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Abstract 

Background  Microbiome dynamics are both crucial indicators and potential drivers of human health, agricultural 
output, and industrial bio-applications. However, predicting microbiome dynamics is notoriously difficult because 
communities often show abrupt structural changes, such as “dysbiosis” in human microbiomes.

Methods  We integrated theoretical frameworks and empirical analyses with the aim of anticipating drastic shifts of 
microbial communities. We monitored 48 experimental microbiomes for 110 days and observed that various com-
munity-level events, including collapse and gradual compositional changes, occurred according to a defined set of 
environmental conditions. We analyzed the time-series data based on statistical physics and non-linear mechanics to 
describe the characteristics of the microbiome dynamics and to examine the predictability of major shifts in microbial 
community structure.

Results  We confirmed that the abrupt community changes observed through the time-series could be described as 
shifts between “alternative stable states“ or dynamics around complex attractors. Furthermore, collapses of microbi-
ome structure were successfully anticipated by means of the diagnostic threshold defined with the “energy landscape” 
analysis of statistical physics or that of a stability index of nonlinear mechanics.

Conclusions  The results indicate that abrupt microbiome events in complex microbial communities can be fore-
casted by extending classic ecological concepts to the scale of species-rich microbial systems.
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Background
Optimizing biological functions of species-rich systems 
is a major challenge in both basic and applied sciences 
[1–7]. Managing the compositions of human gut micro-
biomes, for example, is essential for preventing diabetes 
[8, 9], infectious disease [10], and neuropsychiatric dis-
orders [11]. Likewise, soil and plant-associated microbi-
omes drive nutrient cycling and pest/pathogen outbreaks 
in agroecosystems [5, 6], while highly controlled micro-
biomes facilitate stable and resource-efficient manage-
ment in biofuel production [7] and water purification 
[12]. Nonetheless, it remains generally difficult to control 
microbial ecosystem functions because microbial com-
munities often show drastic structural (compositional) 
changes [13, 14]. Thus, predicting such community-scale 
events remains an essential task for preventing unfavora-
ble compositional changes and thereby keeping ecosys-
tem functions in microbiome dynamics.

Drastic changes in biological community structure have 
been theoretically framed as transient dynamics towards 
a global equilibrium [15, 16], shifts between alternative 
equilibria [16, 17], or dynamics around complex forms of 
attractors [18–20]. Within a state space with a sole equi-
librium point, drastic community compositional changes 
may be observed in the course of convergence to the 
global equilibrium [15]. In contrast, if multiple equilibria 
exist within a state space, abrupt community changes can 
be described as shifts between alternative stable states 
[17]. In other words, fluctuations in population densities 
of constituent species (variables) or changes in environ-
ments (parameters) can cause shifts of community states 
from a stable state to the other ones [16, 17]. Meanwhile, 
drastic community changes may be depicted as well 
in terms of dynamics around periodic/quasi-periodic 
attractors (i.e., limit cycle or torus) or dynamics around 
attractors with non-integer dimensions [18, 21–23] (i.e., 
chaos).

In analyzing empirical time-series data of microbi-
ome structure, these concepts of community dynamics 
are implemented with two lines of frameworks (Fig. 1a). 
One is the framework of energy landscape analyses in 
statistical physics [24–26], in which stability/instabil-
ity of possible community states (compositions) are 
evaluated in the metric of “energy”. In energy landscape 
analyses, stable states within a state space are defined as 
community compositions whose energy values are lower 
than those of adjacent community compositions [24]. 
Thus, based on the reconstruction of energy landscapes, 
large community compositional changes are interpreted 
as transient dynamics towards an equilibrium or shifts 
between alternative equilibria (Fig. 1a). The other frame-
work for describing abrupt community changes is based 
on nonlinear mechanics, which allows us to assume the 

presence of complex forms of attractors [19, 20, 22, 27]. 
The framework of empirical reconstruction of attractors 
(“empirical dynamic modeling [28, 29]”), in particular, 
provides a platform for interpreting community dynam-
ics as deterministic processes around any forms of attrac-
tors (Fig. 1a). The two frameworks are potentially useful 
for framing microbial community processes. Nonethe-
less, it remains to be examined whether drastic changes 
in microbiome dynamics, such as dysbiosis in human-
associated microbiomes [14, 30, 31], could be predicted 
with either or both of the frameworks.

The major constraint preventing the comparison of 
the two frameworks is the lack of empirical datasets that 
simultaneously meet the basic requirements of energy 
landscape analyses and empirical dynamic modeling. 
In other words, although comparison of the two frame-
works require information of population-size dynam-
ics of respective microbial species across tens or more of 
time points, majority of microbiome studies provide data 
of relative abundance for a small number of time points. 
Therefore, by developing a monitoring system of experi-
mental microbiomes, we compile a series of microbiome 
time-series data with substantial community-composi-
tional changes. By implementing an energy landscape 
analysis and empirical dynamic modeling, we examine 
whether the substantial community changes could be 
anticipated as transient dynamics towards global equi-
libria, shifts between stable states, or dynamics around 
complex attractors. Based on the results, we discuss how 
we can integrate empirical and theoretical studies for pre-
dicting and controlling species-rich microbial systems.

