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The tree tensor network (TTN) provides an essential theoretical framework for the practical simulation of
quantum many-body systems, where the network structure defined by the connectivity of the isometry tensors
plays a crucial role in improving its approximation accuracy. In this paper, we propose a TTN algorithm that
enables us to automatically optimize the network structure by local reconnections of isometries to suppress the
bipartite entanglement entropy on their legs. The algorithm can be seamlessly implemented to such a conven-
tional TTN approach as the density-matrix renormalization group. We apply the algorithm to the inhomogeneous
antiferromagnetic Heisenberg spin chain, having a hierarchical spatial distribution of the interactions. We then
demonstrate that the entanglement structure embedded in the ground state of the system can be efficiently
visualized as a perfect binary tree in the optimized TTN. Possible improvements and applications of the algorithm
are also discussed.
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I. INTRODUCTION

Tensor networks have been attracting growing interest in a
variety of research fields, including condensed matter physics,
quantum information, quantum cosmology, and data science
[1–4]. Under the context of quantum many-body physics,
tensor networks have provided flexible representations for
low-energy states in correlated systems and have been em-
ployed in various theoretical approaches [5]. A tensor network
framework had been used earlier in the field of statistical
physics [6], but recent rapid developments in this field chiefly
originated from the density matrix renormalization group
(DMRG) method [7,8]. It turned out that the matrix product
state (MPS) is variationally improved through the numerical
sweeping processes in the DMRG method [9,10].

A couple of fundamental frameworks of the tensor network
have been established during the first decade of this century, in
which generalization of the network structure plays a key role.
For instance, the tensor-product state [11,12], equivalently,
the projected entangled-pair state [13,14], has been applied
successfully to two-dimensional (2D) quantum lattice models
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and three-dimensional statistical ones. The multiscale entan-
glement renormalization ansatz (MERA) revealed the intrinsic
network structure for properly describing one-dimensional
(1D) quantum critical states [15,16]. Moreover, the tree tensor
network (TTN) framework has been established as a solid
basis for practical numerical analyses in quantum chemical
problems [17–22], equilibrium phase and ground state stud-
ies [23–32], quantum many-body systems with randomness
[33–38], and information science [39–44]. Also, we note that
the DMRG applied to Bethe lattice systems invokes the TTN
framework [45–47].

Suppose that we have a quantum state described by a tensor
network, which is a contraction of tensors. In general, a tensor
leg that connects a pair of tensors, which is often mentioned as
an auxiliary bond, with a finite dimension χ can be capable of
representing the entanglement entropy (EE) up to ln χ . Thus,
if n auxiliary bonds cross the boundary between a subsystem
and the rest of the entire network, the bipartition EE can
be n ln χ at most. This upper bound controls the precision
of the tensor network when it is used as an approximation
of a certain quantum state. For practical tensor network ap-
proaches, the network structure is thus crucial in improving
the accuracy.

For spatially uniform 1D quantum systems, the network
structure of the MPS, i.e., the linear arrangement of three-
leg tensors along the chain direction, seems to fit the lattice
structure of their ground state wave functions. However, there
is no guarantee, in general, that such an intuitive network
structure is really suitable to the accurate representation of the
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target state. Under the presence of long-range interactions or
position-dependent interactions such as random couplings, it
is even difficult to imagine a good network structure in ad-
vance. How can we resolve the situation? Formulations in the
strong-disorder renormalization group (SDRG) [48,49] and
its tensor network generalization (tSDRG) [33,34,36] provide
us an insight into this fundamental question. In the tSDRG,
the network structure of tensors is determined by the energy
scale contained in the effective Hamiltonians, which are se-
quentially generated by successive real-space renormalization
group (RG) transformations. Another variant of tSDRG that
utilizes the EE in the construction of the TTN has also been
clarified to generate slightly different network structure com-
pared with the above tSDRG based on the energy scale [37].
Recently, Roy et al. [50–52] and Santalla et al. [53] introduced
the concept of emergent geometry, that is, the entanglement
structure visualized from the EEs for all the possible bipar-
titions of the system. The relation between the structure of
entanglement in a quantum state and the geometry of the
tensor network has also been explored [54,55].

