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A q-analogue of multiple zeta values and its

application to number theory

By

Yoshihiro Takeyama∗

§ 1. Introduction

We call a tuple of positive integers an index. We define the weight and the depth

of an index k = (k1, . . . , kr) by wt(k) = k1 + · · ·+ kr and dep(k) = r, respectively. An

index (k1, . . . , kr) is said to be admissible if k1 ≥ 2.

For an admissible index k = (k1, . . . , kr), themultiple zeta value (MZV) is a positive

real number defined by

ζ(k) =
∑

m1>···>mr>0

1

mk1
1 · · ·m

kr
r

.

Note that, the MZV of depth one is a special value of the Riemann zeta function

ζ(s) =
∑

m>0 m
−s.

An important problem is to study a structure of the Q-linear subspace of R spanned

by MZVs. Although there are many interesting conjectures and important results, we

mention only one conjecture here. We denote by I0(k) the set of admissible indices of

weight k and consider the Q-vector spaces

Zk =
∑

k∈I0(k)

Q ζ(k), Z =
∑
k≥0

Zk.(1.1)

Here we regard the empty index ∅ as an admissible one of weight zero and set ζ(∅) =
1. Then Z0 = Q, Z1 = 0, Z2 = Qζ(2), Z3 = Qζ(3) + Qζ(2, 1), etc.. The following

conjecture about the dimension of Zk is widely known:
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Dimension conjecture. (Zagier [30]) Define the sequence {dk}k≥0 by

d0 = 1, d1 = 0, d2 = 1, dk = dk−2 + dk−3 (k ≥ 3).(1.2)

Then it holds that

dimQ Zk
?
= dk(1.3)

for all k ≥ 0.

It is also believed that

Z ?
=
⊕
k≥0

Zk,(1.4)

that is, there are no linear relations among MZVs with different weights.

According to the Dimension conjecture, the dimension of Z3 should be one, and it is

correct since ζ(3) is irrational and, as we will see in Section 2, it holds that ζ(3) = ζ(2, 1).

In general it is proved that the sequence {dk} gives an upper bound of the dimension:

Theorem 1.1 (Goncharov [7], Terasoma [26], Deligne-Goncharov [5]). It holds

that dimQ Zk ≤ dk for all k ≥ 0.

In this review article, we introduce a q-analogue of MZVs and discuss its properties

and application to number theory. Roughly speaking, ’q-analogue’ of a mathematical

object is a deformation with one parameter, denoted by q, which recovers the original

object in the limit as q → 1. Recently various q-analogue models of MZVs have been

studied. Among them we deal with the one called the Bradley-Zhao model in this paper

(see Definition 2.2). In Section 2, we see that some relations among MZVs also hold

for the q-analogue model (up to some correction terms). In Section 3, we explain a

relation of a truncated version of the q-analogue model with q being a root of unity to

a conjecture in number theory due to Kaneko and Zagier [14].

§ 2. A q-analogue of multiple zeta value

§ 2.1. Definition

Suppose that 0 < q < 1. For an integer n the q-integer [n] is defined by

[n] =
1− qn

1− q
.

Note that [n] → n in the limit q ↑ 1. Then a naive q-analogue of MZV would be the

multiple sum
∑

m1>···>mr>0[m1]
−k1 · · · [mr]

−kr . However, it never converges because
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supm>0[m] = (1 − q)−1 < +∞. Hence we need to put some decreasing term. There

are many choices of such term and various q-analogue models have been proposed. In

this article we consider the model which originates from the following discovery due to

Kaneko, Kurokawa and Wakayama:

Theorem 2.1 (Kaneko-Kurokawa-Wakayama [13]). Set

fq(s, t) =
∑
m>0

qmt

[m]s
=

qt

[1]s
+

q2t

[2]s
+

q3t

[3]s
+ · · · .

Then, for any s ∈ C \ {1}, we have

lim
q↑1

fq(s, s− 1) = ζ(s).