Results
Experimental microbiome dynamics
To obtain time-series datasets of microbiome dynam-
ics, we constructed six types of microbiomes based on 
the combinations of two inoculum sources (soil and 
pond water microbiomes; hereafter, soil and water) and 
three media differing in chemical properties (oatmeal, 
oatmeal-peptone, and peptone; hereafter, Medium-A, 
B, and C, respectively), each with eight replicates (Addi-
tional file 1: Figure S1). We kept the experimental system 
at a constant temperature condition and sampled a frac-
tion of each microbiome and added fresh media every 
24 h for 110 days. For each of the six experimental treat-
ment, 880 community samples were obtained (in total, 
110 time points × 8 replicates × 6 treatments = 5280 
community samples), providing rich information for 
exploring stable states of community structure by means 
of energy landscape analyses. In total, the dataset repre-
sented population dynamics of 264 prokaryote amplicon 
sequence variants (ASVs) belonging to 108 genera. Using 
quantitative amplicon sequencing [32] for estimating 
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16S ribosomal RNA gene (16S rRNA) copy concentra-
tions of respective microbes in each microbiome, we 
determined the dynamics of both “relative” and “absolute 
(calibrated)” ASV abundance (Fig. 1b; Additional files 1, 
2, 3 and 4: Figures S1–4). By estimating not only relative 
but also calibrated abundance, we were able to recon-
struct respective ASVs’ population dynamics (increase/
decrease), satisfying the requirements for applying 
empirical dynamic modeling [19, 20, 22].

The experimental microbiomes exhibited various types 
of dynamics depending on source inocula and culture 
media (Fig. 1b; Additional files 3 and 4; Figure S3–4). Spe-
cifically, sharp decline of taxonomic diversity [33] and 
abrupt (sudden and substantial) community structural 
changes (see “abruptness” index in Fig. 1b) were observed 
in Water/Medium-A, Soil/Medium-A, and Water/
Medium-B treatments (abruptness > 0.5). Within these 
treatments, taxonomic compositions and timing of abrupt 
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Reconstruction of various types of attractors

I. Number of inferred stable states = 1 (a global equilibrium)

II. Number of inferred stable states > 1 (multiple local equilibria)

ii. Changes in parameters (e.g., temperature) [not designed in this study)

i. Fluctuations in variables (e.g., population size)

Fig. 1  Experimental microbiome dynamics. a Assumptions. Drastic structural changes in microbiome time-series data are interpreted as transient 
dynamics towards a global equilibrium, shifts between local equilibria (alternative stable states), or dynamics around complex forms of attractors. 
The former two concepts/models can be examined with an energy landscape analysis and the latter can be explored based on empirical dynamic 
modeling. b Time-series data of microbial abundance (top left), community compositions (relative abundance; bottom left), and Bray-Curtis 
dissimilarity (β-diversity) of community structure between time points (right) are shown for a representative replicate community of each 
experimental treatment. The green lines within the relative abundance plots represent the speed and magnitude of community compositional 
changes (hereafter, “abruptness”) around each target time point (time window = 5 days; time lag = 1 day; see “Methods” section). Note that an 
abruptness score larger than 0.5 represents turnover of more than 50% of microbial ASV compositions. See Additional files 3 and 4: Figure S3–4 for 
the time-series data of all the 48 communities (8 replicates × 6 treatments)
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shifts in community structure varied among replicate 
communities (Additional files 3 and 4: Figure S3–4). Large 
shifts of community compositions through time were 
observed as well in Soil/Medium-B treatment, albeit the 
community shifts were more gradual (maximum abrupt-
ness through time-series, 0.36~0.57; Additional files 3 and 
4: Figure S3–4). In contrast, Medium-C condition yielded 
relatively steady microbiome dynamics with continuously 
low taxonomic diversity (e.g., dominance of Aeromonas in 
Water/Medium-C treatment), although shifts of dominant 
taxa were observed latter in the experiment in some repli-
cate communities (Additional files 3 and 4: Figure S3–4). 
In all the six treatments, the α-diversity (Shannon diver-
sity) of ASVs displayed fluctuations, but not monotonic 
decrease, through time (Additional file 1: Figure S1e).

Framework 1: energy landscape analysis
By compiling the microbiome time-series data, we exam-
ined the distributions of stable states within the multi-
dimensional space of community structure based on an 
energy landscape analysis [24]. Because no variation in 
environmental conditions was introduced through the 
time-series in our experiment, a fixed “energy landscape” 
of community states was assumed for each of the six 
treatments. On this assumption, shifts between alterna-
tive stable states are attributed to perturbations to vari-
ables (i.e., population density of microbial ASVs) but not 
to “regime shifts [34–36]”, which, by definition, requires 
energy landscape reorganization caused by changes in 
environmental parameters (i.e., temperature).

Through the 110-day dynamics of each experimental 
treatment, multiple stable states were inferred to exist 
(Fig. 2; Additional files 5 and 6: Figure S5–6). This result 
suggests that the observed abrupt changes in commu-
nity compositions could be described as shifts between 
alternative stable states. Therefore, in this approach of 
statistical physics [24–26], community dynamics are 
divided into phases of fluctuations around local equilib-
rium points and those of shifts into adjacent equilibria. In 
other words, the presence of multiple equilibrium points 
(Additional files 5 and 6: Figure S5–6), by definition, 
means that the observed dynamics of the experimental 
microbiomes are not described as transient dynamics 
towards a sole equilibrium point.

Framework 2: empirical dynamic modeling
We next analyzed the time-series data based on 
the framework of empirical dynamic modeling. We 
first focused on the population dynamics (increase/
decrease) of the microbial ASVs constituting the micro-
bial communities using the calibrated abundance data. 
In ecology, population dynamics data have often been 
analyzed with methods assuming linear dynamics 

(i.e., without considering “state dependency [37]”). 
Meanwhile, a series of empirical dynamic modeling 
approaches applicable to nonlinear time-series pro-
cesses, such as simplex projection [20] and sequential 
locally weighted global linear maps [19] (S-map), have 
been increasingly adopted to capture key properties 
lost with linear dynamic assumptions (Fig.  3a). We 
found that ca. 85% of the microbial populations in our 
experiments exhibited nonlinear behavior (i.e., non-
linearity parameter θ > 0; Fig. 3b). This result suggests 
the predominance of nonlinear dynamics over linear 
dynamics in microbial populations [32], in line with 
populations of other organismal groups such as fish 
[18] and plankton [21].