As a step toward the construction of better tensor network
structures, we focus on TTNs, which do not contain any loop
in the diagrammatic representation. An important feature of
the TTN is that the bipartition of any TTN is possible just by
cutting an auxiliary bond between three-leg tensors, which we
call isometries following the convention [15,16]. This means
that each auxiliary bond bears the EE for the correspond-
ing bipartition. If there is no limitation in the dimension of
auxiliary bonds, every bond can carry any amount of EE so
that the TTN with an arbitrary tree structure can, in principle,
represent any quantum state exactly. However, in the practical
situation where the bond dimension is bounded by χ , a large
amount of EE exceeding ln χ causes a loss of accuracy in
representing the quantum state. This fact leads us to a guiding
principle that one should select a TTN structure in which
the EE at every bond is as small as possible so that one can
minimize the loss of accuracy due to the restriction of the
bond dimension. We call a TTN that satisfies this requirement
of the least-EE principle the optimal one in the following.
We note that the preclusion of the bonds with large EE can
be partially achieved by reordering of the sites [56–60] or the
readjustment of the network structure [18,19,61], based on the
mutual information between sites. Larsson [22] introduced a
scheme to reconstruct the local tree structure by monitoring
the cutoff bond dimension. Very recently, Li et al. [62] ex-
amined the efficiency of the site reordering by the successive
minimization of the bond EE and/or truncation error within
the MPS. An entanglement bipartition approach to construct
the optimal TTN for a given exact wave function of a small
system has also been proposed [63].

In this paper, we propose an iterative algorithm that gener-
ates the optimal TTN structures automatically. More precisely,
in the DMRG-like updating step of tensors, we determine
the locally optimal connectivity of the isometry pair among
three possible candidates to reduce the EE on the bond under
consideration. During sweeps over the variational TTN wave
function, a better network structure is thereby generated suc-
cessively toward the optimal one through local reconnections
of auxiliary bonds. We apply the algorithm to the inho-
mogeneous antiferromagnetic Heisenberg spin chain which

(a) (b) a

b c

FIG. 1. (a) Schematic picture of the binary tree tensor network
(TTN). The ovals (black) and circles (red) represent isometries and
bare spin degrees of freedom, respectively. The arrows are the tensor
legs, which we call the (auxiliary) bonds. The rhombus (red) rep-
resents the singular values. The part surrounded by the dotted curve
(red) is the central area. (b) The isometry V c

ab. Directions of the bonds
are shown by arrows.

possesses hierarchical spatial modulation of the interaction
constants and then confirm that the perfect binary tree net-
work emerges automatically. Note that the sweeping process
of the algorithm can be interpreted as a visualization of the
entanglement structure embedded in the TTN.

The rest of this paper is organized as follows. We intro-
duce the basic notations in the conventional variational TTN
formulation in Sec. II. We explain the automatic optimization
scheme of the TTN structure in Sec. III. In Sec. IV, we
apply the proposed algorithm to the trial system and check
the numerical validity of the algorithm. Section V is devoted
to the summary and concluding remarks.

II. TTN

Before explaining the optimization scheme on the TTN
structure, we shortly review fundamental concepts and no-
tations in the conventional formulation of the variational
TTN. Let us consider the binary TTN. Figure 1(a) shows the
schematic diagram of a TTN, which can be also viewed as
the TTN representation of the ground state wave function of a
quantum spin model. In the figure, the oval and circle symbols
represent isometries and bare spin degrees of freedom, respec-
tively, and they are connected to other isometries or circles
through arrows representing auxiliary bonds. As depicted in
the diagram, the direction of the bond arrows flows to the
center indicated by the rhombus symbol representing singular
values. As a result, the network contains no loop. Also, we
define the central area by the dotted curve surrounding the
center of the network for later convenience.

As shown in Fig. 1(b), the isometry has two incoming
bonds (arrows) and an outgoing one. Let us write tensor el-
ements of the isometry as V c

ab, where a and b are indices for
incoming bonds, and c is that for the outgoing one. We distin-
guish tensors by the letters put on the bonds, if necessary. The
isometry satisfies the orthonormal condition:

∑

ab

V̄ c
ab V c′

ab = δcc′, (1)

where V̄ c
ab is the complex conjugate of V c

ab, and δcc′ is the
Kronecker delta. Throughout this paper, we assume that the
number of bond degrees of freedom, i.e., the bond dimension
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(a)

(b) (c)