The point is that the power t of qm in the numerator should be shifted by one from

the power s of [m] in the denominator so that the limit of fq(s, t) recovers the Riemann

zeta function globally on C \ {1}. Motivated by this result we introduce the following

q-analogue of MZV, which is called the Bradley-Zhao model:

Definition 2.2 (Bradley [3], Zhao [32]). For an admissible index k = (k1, . . . , kr),

we define

ζq(k) =
∑

m1>···>mr>0

q(k1−1)m1+···+(kr−1)mr

[m1]k1 · · · [mr]kr
.(2.1)

Hereafter we call ζq(k) a q-analogue of MZV (qMZV for short). In [32] Zhao proved

that ζq(k) converges to ζ(k) in the limit q ↑ 1. As mentioned above, there are other

q-analogue models of MZV. See Zhao’s book [33] for properties and relations among

them.

§ 2.2. First non-trivial relation

A good point of the Bradley-Zhao model (2.1) is that it satisfies many of the same

relations as MZVs. The simplest example is the following relation due to Euler:

Proposition 2.3. It holds that ζ(3) = ζ(2, 1).

Proof. We calculate

I =
∑

m≥n>0

1

m2n

in two ways. First we have

I =

( ∑
m>n>0

+
∑

m=n>0

)
1

m2n
= ζ(2, 1) + ζ(3).
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Second we rewrite

I =
∑
m>0

1

m2

m∑
n=1

1

n
=
∑
m>0

1

m2

∑
n>0

(
1

n
− 1

m+ n

)
and use the identity

1

m2

(
1

n
− 1

m+ n

)
=

1

(m+ n)2n
+

1

(m+ n)2m
.

Thus we obtain

I =
∑
m>0

∑
n>0

(
1

(m+ n)2n
+

1

(m+ n)2m

)
=
∑

l>n>0

1

l2n
+

∑
l>m>0

1

l2m
= 2 ζ(2, 1).

Therefore, I = ζ(2, 1) + ζ(3) = 2ζ(2, 1), which implies the desired relation.

Proposition 2.3 holds also for the qMZV in the same form:

Proposition 2.4. It holds that ζq(3) = ζq(2, 1).

Proof. In the q-analogue case, we start from

I =
∑

m≥n>0

qm

[m]2
qn

[n]

We have

I =

( ∑
m>n>0

+
∑

m=n>0

)
qm

[m]2
qn

[n]
=

∑
m>n>0

qm

[m]2
qn

[n]
+ ζq(3).(2.2)

Note that the first term of the right-hand side is not the qMZV ζq(2, 1). However it will

be canceled as follows. We rewrite I in the other way

I =
∑
m>0

qm

[m]2

m∑
n=1

qn

[n]
=
∑
m>0

qm

[m]2

∑
n>0

(
qn

[n]
− qm+n

[m+ n]

)
and use the identity

qm

[m]2

(
qn

[n]
− qm+n

[m+ n]

)
=

qm+n

[m+ n]2
1

[n]
+

qm+n

[m+ n]2
qm

[m]
.

Then we obtain

I =
∑

m,n>0

(
qm+n

[m+ n]2
1

[n]
+

qm+n

[m+ n]2
qm

[m]

)
=
∑

l>n>0

ql

[l]2
1

[n]
+

∑
l>m>0

ql

[l]2
qm

[m]
(2.3)

= ζq(2, 1) +
∑

l>m>0

ql

[l]2
qm

[m]
.

Comparing (2.2) and (2.3), we obtain the desired equality.
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§ 2.3. Sum formula, Duality and Ohno’s relation

The relation due to Euler (Proposition 2.3) has two generalizations.

First, starting from the infinite sum
∑

m≥n>0 m
−kn−1, we obtain the relation∑k

j=2 ζ(j, k + 1 − j) = ζ(k + 1) for k ≥ 2 in the same way as the proof of Proposi-

tion 2.3. Note that the left-hand side is the sum over the set of admissible indices of

weight k+1 and depth two. In general, the following relation holds, which is called the

sum formula:

Theorem 2.5 (Granville [6], Zagier [31]). For positive integers k and r with

k > r, we denote by I0(k, r) the set of admissible indices of weight k and depth r. Then

it holds that ∑
k∈I0(k,r)

ζ(k) = ζ(k).