We then reconstructed the attractors of nonlinear 
dynamics based on Takens’ embedding theorem [38] 
(Fig.  3a; Additional file  7: Figure S7). To examine the 
performance of the attractor reconstruction, we con-
ducted forecasting of the population dynamics of respec-
tive microbial ASVs by means of simplex projection and 
S-map (Fig. 3c). The population density (16S rRNA copy 
concentration) of an ASV in a target replicate community 
at time point t + p (p represents time steps in forecast-
ing) was forecasted based on the ASV’s population den-
sity at time point t and time-series data of other replicate 
communities (hereafter, reference replicate communi-
ties; see “Methods” section for details; Fig. 3a). For many 
microbial ASVs, predicted population densities were 
positively correlated with observed ones, although pre-
diction accuracy decayed with time steps in forecasting 
(Fig. 3c, d; Additional file 8: Figure S8). As expected, cor-
relation between predicted and observed population size 
increased with increasing number of reference replicate 
communities, suggesting dependence of forecasting skill 
on the size of state-space reference databases (Additional 
file 9: Figure S9).

By assembling the forecasting results of respective 
ASVs at the community level, we further conducted fore-
casting of microbiome compositions (Fig. 4a; Additional 
files 10 and 11: Figure S10–11). The forecasting preci-
sion of community-level dynamics varied depending on 
inoculum, culture media, α-diversity (Shannon’s H ′), and 
the dissimilarity (β-diversity) of community structure 
between target and reference replicates (Fig. 4b). Despite 
the utility of the forecasting platform, we observed high 
prediction error immediately after the peak of abrupt 
community changes (Fig.  4c; Additional file  12: Figure 
S12). Although the nonlinear method (S-map with opti-
mized θ) captured the observed abrupt shifts of commu-
nity compositions within a narrower time window than 
the linear method (S-map with θ = 0) (Fig. 4c), quanti-
tative forecasting of abrupt community changes seemed 
inherently difficult.
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Nonetheless, even if precise forecasting of community 
compositional dynamics remains challenging, prediction 
of the occurrence of abrupt community changes per se 
may be possible. Thus, we next examined whether poten-
tial of abrupt community changes could be evaluated 
through microbiome dynamics.

Anticipating abrupt community shifts
Based on the frameworks of the energy landscape analy-
sis and empirical dynamic modeling, we explored ways 
for anticipating abrupt events in community dynam-
ics. In the former framework, the reconstructed energy 
landscapes were used to estimate “energy gap” and “sta-
ble-state entropy” indices, which represented stability/
instability of community states [24] (Fig. 5a). In the latter 

framework, the inferred Jacobian matrices of the multi-
species time-series dynamics (see “Methods” section) 
were used to calculate “local Lyapunov stability [39]” and 
“local structural stability [40]”. We examined how these 
indices could help us forecast large community-compo-
sitional shifts such as those observed in Medium-A and 
Medium-B treatments (Fig. 1b).

Among the signal indices examined, energy gap or sta-
ble-state entropy of community states (Fig.  5a) was sig-
nificantly correlated with the degree of future community 
changes in Medium-A and Medium-B treatments (FDR < 
0.05 for all treatments; Fig. 5b; Additional files 13 and 14: 
Figure S13–14). In the 7-day-ahead forecasting of abrupt 
community-compositional changes (abruptness > 0.5), 
for example, stable-state entropy showed relatively high 

Fig. 2  Energy landscapes of community structure. The community structure of respective time points on NMDS axes (left) and reconstructed 
energy landscape on the NMDS surface (right) are shown for each experimental treatment. Community states (ASV compositions) located 
at lower-energy regions are considered to be more stable on the energy landscapes. The shapes of the landscapes were inferred based on a 
smoothing spline method with optimized penalty parameters. On the energy landscapes, community states of day 1 and day 110 are respectively 
shown in red and blue numbers representing replicate communities
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diagnostic performance on the two-dimensional surface 
of detection rate (sensitivity) and false detection rate (1–
specificity) as represented by receiver operating charac-
teristic (ROC) curve [41]. Specifically, although the small 
number of points with abruptness greater than 0.5 (Addi-
tional file 15: Figure S15) precluded the application of the 
ROC analysis in Soil/Medium-B treatment, diagnostic 
performance as evaluated by area under the ROC curve 
(AUC) ranged from 0.726 to 0.957 in other Medium-A 
and Medium-B treatments (Fig. 6a).

Local Lyapunov or structural stability was correlated 
with the degree of community changes as well, but 
the correlations were less consistent among experi-
mental treatments than energy gap and stable-state 
entropy (Fig.  5b; Additional file  13 and 14: Figure 
S13–14). Meanwhile, local structural stability exhibited 
exceptionally high diagnostic performance in Water/
Medium-A treatment (AUC = 0.788; Fig. 6a; Additional 
file 15: Figure S15). Thus, local Lyapunov or structural 
stability can be used as signs of future microbiome col-
lapse, although further technical improvement in the 
state space reconstruction of species-rich communities 

(e.g., multi-view distance regularized S-map [42]) may 
be needed to gain consistent forecasting performance 
across various types of microbiomes.