FIG. 2. A variety of tree tensor network (TTN) geometries.
(a) The matrix product network (MPN). (b) The perfect binary TTN.
(c) An example of the nonuniform TTN.

for a, b, and c, is bounded by a finite number χ . For the central
bond attached with the rhombus, meanwhile, we assign k to
specify its index for a moment. We then assume that singular
values Dk are arranged in the descending order:

D1 � D2 � D3 � · · · � Dχ (� 0). (2)

Since the TTN state |�〉 is written in the canonical form, the
norm is expressed as

〈�|�〉 =
χ∑

k=1

(Dk )2 (3)

because of the orthonormal condition of the isometry [64].
Here, we note that the position of the center can be moved
to an arbitrary bond by means of fusion processes of
tensors [64].

Given the Hamiltonian Ĥ of a system, we evaluate the
variational energy:

Evar = 〈�|Ĥ |�〉
〈�|�〉 , (4)

where |�〉 denotes a trial quantum state in terms of TTN.
Here, the TTN representation of |�〉 is not unique. Consider
TTNs for a system with eight spins as typical examples.
Figure 2(a) shows the TTN of the MPS form, which is a
TTN established for uniform 1D quantum systems. We call
this type of TTN the matrix product network (MPN) [65].
Note that, although the MPN has a simple chain structure,
there remains room for various ordering of the site index
[56–60,62,66,67]. Figure 2(b) is the perfect binary TTN with
a hierarchical structure, which is often used in the frame-
work of real-space RGs. Figure 2(c) shows a nonuniform
TTN structure, which often appears in tSDRGs for random
systems. These examples suggest that we have several options
in choosing an appropriate TTN structure for obtaining better
variational energy Evar of Eq. (4).

If the network structure of the TTN is fixed, the varia-
tional minimum of Evar can be obtained by the successive
improvement of isometries, which is quite similar to that of
the finite-system DMRG algorithm [18,19,61,64,68,69]. We
briefly explain the local improvement procedure of the isome-
tries at the center of the TTN, which is also essential for
constructing the local reconnection algorithm of isometries
discussed in Sec. III. Figure 3(a) shows the central area in
the TTN to move the central bond from a to e. At first, the
singular value Da is located at the central bond a, where two

(a) (b)

a

c

b

d
(c)

a

c

b

d
Ψ

a

c d

b

e
e~
e

a

FIG. 3. Local improvement process. (a) The current central bond
a and two isometries connected to the new central bond e. (b) The
renormalized ground-state wave function �̃abcd . (c) Updated isome-
tries connected to the new central bond e.

isometries V a
be and V e

cd are connected by the bond e, which will
be a new central bond. The bonds a, b, c, and d have arrows
incoming to the central area surrounded by the dotted curve,
and then the isometries outside the central area define the
corresponding environment. We can then construct the renor-
malized Hamiltonian H̃ by recursively applying the isometries
in the environment to Ĥ from the boundary of the TTN toward
the center. In practical computations, this RG transformation
can be quickly completed with the reuse of the environments
in the previous steps. Note that H̃ corresponds to the so-called
super-block Hamiltonian in the DMRG. Diagonalizing H̃ , we
obtain the lowest eigenvalue and the corresponding eigenvec-
tor �̃abcd , which can be called the renormalized ground state
wave function.

Figure 3(b) shows the diagram for �̃abcd . Rearranging the
leg indices into ab and cd in the matrix form, we next perform
the singular-value decomposition (SVD) to obtain the new
tensors:

�̃abcd =
∑

e

V e
abDeV

e
cd , (5)

where the right-hand side is diagrammatically illustrated in
Fig. 3(c). Discarding tiny singular values, we keep the number
of degrees of freedom for the new central bond e within the
upper bound χ . If there is degeneracy in De, we keep all the
degenerating singular values or discard all of them to maintain
the symmetry of the state. Note that any basis truncation is not
performed near the boundary of the TTN where the number of
positive De does not exceed χ .

After the decomposition in Eq. (5), the tensor V a
be in

Fig. 3(a) is replaced by V e
ab in Fig. 3(c), where the position

of the singular value is also shifted to the bond e. Also the
isometry V e

cd can be updated. Using the above local update
accompanying the position shift of the central area, we sweep
the entire TTN with improving the isometries. After repeating
this procedure several times, we finally obtain a good varia-
tional wave function.