Second generalization is called duality of MZV. Any admissible index is written in

the form

k = (a1 + 1, 1, . . . , 1︸ ︷︷ ︸
b1−1

, · · · , as + 1, 1, . . . , 1︸ ︷︷ ︸
bs−1

)

with positive integers a1, . . . , as and b1, . . . , bs. Then the dual index k† of k is defined

by

k† = (bs + 1, 1, . . . , 1︸ ︷︷ ︸
as−1

, · · · , b1 + 1, 1, . . . , 1︸ ︷︷ ︸
a1−1

).

For example, if k = (2, 1), we have s = 1, a1 = 1, b1 = 2, and k† = (3). Hence Proposition

2.3 states that ζ(k) = ζ(k†) for k = (2, 1). The fact is that it holds in general (see, e.g.,

[12, 30] for the proof):

Theorem 2.6. For any admissible index k, it holds that ζ(k) = ζ(k†).

The sum formula and the duality are generalized to a large family of linear relations

by Ohno.

Theorem 2.7 (Ohno [18]). Let k be an admissible index and r be its depth. We

denote the depth of the dual index k† by r′. Then, for any m ≥ 0, it holds that∑
e∈(Z≥0)

r

wt(e)=m

ζ(k + e) =
∑

e′∈(Z≥0)
r′

wt(e′)=m

ζ(k† + e′).(2.4)
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The case where m = 0 of Ohno’s relation is the duality. Setting k = (r + 1) and

m = k − r − 1, we recover the sum formula.

A remarkable fact is that the qMZV (2.1) also satisfies Ohno’s relation in the same

form:

Theorem 2.8 (Bradley [3]). The relation (2.4) with MZV ζ(·) replaced by qMZV

ζq(·) holds.

Theorem 2.8 is proved by using the generating function of the both sides of the

relation. Recently, another simple and interesting proof is given by Seki and Yamamoto

[23]. Their technique can be applied to various series identities. See [22] for examples

and details.

Remark. In [15] Kawashima proves a larger family of relations among MZVs

which contains Ohno’s relation. A q-analogue of Kawashima’s relation is obtained in

[24].

§ 2.4. Ohno-Zagier relation

The sum formula describes the value of MZVs of fixed weight and depth. Ohno and

Zagier gives a formula for more refined sum of MZVs in terms of generating function.

We define the height of an index k = (k1, . . . , kr) by ht(k) = |{j | kj ≥ 2}|.

Theorem 2.9 (Ohno-Zagier [19]). Denote by I0(k, r, s) the set of admissible

indices of weight k, depth r and height s. Then it holds that

1 + (z − xy)
∑

r≥s≥1
k≥r+s

 ∑
k∈I0(k,r,s)

ζ(k)

xk−r−syr−szs−1(2.5)

= exp

∑
n≥2

ζ(n)

n
(xn + yn − αn − βn)

,

where α+ β = x+ y and αβ = z.

Remark. By setting z = xy in (2.5), we reproduce the sum formula.

Here we give a sketch of the proof of Theorem 2.9. For an index k = (k1, . . . , kr),

we define the multiple polylogarithm with one variable

L(k; t) =
∑

m1>m2>···>mr>0

tm1

mk1
1 mk2

2 · · ·m
kr
r

.

Note that, if k is admissible, we have L(k; 1) = ζ(k). The function L(k; t) satisfies the
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following recurrence relations:

d

dt
L(k; t) =


1

t
L(k1 − 1, k2, . . . , kr; t) (k1 ≥ 2),

1

1− t
L(k2, . . . , kr; t) (k1 = 1).

(2.6)

Now consider the function

Φ0(t) =
∑

r≥s≥1
k≥r+s

 ∑
k∈I0(k,r,s)

L(k; t)

xk−r−syr−szs−1.

Using (2.6), we see that Φ0 is the unique solution of the differential equation

t(1− t)
dΦ2

0

dt2
+ ((1− x)(1− t)− yt)

dΦ0

dt
+ (xy − z)Φ0(t) = 1

which satisfies Φ0(0) = 0. The solution is given in terms of the Gauss hypergeometric

function 2F1:

Φ0(t) =
1

xy − z
(1− 2F1(α− x, β − x, 1− x; t)).