By further utilizing the frameworks of the energy land-
scape analysis and empirical dynamic modeling, we next 
examined the availability of diagnostic thresholds for 
anticipating community collapse. For this aim, we first 
focused on stable-state entropy because its absolute 
values in the unit of well-known entropy index (Fig. 5a) 
were comparable across diverse types of biological com-
munities. Based on the ROC curve representing all the 
stable-state entropy data of Medium-A and Medium-B 
treatments, the balance between detection and false-
detection rates were optimized with the Youden index 
[41]. With a relatively high AUC score (0.848), the 
threshold stable-state entropy was set as 1.343 (Fig. 6b). 
In the same way, we calculated the threshold value for 
local Lyapunov stability because this index originally had 
a tipping value (= 1) for diagnosing community-level 
stability/instability [39]. Indeed, the estimated threshold 
of local Lyapunov stability on the ROC curve was 0.9802, 
close to the theoretically expected value (Fig. 6b).
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Discussion
By compiling datasets of experimental microbiome 
dynamics under various environmental (medium) condi-
tions, we here tested whether two lines of ecological con-
cepts could allow us to anticipate drastic compositional 
changes in microbial communities. Despite decades-long 
discussion on alternative stable/transient states of com-
munity structure [15–17, 35, 36], the application of the 
concept to empirical data of species-rich communities has 
been made feasible only recently with the computationally 
intensive approach of statistical physics (energy landscape 
analyses [24]). On the other hand, the concept of dynam-
ics around complex forms of attractors has been applicable 
with the emerging framework of non-linear mechanics [27, 
39, 40] (e.g., empirical dynamic modeling), microbiome 
time-series data satisfying the requirements of the ana-
lytical frameworks remained scarce [32]. Thus, this study, 
which was designed to apply both frameworks, provided a 
novel opportunity for fueling feedback between empirical 
studies of species-rich communities and theoretical stud-
ies based on classic/emerging ecological concepts.

Our analysis showed drastic events in microbiome 
dynamics, such as those observed in dysbiosis of human-
gut microbiomes [13, 14], could be forecasted, at least 

to some extent, by framing microbiome time-series data 
as shifts between alternative stable states or dynam-
ics around complex attractors. In the forecasting of 
abrupt community changes observed in our experimen-
tal microbiomes, the former concept (model) seemingly 
outperformed the latter (Figs.  5 and 6). This result is of 
particular interest, because concepts or models more effi-
ciently capturing dynamics of empirical data are expected 
to provide more plausible planforms in not only predic-
tion but also control of biological community processes. 
Nonetheless, given the ongoing methodological improve-
ments of nonlinear mechanics frameworks for describing 
empirical time-series data [42], further empirical studies 
comparing the two concepts are necessary.

A key next step for forecasting and controlling micro-
bial (and non-microbial) community dynamics is to 
examine whether common diagnostic thresholds could be 
used to anticipate collapse of community structure. This 
study provided the first empirical example that the tipping 
value theoretically defined in non-colinear mechanics 
[39] (local Lyapunov stability = 1) could be actually used 
as a threshold for alerting abrupt changes in microbi-
ome structure. Likewise, although estimates of diagnostic 
thresholds can vary depending on the definition of major 
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microbiome shifts (e.g., abruptness > 0.5 in this study), 
stable-state entropy scores greater than 1.3 can be used 
to anticipate undesirable community events (dysbiosis) 
across medical, agricultural, and industrial applications.

Given that changes in environmental parameters 
were not incorporated into our experimental design, 
it remains another important challenge to reveal how 
distributions of stable states or forms of attractors are 
continually reshaped by changes in environmental 
parameters through community dynamics [17, 34, 35]. 
Experimental manipulation of “external” environmental 
parameters in microcosms, for example, will expand the 
target of research into microbiome systems potentially 
driven by regime shifts [34–36]. Likewise, environmental 
alternations caused by organisms per se [43–45] deserve 
further investigations as potential drivers of drastic com-
munity shifts. It is also important to explore potential 
difference in time-series dynamics between real micro-
biomes and closed experimental systems. For example, 
while human gut microbiomes are considered to have 
“normal” or “standard” community states of healthy host 
individuals [3, 13, 46], variability of community dynam-
ics in experimental microbiomes has just started to be 
explored [33, 43]. More comparative studies across 
diverse types of microbiomes are necessary for deepen-
ing our understanding of microbiome dynamics.

Conclusions
We showed that large shifts in microbial community 
structure is predictable based on emerging approaches 
of statistical physics and non-linear mechanics, 
although further updates of mathematical and infor-
matics platforms are necessary for increasing forecast-
ing accuracy. We also found that abrupt microbiome 
changes could be interpreted as both shifts between 
alternative stable states and dynamics around complex 
attractors, while more empirical studies are required 
to discuss which model is more suitable for describing 
microbiome dynamics. Controlling biological functions 
at the ecosystem level is one of the major scientific chal-
lenges in the twenty-first century [5, 47, 48]. Interdisci-
plinary approaches that further integrate microbiology, 
ecology, and mathematics are becoming indispensa-
ble for maximizing and stabilizing microbiome-level 
functions, and for providing novel solutions to a broad 
range of humanity issues spanning from human health 
to sustainable industry and food production.

Methods
Continuous‑culture of microbiome
To set up experimental bacterial communities, we pre-
pared two types of source inocula (soil and aquatic 

microbiomes) and three media (oatmeal, oatmeal-
peptone, and peptone): for each combination of source 
media and inocula (six experimental treatments), eight 
replicate communities were established (in total, two 
source microbiomes × three media × eight replicates 
= 48 experimental communities; Additional file  1: Fig-
ure S1a). We used natural microbial communities, rather 
than “synthetic” communities with pre-defined diver-
sity, as source microbiomes of the experiment. One of 
the source microbiomes derives from the soil collected 
from the A layer (0–10 cm in depth) in the research for-
est of Center for Ecological Research, Kyoto University, 
Kyoto, Japan (34.972 °N; 135.958 °E). After sampling, 600 
g of the soil was sieved with a 2-mm mesh and then 5 g 
of the sieved soil was mixed in 30 mL autoclaved distilled 
water. The source microbiome was further diluted 10 
times with autoclaved distilled water. The source aquatic 
microbiome was prepared by collecting 200 mL of water 
from a pond (“Shoubuike”) near Center for Ecological 
Research (34.974 °N, 135.966 °E). In the laboratory, 3 
mL of the collected water was mixed with 27 mL of dis-
tilled water in a 50-mL centrifuge tube. We then intro-
duced the source soil or aquatic microbiomes into three 
types of media: oatmeal broth [0.5% (w/v) milled oatmeal 
(Nisshoku Oats; Nippon Food Manufacturer); Medium-
A], oatmeal-peptone broth [0.5% (w/v) milled oatmeal 
+ 0.5% (w/v) peptone (Bacto Peptone; BD; lot number: 
7100982); Medium-B], and peptone broth [0.5% (w/v) 
peptone; Medium-C]. In our preliminary experiments, 
microbiomes cultured with Medium-A (oatmeal) tended 
to show high species diversity, while those cultured with 
Medium-C (peptone) were constituted by smaller num-
ber of bacterial species. Thus, we expected that diverse 
types of microbiome dynamics would be observed with 
the three medium conditions. Among the three media, 
Medium-B had the highest concentrations of non-purge-
able organic carbon (NPOC) and total nitrogen (TN), 
while Medium-A was the poorest both in NPOC and TN: 
Medium-C had the intermediate properties (Additional 
file 1: Figure S1b).