III. TREE STRUCTURE OPTIMIZATION

Now we explain the variational scheme of automatically
searching for the optimal TTN structure based on the con-
ventional variational TTN algorithm above. An essential idea
is that the local reconnection of bonds can be implemented
in every improvement step of isometries inside the central
area. Let us see �̃abcd in Fig. 3(b) again. In Eq. (5), we
arranged the collective indices of ab and cd according to the
original network structure and then performed SVD, as shown
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FIG. 4. Three possible applications of singular-value decompo-
sition (SVD) to �̃abcd , as candidates for the local reconnection.

in Fig. 3(c). We draw this diagram again in Fig. 4(a). As in
Figs. 4(b) and 4(c), however, there are the other two possible
arrangements of the collective indices [64]. If we adopt ac and
bd , the SVD yields

�̃abcd =
∑

e

V e
acD′

eV e
bd , (6)

as shown in Fig. 4(b). If we choose ad and bc, we obtain

�̃abcd =
∑

e

V e
ad D′′

e V e
bc, (7)

which is depicted as Fig. 4(c). These diagrams provide three
options of the local connectivity of isometries in the TTN.
Figures 4(b) and 4(c) accompany the reconnection of the
network. Here, note that De in Eq. (5), D′

e in Eq. (6), and D′′
e

in Eq. (7) are different, but for all cases, the bond dimension
of e is at most χ after the basis truncation.

To quantitatively evaluate the quality of the above three
connections, we employ the EEs associated with their singular
values. Let us write the arrangement in Eq. (5) as (ab|cd ).
Then the corresponding EE is given by

S (ab|cd ) = −
∑

e

(De)2 ln(De)2, (8)

where we have assumed the normalization of the TTN. Simi-
larly, we have the EEs:

S (ac|bd ) = −
∑

e

(D′
e)2 ln(D′

e)2, (9)

S (ad|bc) = −
∑

e

(D′′
e )2 ln(D′′

e )2, (10)

for (ac|bd ) and (ad|bc), respectively. We then select the con-
nection having the least EE as the locally optimal connectivity
of the isometries. Recall that, in the TTN, cutting a certain
bond always has the corresponding bipartitioning of the entire
wave function. The choice of the reconnection, which locally
satisfies the least EE principle discussed in Sec. I, is thus
expected to reduce the loss of accuracy caused by the limi-
tation of finite bond dimension. This reconnection process is
the heart of the proposed algorithm.

Once the new connectivity inside the central area is deter-
mined, we also update the corresponding isometry. Suppose
that the connection of (ad|bc) is selected, and the central
bond is shifted to c in the next step, as in Fig. 5. Following
Eq. (7), we first update the isometry V e

ad , which is on the
outside of the new central area illustrated as the dotted curve
in Fig. 5. We next recalculate the block Hamiltonian and the

a

c d

b
e

f

g

e

FIG. 5. The new central area in the case that Fig. 4(c) is chosen as
the optimal connection and that c is treated as the central bond of the
new step. The shaded oval represents V e

ad , which has been updated.

spin operators belonging to V e
ad , which turns out to be a part

of H̃ in the next step. Meanwhile, we may skip the update
of V e

bc since it is included in the new central area that will
be treated in the next step. Now we can perform the same
updating processes by shifting the central area. The iterative
algorithm summarized in Table I enables us to simultaneously
optimize the variational energy Evar and the TTN structure by
sweeping the central area over the entire TTN.

Here, it is worth mentioning an acceleration algorithm ef-
fective for the numerical diagonalization of H̃ . So far, we have
stored the wave function �̃abcd and the updated isometry V e

ad
in computer memory. Also, we assume that the isometry V c

f g
was obtained previously. Then we calculate the contraction∑

acd V c
f gV̄

e
ad �̃abcd , which can be a good initial vector for

�̃b f ge. Alternatively, if we have V e
bc and D′′

e explicitly, the
initial vector can be constructed as

∑
c V c

f gV
e

bc D′′
e . These initial

vectors may substantially reduce the computational cost of the
Lanczos or the Davidson method to diagonalize H̃ in the next
step [70].