Setting t = 1 and using Gauss’s formula

2F1(a, b, c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

and the relation

Γ(1− s) = exp (γs+
∑
n≥2

ζ(n)

n
sn),

where γ is Euler’s constant, we obtain (2.5).

The above calculation works also for qMZV, and we obtain the following q-analogue

of the Ohno-Zagier relation:

Theorem 2.10 (Okuda-Takeyama [20]). Denote by I0(k, r, s) the set of admis-

sible indices of weight k, depth r and height s. Then it holds that

1 + (z − xy)
∑

r≥s≥1
k≥r+s

 ∑
k∈I0(k,r,s)

ζq(k)

xk−r−syr−szs−1(2.7)

= exp

∑
n≥2

ζq(n)
∑
m≥0

(q − 1)m

m+ n
(xm+n + ym+n − αm+n − βm+n)

,

where

α+ β = x+ y + (1− q)(xy − z), αβ = z.
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Although we omit the details of the proof of Theorem 2.10, we only mention that

it is proved by making use of the basic hypergeometric function

2ϕ1(a, b, c; t) =
∑
n≥0

n−1∏
j=0

(1− aqj)(1− bqj)

(1− qj+1)(1− cqj)
tn

and Heine’s formula

2ϕ1(a, b, c; c/ab) =
∞∏
j=0

(1− qjc/a)(1− qjc/b)

(1− qjc)(1− qjc/ab)
.

See [20] for the details.

Note that, contrary to Ohno’s relation, the identity (2.7) for qMZV is not completely

the same as (2.5) for MZVs and has correction terms with 1−q. When we regard 1−q as
a factor with weight one, we see that the relations among qMZVs obtained by expanding

the both sides of (2.7) are homogeneous with respect to their weights. Such correction

terms often appear in relations among qMZVs. For example, we see that

ζ(3)ζ(2) =
∑
m>0

1

m3

∑
n>0

1

n2
=

( ∑
m>n>0

+
∑

m=n>0

+
∑

n>m>0

)
1

m3

1

n2
(2.8)

= ζ(3, 2) + ζ(5) + ζ(2, 3).

Let us proceed the same calculation for qMZV. We find that

ζq(3)ζq(2) =
∑
m>0

q2m

[m]3

∑
n>0

qn

[n]2
=

( ∑
m>n>0

+
∑

m=n>0

+
∑

n>m>0

)
q2m

[m]3
qn

[n]2

= ζq(3, 2) +
∑
m>0

q3m

[m]5
+ ζq(2, 3).

Note that the second term in the right-hand side is not equal to ζq(5). However, since∑
m>0

q3m

[m]5
=
∑
m>0

q3m(1− qm) + q4m

[m]5
= (1− q)

∑
m>0

q3m

[m]4
+
∑
m>0

q4m

[m]5

= (1− q)ζq(4) + ζq(5),

it holds that

ζq(3)ζq(2) = ζq(3, 2) + ζq(5) + ζq(2, 3) + (1− q)ζq(4).

If we count the weight of 1− q by one, the weight of the correction term (1− q)ζq(4) is

five and the above relation becomes homogeneous.
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Remark. Any product of MZVs can be expanded into a Q-linear combination of

MZVs in the same way as indicated in (2.8). Hence the vector space Z defined by (1.1)

forms a Q-algebra.

§ 3. Kaneko-Zagier conjecture and Finite multiple harmonic q-sum

In the rest of this article, we illustrate an application of a truncated version of

the qMZV to the Kaneko-Zagier conjecture, which states that there exists one-to-one

correspondence between two variants of MZVs called finite multiple zeta values and

symmetric multiple zeta values.

§ 3.1. Finite multiple zeta value

For m ≥ 1 and an index k = (k1, . . . , kr), we define the finite multiple harmonic

sum Hm(k) by

Hm(k) =
∑

m≥m1>···>mr>0

1

mk1
1 · · ·m

kr
r

.