In each well of a 2-mL deep well plate, 200 μL of a 
diluted source microbiome and 800 μL of medium were 
installed. The deep-well plate was kept shaken at 1000 
rpm using a microplate mixer NS-4P (AS ONE Corpo-
ration, Osaka) at 23 °C for 5 days. After the 5-day pre-
incubation, 200 μL out of 1000-μL culture medium was 
sampled from each of the 48 deep wells after mixing 
(pipetting) every 24 h for 110 days. In each sampling 
event, 200 μL of fresh medium was added to each well so 
that the total culture volume was kept constant. In total, 
5280 samples (48 communities/day × 110 days) were col-
lected. Note that on day 82, 200-μL of fresh Medium-B 
was accidentally added to samples of Medium-A but not 
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to those of Medium-B. While the microbiomes under 
Medium-A treatments experienced increase in total 
DNA copy concentrations late in the time-series, relative 
abundance remained relatively constant from day 60 to 
110 (Additional files 2, 3 and 4: Figure S2–4), suggesting 
limited impacts of the accidental addition of the medium 
on microbial community compositions.

To extract DNA from each sample, 25 μL of the col-
lected aliquot was mixed with 50 μL lysis buffer (0.0025% 
SDS, 20 mM Tris (pH 8.0), 2.5 mM EDTA, and 0.4 M 
NaCl) and proteinase K (× 1/100). The mixed solution 
was incubated at 37 °C for 60 min followed by 95 °C for 
10 min and then the solution was vortexed for 10 min to 
increase DNA yield.

Quantitative 16S rRNA sequencing
To reveal the increase/decrease of population size for 
each microbial ASV, a quantitative amplicon sequencing 
method [32, 49] was used based on Illumina sequenc-
ing platform. While most existing microbiome stud-
ies were designed to reveal the “relative” abundance of 
microbial ASVs or operational taxonomic units (OTUs), 
analyses of population dynamics, in principle, require the 
time-series information of “absolute” abundance. In our 
quantitative amplicon sequencing, five standard DNA 
sequence variants with different concentrations of artifi-
cial 16S rRNA sequences (0.1, 0.05, 0.02, 0.01, and 0.005 
nM) were added to PCR master mix solutions (Addi-
tional file  1: Figure S1a). The DNA copy concentration 
gradient of the standard DNA variants yielded calibration 
curves between Illumina sequencing read numbers and 
DNA copy numbers (concentrations) of the 16S rRNA 
region in PCR reactions, allowing estimation of original 
DNA concentrations of target samples [32, 49] (Addi-
tional file 1: Figure S1c-d). The five standard DNAs were 
designed to be amplified with a primer set of 515f [50] 
and 806rB [51] but not to be aligned to the V4 region of 
any existing prokaryote 16S rRNA. Note that the number 
of 16S rRNA copies per genome generally varies among 
prokaryotic taxa [52] and hence 16S rRNA copy concen-
tration is not directly the optimal proxy of cell or biomass 
concentration. However, in our study, estimates of 16S 
rRNA copy concentrations are used to monitor increase/
decrease of abundance (i.e., population dynamics) within 
the time-series of each microbial ASV. Even if the con-
centrations of PCR inhibitor molecules in DNA extracts 
vary among time-series samples, potential bias caused by 
such inhibitors can be corrected based on the abovemen-
tioned method using internal standards (i.e., standard 
DNAs within PCR master solutions).

Prokaryote 16S rRNA region was PCR-amplified with 
the forward primer 515f fused with 3–6-mer Ns for 

improved Illumina sequencing quality and the forward 
Illumina sequencing primer (5′-TCG TCG GCA GCG 
TCA GAT GTG TAT AAG AGA CAG-[3–6-mer Ns]–
[515f]-3′) and the reverse primer 806rB fused with 3–6-
mer Ns for improved Illumina sequencing quality [53] 
and the reverse sequencing primer (5′-GTC TCG TGG 
GCT CGG AGA TGT GTA TAA GAG ACA G [3–6-
mer Ns]-[806rB]-3′) (0.2 μM each). The buffer and poly-
merase system of KOD One (Toyobo) was used with the 
temperature profile of 35 cycles at 98 °C for 10 s, 55 °C 
for 30 s, 68 °C for 50 s. To prevent generation of chimeric 
sequences, the ramp rate through the thermal cycles was 
set to 1 °C/s [54]. Illumina sequencing adaptors were 
then added to respective samples in the supplemental 
PCR using the forward fusion primers consisting of the 
P5 Illumina adaptor, 8-mer indexes for sample identifica-
tion [55] and a partial sequence of the sequencing primer 
(5′-AAT GAT ACG GCG ACC ACC GAG ATC TAC 
AC-[8-mer index]-TCG TCG GCA GCG TC-3′) and 
the reverse fusion primers consisting of the P7 adaptor, 
8-mer indexes, and a partial sequence of the sequencing 
primer (5′- CAA GCA GAA GAC GGC ATA CGA GAT-
[8-mer index]-GTC TCG TGG GCT CGG-3′). KOD One 
was used with a temperature profile: followed by 8 cycles 
at 98 °C for 10 s, 55 °C for 30 s, 68 °C for 50 s (ramp rate 
= 1 °C/s). The PCR amplicons of the samples were then 
pooled after a purification/equalization process with 
the AMPureXP Kit (Beckman Coulter). Primer dimers, 
which were shorter than 200 bp, were removed from the 
pooled library by supplemental purification with AMpu-
reXP: the ratio of AMPureXP reagent to the pooled 
library was set to 0.6 (v/v) in this process. The sequencing 
libraries were processed in an Illumina MiSeq sequencer 
(271 forward (R1) and 231 reverse (R4) cycles; 10% PhiX 
spike-in).

