of tasks in the history are quite

100 Toshikazu N1s1DMURA, Michihiko MINOH and Katsuo IKEDA

different. Since it is not clear from table 2 whether the keywords extracted automatically

from manual pages are effective or not, statistical analysis is needed.

Task
size

2

3

4

Table 2. The number of tasks

Task size The number of tasks Th T. Tnh

2

3

4

Sum

Expectation
m

280.4

31.50

1.414

3 9060 (2soC2) 2660 4118

3619560 GsoC3) 5806 19512

250654530 GsoC4) 6712 52811

254313150 15178 76441

Th : The number of tasks in the history
T. : The number of task nmaes

513

98

4

614

T.h: The number of tasks with names in the history

Table 3. The results of Trials A, B

Trial A Trial B
Tnh T' T' a a

513 15.87 14.65 16.20 14.56

98 5.579 11.95 5.590 11.93

4 1.189 2.174 1.189 2.174

Table 3 shows expectation m, standard deviation o and probability variable T'. The

null hypothesis H0 is rejected with very small risk when the task size is 2 or 3. This shows

the relationship between the tasks in the history and the task names. When the task size

is 4, the null hypothesis H0 is also rejected with about 3.00% risk, which also indicates

the relationship between the tasks in history and the existence of a name for tasks. Thus

we conclude that the task names with the keywords extracted automatically from the

manual pages are effective regarding the tasks in the history.

5. Conclusion

We proposed a task modeling method using names of tasks with keywords related to

the functions of commands for intelligent user interfaces for experts. The name of a

task is a set of keywords which distinguish the task definitely.

We extracted the keywords automatically from manual pages for system expansion.

We also show the effectiveness of these keywords by showing the relationship between the

Task Modeling by the Keywords Extracted from Manual Pages 101

tasks in the history and the task names through statistical analysis.
The keywords for the task names are related to the functions of commands.

Therefore command clustering with the keywords may also improve the help messages of
commands in traditional intelligent user interfaces.

Since our method mainly depends on keywords, it can not be applied to pointing
operations with a mouse employed in many graphical user interfaces (GUls). Applying
our method to GUis is a subject for future study.

Acknowledgment

We would like to thank Mr. Tatsuya SUGAHARA who implemented the method to
extract the keywords described in section 3.

References

1) Norman, D. A. and Draper, S. W.: "User Centered System Design," Lawrence Erlbaum Associates
(1986).

2) Hancock, P.A. and Chignell, M. H.: "INTELLIGENT INTERFACES Theory, Research and
Design," Elsevier Science Publishers (1989).

3) Wilemsky, R., Arens, Y. and Chin, D.: "Talking to UNIX in English: An Overview of UC,"
Comm. ACM, 27, 6, pp. 574-593 (1984).

4) Chin, D.: "A Case Study of Knowledge Representation in UC," Proc. 8th Inter. Joint Conference
on Artificial Intelligence, pp. 388-390 (1983).

5) Uehara, T., Uehara, K. and Toyoda, J.: "Simulating User's Consideration for Inferring User's Inten­
tion," JSAI SIG-HICG-8902-2 (1989).

6) Aoe, J., Maeda, A., Kujime, H. and Morimoto, K.: "Understanding of Command Using Natural
Language Inputs-an Aid to UNIX Systems-," IEICE NLC90-44 (1990).

7) Parsaye, K. and Chignell, M. H.: "Expert systems for experts," Wiley (1988).
8) Schiele, F. and Hoppe, H. U.: "Inferring Task Structures from Interaction Protocols," IN­

TERACT'90, pp. 567-572 (1990).
9) Moriyon, R., Szekely, P. and Neches, R.: "Automatic Generation of Help from Interface Design

Models," CHI '94 Conference Proceedings, pp. 225-231 (1994).
10) Sequent Computer Systems: "DYNIX Programmer's Manual" (1987).