We set Hm(∅) = 1 for the empty index ∅.
For a prime number p we denote the finite field Z/pZ by Fp. Consider the quotient

A =
∏

p:prime

Fp /
⊕

p:prime

Fp.

Any element of A is represented by a collection (ap)p of elements in Fp, and two elements

(ap)p and (bp)p of A are equal if and only if ap = bp except for finite primes p. We endow

A with the Q-algebra structure by diagonal multiplication.

Definition 3.1. For an index k, we define the finite multiple zeta value (FMZV)

ζA(k) as an element of A by

ζA(k) = (Hp−1(k) mod p)p.

We set ZA =
∑

k Q ζA(k), which is the Q-subalgebra of A generated by FMZVs.

Example 3.2.

1. We see that ζA(k) = 0 for any k ≥ 1 by using a primitive root modulo p.

2. For an index of depth two, we have the following formula [8, 34]:

ζA(k1, k2) = (−1)k1

(
k1 + k2

k1

)
Z(k1 + k2),
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where Z(k) ∈ A (k ≥ 2) is defined by

Z(k) =

(
Bp−k

k
mod p

)
p

.

Here Bn denotes the Bernoulli number.

§ 3.2. Symmetric multiple zeta value

In order to define symmetric multiple zeta values, we consider asymptotics of the

multiple harmonic sum Hm(k) as m→ +∞.

For any admissible index k, it is known that

Hm(k) = ζ(k) +O

(
(logm)J(k)

m

)
(3.1)

for some J(k) > 0. To see what happens if k is not admissible, we calculate some

examples. First we have

Hm(1) =

m∑
n=1

1

n
= logm+ γ +O

(
1

m

)
,

where γ is Euler’s constant. Next let us consider the asymptotics of Hm(1, 1). Using the

identity

(Hm(1))
2
=

∑
m≥n1,n2>0

1

n1n2
=

 ∑
m≥n1>n2>0

+
∑

m≥n1=n2>0

+
∑

m≥n2>n1>0

 1

n1n2

= 2Hm(1, 1) +Hm(2)

and (3.1) with k = (2), we obtain

Hm(1, 1) = −ζ(2)

2
+

1

2
(logm+ γ)

2
+O

(
(logm)J

m

)
for some J > 0. Note that the right-hand side is a polynomial of logm + γ whose

coefficients belong to Z. In general, the following theorem holds.

Theorem 3.3 (Ihara-Kaneko-Zagier [9]). For any index k there exists a unique

polynomial ζ∗(k;T ) ∈ Z[T ] such that

Hm(k) = ζ∗(k; γ + logm) +O

(
(logm)J(k)

m

)
(m→ +∞)(3.2)

for some J(k) > 0.
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Note that ζ∗(k;T ) = ζ(k) if k is admissible. Using the polynomial ζ∗(k;T ) we

define the regularized multiple zeta value:

Definition 3.4. For an index k, not necessarily admissible, we define the regu-

larized multiple zeta value ζ∗(k) by

ζ∗(k) = ζ∗(k; 0).

For the empty index we set ζ∗(∅) = 1.

Example 3.5.

1. For any admissible index k, it holds that ζ∗(k) = ζ(k).

2. As seen above, we have ζ∗(1;T ) = T and ζ∗(1, 1;T ) = −ζ(2)/2 + T 2/2. Hence

ζ∗(1) = 0 and ζ∗(1, 1) = −ζ(2)/2.

Now we define the symmetric multiple zeta value:

Definition 3.6. For an index k = (k1, . . . , kr), we set

ζ∗S(k) =
r∑

a=0

(−1)k1+···+kaζ∗(ka, ka−1, . . . , k1) ζ
∗(ka+1, ka+2, . . . , kr).

Then the symmetric multiple zeta value (SMZV) ζS(k) is defined as an element of the

quotient Q-algebra Z/ζ(2)Z by

ζS(k) = ζ∗S(k) mod ζ(2)Z.

Example 3.7.