Bioinformatics
In total, 67,537,480 sequencing reads were obtained in the 
Illumina sequencing. The raw sequencing data were con-
verted into FASTQ files using the program bcl2fastq 1.8.4 
distributed by Illumina. The output FASTQ files were then 
demultiplexed with the program Claident v0.2. 2018.05.2 
9[56]. The sequencing reads were subsequently processed 
with the program DADA2 [57] v.1.13.0 of R 3.6.0 to remove 
low-quality data. The molecular identification of the 
obtained ASVs was performed based on the naive Bayesian 
classifier method [58] with the SILVA v.132 database [59]. 
In total, 399 prokaryote (bacterial or archaeal) ASVs were 
detected. We obtained a sample × ASV matrix, in which a 
cell entry depicted the concentration of 16S rRNA copies of 
an ASV in a sample. In this process of estimating original 
DNA copy numbers (concentrations) of respective ASVs 
from sequencing read numbers in each sample, the samples 
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in which Pearson’s coefficients of correlations between 
sequencing read numbers and standard DNA copy num-
bers (i.e., correlation coefficients representing calibration 
curves) were less than 0.7 (in total, 430 samples out of 5280 
samples) were removed as those with unreliable estimates. 
Samples with less than 350 reads were discarded as well. 
Because missing values within time-series data are not tol-
erated in some of the downstream analyses (e.g., empirical 
dynamic modeling), they were substituted by interpolated 
values, which were obtained as means of the time points 
immediately before and after focal missing time points. The 
ASVs that appeared 5 or more samples in any of the repli-
cate communities were retained in the following analyses: 
264 ASVs representing 108 genera remained in the dataset. 
From the sample × ASV matrix, we calculated α-diversity 
(Shannon’s H′) of the ASV compositions in each experi-
mental replicate on each day. We also evaluated dissimilar-
ity of community compositions in all pairs of sampling days 
in each replicate community using Bray-Curtis metric of 
β-diversity as implemented in the vegan 2.5.5 package [60] 
of R. For each ASV in each replicate community, a parame-
ter representing the non-linearity of the population dynam-
ics [18, 19] (θ) was estimated based on S-map analysis of 
calibrated abundance as detailed below in order to evaluate 
the overall nature of the time-series data.

Community dynamics
We evaluated the degree of community-compositional 
changes for time point t based on the Bray-Curtis β-diversity 
through time. To remove effects of minor fluctuations and 
track only fundamental changes of community structure, 
average community compositions from time points t – 
4 to t and those from t + p to t + p + 4 (i.e., 5-day time-
windows) were calculated before evaluating degree of 
community changes for time point t and time step p in each 
replicate community. Dissimilarity of community composi-
tions between the time windows before (from t – 4 to t) and 
after (t + p to t + p + 4) each target time point t with a given 
time lag p was calculated based on Bray-Curtis β-diversity 
as a measure of abrupt (sudden and substantial) commu-
nity changes (hereafter, “abruptness” of community-com-
positional changes). A high value of this index indicates that 
abrupt community-compositional changes occurred around 
time point t, while a low value represents a (quasi-)stable 
mode of community dynamics. We also evaluated temporal 

changes of community compositions using non-metric mul-
tidimensional scaling (NMDS) with the R package vegan.

Energy landscape analysis
On the assumption that drastic changes in microbiome 
dynamics are described as shifts between local equilibria 
(i.e., alternative stable states), we reconstructed the struc-
ture of the “energy landscape [24, 25]“ in each experimental 
treatment (tutorials of energy landscape analyses are avail-
able at https://​commu​nity.​wolfr​am.​com/​group​s/-/m/​t/​
23585​81). Because external environmental conditions (e.g., 
temperature) was kept constant in the experiment, a fixed 
“energy landscape” of community states was assumed for 
each of the six experimental treatments. Therefore, proba-
bilities of community states p

(
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)

 are given by
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observational data [i.e., 
〈−→
σ i

〉

 and 
〈−→
σ i

−→
σ j

〉

 ], the param-
eters hi and Jij were estimated [24]. At each step, the 
parameters were updated as

where the learning rate α = 0.1 [24]. The maximum 
number of iterations was set to 50,000.

Based on the above equations, we identified the stable 
state communities as the energy minima of the weighted 
network (nodes having the lowest energy compared to 
all its neighbors), and determined their basins of attrac-
tion based on a steepest descent procedure starting 
from each node. Note that extinctions of species can 
generate “forbidden” directed paths between commu-
nity states, potentially causing bias in the reconstruc-
tion of energy landscapes: treating extinctions in closed 
ecosystem dynamics is an important future challenge in 
energy landscape analyses. The data of ASV-level com-
positions were used in the calculation of community 
state energy using Mathematica v12.0.0.0. Because ASVs 
appearing in majority of samples and those appearing in 
only a small number of samples are uninformative in 
the energy landscape analysis, the ASVs detected from 
2–98% of samples were targeted. The data matrices of 
calibrated abundance were then converted into binary 
(1 or 0) format prior to energy landscape analyses. Thus, 
the value 0 in the input binary data does not necessarily 
mean complete absence of a taxon. By setting thresholds 
for binarizing the input data, energy landscape analy-
ses can explore transitions between potential stable 
states. The “energy” estimates were then plotted against 
the NMDS axes representing community states of the 
microbiome samples in each experimental treatment. 
Spline smoothing of the landscape was performed with 
optimized penalty scores using the mgcv v.1.8-40 pack-
age [63] of R.