In the following, we describe several comments on the
technical aspect of the algorithm in order. The initial setup
of the TTN is flexible since both the tree structure and the
isometries will be optimized afterward. A MPN generated by
the finite-system DMRG is one of the realistic candidates. It
is even possible, in principle, to use a naïve product state,
which can be regarded as a TTN with χ = 1. However, a good
initial setup may decrease the number of sweeps required for
convergence. For random spin systems, the TTN generated
by the tSDRG protocol [33–38] will be a reasonable initial
TTN. Also, we note that the central area must move around all
auxiliary bonds and isometries in the sweeping process of the
network. In Appendix A, we explain the computational detail

TABLE I. Algorithm of automatic structural optimization for
the TTN.

(1) Construct the super-block Hamiltonian H̃ according to
the current central area.

(2) Diagonalize H̃ to obtain the renormalized ground state
wave function �̃.

(3) Perform the SVD on �̃ in three different manners, as
shown in Fig. 4.

(4) Choose the grouping with the smallest EE and update
the tensors in the central area accordingly.

(5) Move the central bond to the appropriate direction
(see Appendix A).

(6) Iterate the above steps until the entire TTN is updated.

013031-4



AUTOMATIC STRUCTURAL OPTIMIZATION OF TREE … PHYSICAL REVIEW RESEARCH 5, 013031 (2023)

(a) (b)

(c)

J J J

J J J J J J J J

Jα

Jα 2 Jα 3Jα Jα Jα JαJα 2

FIG. 6. Inhomogeneous interactions on the hierarchical chain
when (a) N = 2, (b) N = 4, and (c) N = 16.

of this technical issue about the sweeping path of iterative
computation.

While we employ the bond EE for the evaluation of the
local network structure in the proposed algorithm, one may
use other quantities such as the truncation error, i.e., the sum
of the eigenvalues of the reduced density matrix (DM) for the
discarded states, or the Renyi entropy [62]. The truncation
error is directly related to the variational energy, while the
bond EE can access the entanglement structure of the target
state.

Since the reconnection of the isometries in the central area
is always local, the optimization process of the TTN structure
may be trapped at local minima of the distribution landscape
of the EEs on the network. A possible device to escape from
such trapping is to combine a stochastic method with the
algorithm. More precisely, we can select one of the diagrams
in Fig. 4 according to the relative probabilities based on the
heat-bath method:

P(ab|cd ) ∝ exp[−βS (ab|cd )], (11a)

P(ac|bd ) ∝ exp[−βS (ac|bd )], (11b)

P(ad|bc) ∝ exp[−βS (ad|bc)], (11c)

where β is an effective inverse temperature. If β is gradually
increased during the sweeping process, the TTN structure
converges to the one where the sum of EE on all the bonds is
minimized, which is a candidate for the optimal TTN. If one
prefers to suppress the EE on each bond further, the square or
higher power of S (ab|cd ), S (ac|bd ), and S (ad|bc) can be used in
the exponent of the right-hand side of Eq. (11). Note that the
stochastic sampling of the tree structure can be parallelized.

IV. NUMERICAL RESULTS

We check the validity of the proposed optimization scheme
in Table I by applying it to the inhomogeneous Heisenberg
spin chain, whose Hamiltonian is formally written as

Ĥ =
N−1∑

i=1

Ji Si · Si+1, (12)

where Si = (Sx
i , Sy

i , Sz
i ) represents the S = 1

2 quantum spin
on the ith site. We consider the case where the position-
dependent exchange coupling Ji > 0 is recursively deter-
mined, as shown in Fig. 6. We call the model the hierarchical
chain in the following. The minimum unit is a two-site system
(N = 2) in Fig. 6(a), where the coupling constant between S1
and S2 is J > 0, which defines the unit of the energy scale.
Joining two two-site units with the coupling αJ , we obtain a

four-site unit (N = 4) in Fig. 6(b). The parameter 0 < α � 1
controls the decay rate of the coupling. In general, joining
the 2n-site units (N = 2n) with the coupling αnJ , we obtain
the 2n+1-site system. Figure 6(c) shows the 24-site system
as an example. We treat the system size N = 64 (for several
α’s) and N = 128 (for α = 0.50) in the following numerical
calculations.