1. In the case of depth one, we see that ζ∗S(k) = (1 + (−1)k)ζ∗(k). Hence, if k is

odd, ζ∗S(k) = 0. If k is even, ζ∗S(k) = 2ζ(k) is a rational multiple of πk = (π2)k/2 =

(6ζ(2))k/2. Therefore, for any k ≥ 1, we see that ζ∗S(k) ∈ ζ(2)Z and hence ζS(k) = 0.

2. For indices of depth two, it is known that

ζS(k1, k2) = (−1)k1

(
k1 + k2

k1

)
ζ(k1 + k2) mod ζ(2)Z.

See, e.g., [12].

Remark. In [29] Yasuda proves that the set of the values ζ∗S(k) spans the whole

Q-vector space Z. Hence Z/ζ(2)Z is generated by SMZVs.
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§ 3.3. Kaneko-Zagier conjecture

Now we formulate the conjecture due to Kaneko and Zagier precisely.

Kaneko-Zagier conjecture. (Kaneko-Zagier [14]) There exists a Q-algebra isomor-

phism

φKZ : ZA −→ Z/ζ(2)Z

such that φKZ(ζA(k)) = ζS(k) for any index k.

According to the conjecture, Q-linear relations among FMZVs should be satisfied

by SMZVs. Here we give two examples of such relations, called duality and Ohno-type

relation, which are proved to be correct. To state them, we define the Hoffman dual

k∨ as follows. Any non-empty index is written in the form (1□1□ · · ·□1) in which □
is either ’+’ (plus) or ’,’ (comma). For example, the index k = (3, 1, 2) is written as

k = (1+1+1, 1, 1+1). Then the Hoffman dual k∨ is defined to be the index obtained by

replacing ’+’ by ’,’ and vice versa. Hence, if k = (3, 1, 2), then k∨ = (1, 1, 1+1+1, 1) =

(1, 1, 3, 1).

The duality is an identity of a variant of FMZV and SMZV called a ”star-version”

of them. For an index k = (k1, . . . , kr) we set

H⋆
m(k) =

∑
m≥m1≥···≥mr>0

1

mk1
1 · · ·m

kr
r

.

It is written as a linear combination of the harmonic sums Hm. For example,

H⋆
m(2, 3, 1) =

∑
m≥m1≥m2≥m3>0

1

m2
1m

3
2m3

=

 ∑
m≥m1>m2>m3>0

+
∑

m≥m1=m2>m3>0

+
∑

m≥m1>m2=m3>0

+
∑

m≥m1=m2=m3>0

 1

m2
1m

3
2m3

= Hm(2, 3, 1) +Hm(5, 1) +Hm(2, 4) +Hm(6)

= Hm(2, 3, 1) +Hm(2 + 3, 1) +Hm(2, 3 + 1) +Hm(2 + 3 + 1).

In general, we see that

H⋆
m(k1, . . . , kr) =

∑
□=’+’ or ’, ’

Hm(k1□ · · ·□kr).(3.3)

Now we define the star-version of FMZV by

ζ⋆A(k) = (H⋆
p−1(k) mod p)p.
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From (3.3) we see that

ζ⋆A(k1, . . . , kr) =
∑

□=’+’ or ’, ’

ζA(k1□ · · ·□kr).

Motivated by this identity, we also define the star-version of SMZV by

ζ⋆S(k1, . . . , kr) =
∑

□=’+’ or ’, ’

ζS(k1□ · · ·□kr).

Then we have the following relation:

Theorem 3.8 (Hoffman [8] for FMZV, Jarrosay [10] for SMZV). For any non-

empty index k, it holds that

ζ⋆F (k) = −ζ⋆F (k
∨)

for F = A or S.

Next we give the Ohno-type relation.

Theorem 3.9 (Oyama [21]). Let k be a non-empty index, and set r = dep(k)

and r′ = dep(k∨). Then, for m ≥ 0, it holds that∑
e∈(Z≥0)

r

wt(e)=m

ζF (k + e) =
∑

e′∈(Z≥0)
r′

wt(e′)=m

ζF ((k
∨ + e′)∨)

for F = A or S.