Empirical dynamic modeling
In parallel with the energy landscape analysis assum-
ing the presence of local equilibria, we also analyzed the 
microbiome time-series data by assuming the presence 
of complex attractors. In this aim, we applied the frame-
work of “empirical dynamic modeling [19, 20, 29, 39]”. 
In general, biological community dynamics are driven 
by a number of variables (e.g., abundance of respec-
tive species and abiotic environmental factors). In the 

hnewi ← holdi + α log

〈−→
σ i

〉

〈−→
σ i

〉∗ ,

J newij ← J oldij + α log

〈−→
σ i

−→
σ j

〉

〈−→
σ i

−→
σ j

〉∗ ,

analysis of a multi-variable dynamic system in which 
only some of variables are observable, state space con-
stituted by time-lag axes of observable variables can 
represent the whole system as shown in Takens’ embed-
ding theorem [38]. Thus, for each ASV in each experi-
mental treatment, we conducted Takens’ embedding to 
reconstruct state space which consisted of time-delayed 
coordinates of the ASV’s calibrated abundance (e.g., 16S 
rRNA copy concentration estimates). The optimal num-
ber of embedding dimensions [29, 38] (E) was obtained 
by finding E giving the smallest root-mean-square error 
(RMSE) in pre-run forecasting with simplex projec-
tion [20] or S-map [19] as detailed below. Taking into 
account a previous study examining embedding dimen-
sions [64], optimal E was explored within the range 
from 1 to 20. Prior to the embedding, all the variables 
were z-standardized (i.e., zero-mean and unit-variance) 
across the time-series of each ASV in each replicate 
community.

Population‑level forecasting
Based on the state space reconstructed with Takens’ 
embedding, simplex projection [20] was applied for 
forecasting of ecological processes in our experimental 
microbiomes. For each target replicate community, uni-
variate embedding of each ASV was performed using 
the data of the seven remaining replicate communities. 
Therefore, the reference databases for the embedding did 
not include the information of the target replicate com-
munity (Fig. 3a), providing platforms for evaluating fore-
casting skill.

In simplex projection, a coordinate within the recon-
structed state space was explored at a focal time point 
(t*) within the population dynamics of a focal ASV in a 
target replicate community (e.g., replicate community 
8): as time delay was set to 1 in our analysis, the coordi-
nate can be described as [xtarget_rep(t*), xtarget_rep(t* – 1), 
xtarget_rep(t* – 2)] when E = 3. For the focal coordinate, E 
+ 1 neighboring points are explored from the reference 
database consisting of the seven remaining replicate 
communities (e.g., replicate communities 1–7; Fig. 3a). 
For each of the neighboring points, the correspond-
ing points at p-time-step forward (p-days ahead) are 
identified. The abundance estimate of a focal ASV in 
the target replicate community at p-time-step forward 
[e.g., x̂target_rep(t* + p)] is then obtained as weighted 
average of the values of the highlighted p-time-step-
forward points within the reference database (Fig. 3a). 
The weighting was decreased with Euclidean distance 
between xtarget_rep(t*) and its neighboring points within 
the reference database. This forecasting of population 
dynamics was performed for each ASV in each target 
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replicate community at each time point. The number 
of time steps in the forecasting (i.e., p) was set within 
the range from 1 (1-day-ahead forecasting) to 7 (7-day-
ahead forecasting).

While simplex projection explores neighboring points 
around a target point, S-map [19] uses all the data points 
after weighting contributions of each point within a ref-
erence database using a parameter representing non-line-
arity of the system. In Takens’ embedding, the state space 
of a target replicate for forecasting at time t is defined as

where E is embedding dimension. Values on the second 
and higher dimensions {z2, target _ rep(t), …, zE, target _ rep(t)} 
are represented by time-delayed coordinates of a focal 
ASV. Likewise, the state space of the remaining replicates 
(i.e., the reference database) is defined as

where t′ represents each of non-overlapping time points 
within the reference database [e.g., {10001, 10002, …, 
10110} and {20001, 20002, …, 20110} for reference repli-
cate 1 and 2, respectively]. For a target time point t∗ within 
the time-series data of a target replicate community, a 
local linear model C is produced to predict the future 
abundance of a focal ASV [i.e., z1, target _ rep(t∗ + p)] from the 
state-space vector at time point ztarget _ rep(t∗) as follows:

This linear model is fit to the vectors in the reference 
databases. In the regression analysis, data points close to 
the target point ztarget _ rep(t∗) have greater weighting. The 
model C is then the singular value decomposition solu-
tion to the equation b = AC. In this equation, b is set as 
an n-dimensional vector of the weighted future values of 
z1, ref(ti

′ ) for each point (ti
′) in the reference database (n is 

the number of points in the set of ti
′): i.e.,

where ||・|| is Euclidean distance between two points in 
an E dimensional space. Meanwhile, A is an n × E dimen-
sional matrix given by

The weighting function w is defined as

ztarget_rep(t) =
{
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w(d) = exp
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)

,

where θ is the parameter representing the non-linearity 
of the data, while mean Euclidean distance between ref-
erence database points and the target point in the target 
experimental replicate is defined as follows:

where Tref denotes the set of ti
′  . In our analysis, the 

optimal value of θ was explored among eleven levels from 
0 (linearity) and 8 (strong nonlinearity) for each ASV in 
each target replicate based on the RMSE of forecasting 
(optimal θ was selected among 0, 0.001, 0.01, 0.05, 0.1, 
0.2, 0.5, 1, 2, 4, and 8). The local linear model C was esti-
mated for each time point in the target replicate data.