A significant feature of the hierarchical chain is that, when
α is sufficiently small, one can deduce its optimal TTN with
the perturbative RG scheme. In the hierarchical chain, the
largest exchange coupling is J , with which two spins S2l−1

and S2l are entangled most strongly. Therefore, it is natural
to connect the two spins coupled with J by an isometry to
form the spin blocks at the first step of the RG. In the second
step, two blocks connected via αJ are entangled most strongly,
and thus, one should put an isometry to merge the blocks
to form a new block. A recursive application of the above
RG process eventually gives rise to the perfect binary TTN,
which is expected to be the optimal one if α is small enough.
As α increases to unity, the system approaches the uniform
Heisenberg chain, where the critical ground state is realized.
Thus, the hierarchical chain may provide a good platform to
visualize the crossover of the entanglement structure between
the ones of the perfect binary tree and of the uniform wave
function with critical fluctuation.

To demonstrate that the optimal TTN can be automatically
obtained with the proposed algorithm, we start the calculation
from the MPN prepared by the following processes. We first
focus on two spins at an open end of the chain. We then
diagonalize the block Hamiltonian, truncate the high-energy
eigenstates, and include the neighboring spin into the new
block. We perform this recursive RG process from both ends
of the chain and increase the block size one by one. When the
left and right blocks meet at the center, we have an MPN in-
cluding all the isometries, from which we start the first sweep
of the structural optimization algorithm. The upper bound of
the bond dimension in the initial MPN is χ = 40.

During the iterative sweeps of the algorithm in Table I, the
isometries and their connectivity are successively modified.
We perform the diagonalization of the effective Hamiltonian
H̃ within the subspace of zero total magnetization

∑
i Sz

i = 0
and take the lowest energy state of the subspace as the ground
state. After the numerical convergence, the variational state
with optimal TTN structure is automatically obtained. For
the hierarchical chain, we do not use the stochastic choice of
reconnection in Eq. (11), but always choose the smallest EE
connection in each local update. We perform the SVD of the
renormalized ground state wave function �̃ by the diagonal-
ization of the reduced DM, whose eigenvalues are equal to the
square of the corresponding singular values. We note that the
SVD can also be directly carried out by using a linear algebra
package. For comparison, we performed additional calcula-
tion with forbidding the reconstruction of the TTN structure,
which remains MPN throughout the variational calculation.
Note that this calculation is equivalent to the finite-system
DMRG method.

We set the maximum number of the bond dimension to
be χ = 40. We discard the block states whose DM eigen-
values are smaller than 10−12 since their contribution to
the ground state wave function is negligible. Due to this
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(a)

(b)

(c)

FIG. 7. Optimization process when α = 0.5 and N = 64. (a) The
initial matrix product network (MPN). (b) After the first sweep.
(c) Any time after the second sweep. Only the left half of the tree
tensor network (TTN) is presented, while the right half is symmetric
with respect to the center of the system.

cutoff condition, the number of block states kept in the
practical calculation can be smaller than χ . For example,
we kept only 26 states, at most, for α = 0.5 and N =
64 and 128, while 40 states were kept for α = 1.0 and N =
64. The truncation error is less than 1.3 × 10−11 for (α, N ) =
(0.50, 64), (0.50, 128), (0.75, 64), and (0.80, 64) and 2.5 ×
10−8 at the worst case of (α, N ) = (1.00, 64).

Figure 7 shows the transition process of the TTN structure
during the sweeps for α = 0.5 and N = 64. The calculation
starts with the initial MPN shown in Fig. 7(a). After the first
sweep, a structure like a perfect binary tree appears for every
four sites, as shown in Fig. 7(b), where the MPN structure
remains in the upper part of the diagram. After the second
sweep, the perfect binary tree structure shown in Fig. 7(c)
expands up to the top. This is the optimal TTN structure,
which is unchanged afterward. We emphasize that the optimal
TTN structure obtained by the calculation agrees with the one
derived from the perturbative RG scheme discussed above.
We observed a similar transition process for α = 0.5 and
N = 128, where the perfect binary TTN emerges after three
sweeps. Here, we note that the intermediate TTN structure
may depend on how the center bond moves during a sweep;
the structure in Fig. 7(b) is the one obtained with the sweep
procedure explained in Appendix A. The point is that, as
the calculation proceeds, the TTN structure smoothly changes
toward the optimal one shown in Fig. 7(c).