Remark. FMZVs and SMZVs satisfy the following relations:

ζF (k ∗ l) = ζF (k)ζF (l),(3.4)

ζF (kx l) = (−1)wt(k)ζF (
←−
k , l),(3.5)

where ∗ and x are the harmonic and the shuffle product, respectively, and
←−
k is the

reversal of k. For the details, see, e.g., [12]. In [21] Oyama proved that Theorem 3.9

follows from (3.4), (3.5) and the fact that ζF (k1, k2, . . . , kr) = 0 if k1 = k2 = · · · = kr,

which can be derived from (3.4) and ζF (k) = 0 for k ≥ 1 (see [8, Theorem 2.3]).

§ 3.4. Finite multiple harmonic q-sum and Finite/Symmetric MZV

Here we see that FMZVs and SMZVs are simultaneously obtained from the finite

multiple harmonic q-sum, which is a truncated version of the qMZV (2.1) defined by

Hm(k; q) =
∑

m≥m1>···>mr>0

q(k1−1)m1+···+(kr−1)mr

[m1]k1 · · · [mr]kr
(3.6)
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for an index k = (k1, . . . , kr).

For n ≥ 1, we set ζn = e2πi/n. If p is prime, the q-sum Hp−1(k; ζp) at a root of

unity belongs to the ring Z[ζp] because [m]|q=ζp is a unit of Z[ζp] for 1 ≤ m < p. Then

FMZVs are reconstructed from Hp−1(k; ζp) as follows:

Theorem 3.10 (Bachmann-Takeyama-Tasaka [1]). Under the identification

Z[ζp]/(1− ζp)Z[ζp] ≃ Fp for prime p, we have

(Hp−1(k; ζp) mod (1− ζp)Z[ζp])p = ζA(k)

in A for any index k.

The SMZVs are obtained by taking the limit of the q-sum at a root of unity.

Theorem 3.11 (Bachmann-Takeyama-Tasaka [1]). For any index k, the limit

ξ(k) = lim
n→∞

Hn−1(k; ζn)

exists in Z[πi] and it is given by

ξ(k1, . . . , kr) =
r∑

a=0

(−1)k1+···+kaζ∗(ka, ka−1, . . . , k1;
πi

2
) ζ∗(ka+1, ka+2, . . . , kr;−

πi

2
),

where ζ∗(k;T ) is the polynomial determined by (3.2). Hence it holds that

ξ(k) mod πiZ[πi] = ζS(k)

under the identification Z[πi]/πiZ[πi] ≃ Z/ζ(2)Z.

An important point is that, because of Theorem 3.10 and Theorem 3.11, we can

obtain relations among FMZVs and SMZVs simultaneously from those among the finite

multiple harmonic q-sums at a root of unity. For example, the duality (Theorem 3.8)

and the Ohno-type relation (Theorem 3.9) are reproduced from the following identities,

respectively.

Theorem 3.12 (Bachmann-Takeyama-Tasaka [1]). We define the star-version

H⋆
m(k; q) by (3.6) with the range m ≥ m1 > · · · > mr > 0 of the summation replaced by

m ≥ m1 ≥ · · · ≥ mr > 0. Then, for any index k and n > dep(k), it holds that

H⋆
n−1(k; ζn) = −ζwt(k)

n H⋆
n−1(k

∨; ζn),

where the bar on the right-hand side denotes complex conjugation.



A q-analogue of multiple zeta values and its application to number theory 83

Theorem 3.13 (Takeyama [25]). Let k be a non-empty index, and set r =

dep(k) and s = dep(k∨). For m ≥ 0 and n ≥ r +m+ 1, it holds that∑
e′∈(Z≥0)

s

wt(e′)=m

Hn−1((k
∨ + e′)∨; ζn)

=
m∑
l=0

1

n

(
n

m− l + 1

)
(1− ζn)

m−l
∑

e∈(Z≥0)
r

wt(e)=l

Hn−1(k + e; ζn).

As seen above, the finite multiple harmonic q-sum Hm(k; q) at a root of unity plays

a role of a bridge between FMZVs and SMZVs. We expect that this framework sheds

some light on studying the Kaneko-Zagier conjecture.