We then performed direct comparison between lin-
ear and non-linear approaches of forecasting based on 
empirical dynamic modeling. Specifically, to assume lin-
ear dynamics in S-map method, the nonlinearity param-
eter θ was set 0 for all the ASVs. We then compared 
forecasting results between linear (θ = 0) and nonlinear 
(optimized θ) approaches. For the forecasting of ASVs in 
a target replicate community, the data of the remaining 
seven communities (reference databases) were used as 
mentioned above.

For each ASV in each of the 48 experimental repli-
cates, R2 values between predicted and observed abun-
dance (16S rRNA copy concentrations) were calculated 
for each of the non-linear/linear forecasting methods 
[simplex projection, S-map with optimized θ, and S-map 
assuming linearity (θ = 0)]. We also examined null 
model assuming no change in community structure for 
a given time step. The time points (samples) excluded 
in the data-quality filtering process (see “Bioinformat-
ics” section) were excluded from the above evaluation of 
forecasting skill.

Reference database size and forecasting skill
To evaluate potential dependence of forecasting skill on 
the size of reference databases, we performed a series 
of analyses with varying numbers of reference replicate 
communities. For replicate community for a target rep-
licate community, a fixed number (from 1 to 7) of other 
replicate communities within each experimental treat-
ment were retrieved as reference databases: all combina-
tions of reference communities were examined for each 
target replicate community. For each microbial ASV in 
each target replicate community, forecasting of popula-
tion size was performed based on S-map with optimized 
θ as detailed above. R2 values between predicted and 
observed population size across the time-series was then 
calculated for each ASV in each target replicate commu-
nity. The correlation coefficients were compared between 

d =
1

n

∑

t ′∈Tref

∥

∥zref
(

ti
′
)

− ztarget_rep
(

t∗
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different numbers of reference database communities 
based on Welch’s t-test in each experimental treatment.

Community‑level forecasting
The above population-level results based on empirical 
dynamic modeling were then used for forecasting com-
munity-level dynamics. For a focal time point (day) in a 
target experimental replicate, the 16S rRNA copy con-
centration estimates (predicted abundance) of respec-
tive ASVs were compiled, yielding predicted community 
structure (i.e., predicted relative abundance of ASVs). The 
predicted and observed (actual) ASV compositions (rela-
tive abundance) of respective target replicates were then 
plotted on a NMDS surface for each of the six experi-
mental treatments. In addition, we evaluated dependence 
of community-level forecasting results on experimental 
conditions (source inocula and media), α-diversity (Shan-
non’s H′) of ASVs, and mean β-diversity against other 
replicates in a multivariate ANOVA model of predicated 
vs. observed community dissimilarity.

Anticipating abrupt community shifts
We then examined whether indices derived from the 
energy landscape analysis and/or empirical dynamic 
modeling could be used to anticipate drastic changes in 
community structure.

In the framework of energy landscape analysis, we 
calculated two types of indices based on the estimated 
landscapes of microbiome dynamics (Fig.  3a). One is 
deviation of current community-state energy from the 
possible lowest energy within the target basins (hereaf-
ter, energy gap; Fig.  3a): this index represents how cur-
rent community states are inflated from local optima 
(i.e., “bottom” of basins). The other is “stable-state 
entropy [24]”, which is calculated based on the random-
walk-based simulation from current community states 
to bottoms of any energy landscape basins (i.e., alterna-
tive stable states). A starting community state is inferred 
to have high entropy if reached stable states are variable 
among random-walk iterations: the stable-state entropy 
is defined as the Shannon’s entropy of the final destina-
tions of the random walk [24]. Therefore, communities 
approaching abrupt structural changes are expected to 
have high stable-state entropy because they are inferred 
to cross over “ridges” on energy landscapes [24]. For an 
analysis of a target replicate community, energy land-
scapes were reconstructed based on the data of the 
remaining seven replicate communities.

In the framework of empirical dynamic modeling (non-
linear mechanics), we calculated “local Lyapunov stability 
[39]” (local dynamic stability) and “local structural stabil-
ity [40]” based on Jacobian matrices representing move-
ments around reconstructed attractors [27]. Specifically, 

based on convergent cross-mapping [22, 32] and multi-
variate extension of S-map [65], local Lyapunov stabil-
ity and structural stability were estimated, respectively, 
as the absolute value of the dominant eigenvalue and 
trace (sum of diagonal elements) of the Jacobian matri-
ces representing the time-series processes [39]. For a tar-
get replicate community, the remaining seven replicate 
communities were used for inferring Jacobian matrices. 
Note that a high score of local Lyapunov/structural sta-
bility represents a potentially unstable community state. 
In particular, local Lyapunov scores reflect whether tra-
jectories at any particular time are converging (local Lya-
punov score < 1) or diverging (1 < local Lyapunov score) 
[39].

For each of the above indices, linear regression of 
abruptness scores of community-compositional changes 
was performed for each replicate sample in each experi-
mental treatment (7-day-ahead forecasting). The time 
points (samples) excluded in the data-quality filtering 
process (see “Bioinformatics” section) were excluded 
from this evaluation of signal indices.

We also examined the diagnostic performance of the 
signal indices based on the receiver operating characteris-
tic (ROC) analysis. In 7-day-ahead forecasting, detection 
rates (sensitivity) and false detection rates (1–specific-
ity) of large community-compositional changes (abrupt-
ness > 0.5) were plotted on a two-dimensional surface 
for each experimental treatment, yielding area under the 
ROC curve (AUC) representing diagnostic performance 
[41]. The optimal threshold value of each signal index for 
anticipating abrupt community-compositional changes 
(abruptness > 0.5) was then calculated with the Youden 
index [41] for each experimental treatment. In addition, 
for stable-state entropy and local Lyapunov stability, we 
calculated optimal threshold values after assembling all 
the data of Medium-A and Medium-B treatments.
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