§ 3.5. Finite and symmetric Mordell-Tornheim multiple zeta values

Lastly, we discuss a variant of MZVs called the Mordell-Tornheim multiple zeta

values [16, 17, 27]:

Definition 3.14. For an index k = (k1, . . . , kr) and a positive integer l, we

define the Mordell-Tornheim multiple zeta value ζMT (k; l) by

ζMT (k; l) =
∑

m1,...,mr>0

1

mk1
1 · · ·m

kr
r (m1 + · · ·+mr)l

.

It is known that ζMT (k; l) belongs to Zwt(k)+l, which is the weight wt(k) + l part

of the Q-algebra of MZVs [4, 28].

In [11], Kamano introduces the finite Mordell-Tornheim multiple zeta value by

ζMT
A (k; l) =

 ∑
m1+···+mr<p
m1,...,mr>0

1

mk1
1 · · ·m

kr
r (m1 + · · ·+mr)l

mod p


p

∈ A

and proves that it belongs to the Q-algebra ZA of FMZVs. By setting mr+1 = p−(m1+

· · ·+mr), we see that the above multiple sum is written in more symmetric form as

(−1)l
∑

m1+···+mr+1=p
m1,...,mr,mr+1>0

1

mk1
1 · · ·m

kr
r ml

r+1

modulo p. Motivated by this expression, we introduce the following q-sum for an index

k = (k1, . . . , kr) with r ≥ 2:

ωn(k; q) =
∑

m1+···+mr=n
m1,...,mr>0

q(k1−1)m1+···+(kr−1)mr

[m1]k1 · · · [mr]kr
.
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Then the algebraic/analytic limiting procedure as q → 1 given in Theorem 3.10 and

Theorem 3.11 also works for ωn(k; q), and the result is consistent with Kaneko-Zagier

conjecture as follows.

Theorem 3.15 (Bachmann-Takeyama-Tasaka [2]).

1. For a prime p, we identify Z[ζp]/(1−ζp)Z[ζp] with Fp. For an index k = (k1, . . . , kr)

with r ≥ 2, we set

ωA(k) = (ωp(k; ζp) mod (1− ζp)Z[ζp]) ∈ A.

Then it holds that ωA(k) = (−1)krζMT
A (k1, . . . , kr−1; kr) and hence ωA(k) ∈ ZA.

2. For an index k = (k1, . . . , kr) with r ≥ 2, the limit

Ω(k) = lim
n→∞

ωn(k; ζn)

exists and it holds that

Ω(k) =

r∑
a=1

(−1)kaζMT (k1, . . . , ka−1, ka+1, . . . , kr; ka).

Hence Ω(k) ∈ Zwt(k).

3. For an index k = (k1, . . . , kr) with r ≥ 2, we define

ωS(k) = Ω(k) mod ζ(2)Z.

Then, if Kaneko-Zagier conjecture is true, we have

φKZ(ωA(k)) = ωS(k)

for any index k with dep(k) ≥ 2.

Remark. In [2] we conjecture that the Mordell-Tornheim MZVs span the Q-

algebra Z of MZVs and, more strongly, the set {Ω(k) |k: index with dep(k) ≥ 2} spans
Z. However, it is false if the conjectures (1.3) and (1.4) are true because of the following

reason.

We set

Wk =
∑

k:index, l≥1
wt(k)+l=k

Q ζMT (k; l).

and wk = dimQWk. It is known thatWk ⊂ Zk for all k ≥ 2. Note that ζMT (k1, . . . , kr; l)

is symmetric with respect to k1, . . . , kr. Hence it holds that wk ≤
∑k−1

l=1 p(l), where p(n)

is the partition function. From the asymptotic formula due to Hardy and Ramanujan

p(n) ∼ 1

4n
√
3
exp (π

√
2n/3) (n→∞),



A q-analogue of multiple zeta values and its application to number theory 85

we see that

logwk = O(
√
k) (k →∞).

On the other hand, from the definition of dk, (1.2), we have

log dk = O(k) (k →∞).

Hence, if (1.3) and (1.4) are true, Zk is larger than Wk for large k.

We thank Professor Jianqiang Zhao for pointing out that our conjecture would be

false by the above reasoning.
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