Table II shows the maximum and average of the bond
EE obtained in the optimized TTN for α = 0.5 and N =
64 and 128. For comparison, the same set of data obtained in
the fixed MPN is shown. Here, the bonds directly connected
to the bare spins are not included in the analysis since they
always carry the EE of the amount ln 2 irrespective of the
network structure, reflecting the fact that the two states | ↑〉
and | ↓〉 of each bare spin have the same reduced DM weight
1
2 . It is clearly seen in the table that both the maximum and

TABLE II. Maximum and average of the bond EE obtained for
optimized TTN and fixed MPN when N = 64 and 128 with α = 0.5.
The EEs on the boundary bonds are not included in the analysis.

Type Maximum Average

Optimized TTN (N = 64) 0.1110 0.0640
Optimized TTN (N = 128) 0.1110 0.0625
MPN (N = 64) 0.6935 0.3697
MPN (N = 128) 0.6935 0.3719

average of the bond EEs are lessened by the tree structure
optimization, with the suppression ratio about 1

6 .
Figure 8 shows the expectation values of the nearest neigh-

bor spin-correlation functions 〈Si · Si+1〉 when α = 0.5 and
N = 128. As seen in the figure, the correlation functions
obtained from the MPN coincide with those from the opti-
mal TTN. This is because the ground state for α = 0.5 is
close to the product state consisting of the singlet dimers,
and accordingly, both the optimized TTN and MPN obtained
have the sufficient potential of representing the ground state
accurately enough. Indeed, the strong dimerization in every
two sites can be confirmed in the figure where 〈S2�−1 · S2�〉
is distributed within the range −0.732 to − 0.735, while the
spin correlations across neighboring dimers are weak. Also,
we note that the ground state energy calculated by the MPN
agrees with that of the optimal TTN up to 11 digits.

Distinctions between the optimized TTN and the MPN can
be found in the spatial distribution of the EE on the auxiliary
bonds, although both approaches provide accurate results at
the level of the correlation functions. In Fig. 9, we compare
the EE distributions on the two different networks of the
optimized TTN and the MPN for α = 0.5 and N = 128. In
the figure, we have introduced the horizontal coordinate x
(for both the optimized TTN and the MPN) and the height
coordinate y (only for the optimized TTN) to specify the
positions of the auxiliary bonds; the definitions of the coordi-
nates are presented in Appendix C. The EEs on the boundary
bonds directly connected to the bare spins that take the value
S = ln 2 are not included in Fig. 9.

0010

−0.5

0

: MPN
: optimal

FIG. 8. Nearest neighbor spin correlation function when α = 0.5
and N = 128. Open circles and solid squares, respectively, represent
the obtained result by the matrix product network (MPN) and the
optimal tree tensor network (TTN).
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FIG. 9. Bond entanglement entropy (EE) calculated when α =
0.5 and N = 128 as a function of the horizontal position of the bonds
x, defined in Appendix C. Open circles represent the EE calculated
by the matrix product network (MPN). Other plots are calculated by
the optimal tree tensor network (TTN). y denotes the height of the
bond in the optimal TTN.

Let us discuss the distribution of the EE in Fig. 9 from
the bottom to the top. First, the same smallest value of S =
1.7 × 10−4 at x = 64.5 is found in the data of the optimized
TTN and the MPN since the corresponding bipartition of the
system into the left half 1 � i � 64 and the right one 65 � i �
128 is captured by both networks. Also, both of them capture
the second smallest S = 6.1 × 10−4 at x = 24.5 and 104.5
for the optimized TTN and x � 31.5 and 97.5 for the MPN,
corresponding to the bipartition into 1 � i � 32 and 33 �
i � 128 and into 1 � i � 96 and 97 � i � 128. Meanwhile,
only the optimized TTN captures a slightly larger value of
S = 7.7 × 10−4 at x = 40.5 and 88.5, which corresponds to
the bipartitions into 33 � i � 64 and the rest and into 65 �
i � 96 and the rest. Note that these bipartitions separate an
inner branch of the perfect binary tree network from the rest.
The MPN does not have the bond corresponding to such bi-
partitions and thus cannot capture the EE of S = 7.7 × 10−4.
As the height coordinate y in the optimized TTN decreases,
the number of the bipartitions with small EEs that cannot be
captured by the MPN increases. In the upper part of the figure,
the EEs on almost half of the auxiliary bonds in the MPN take
values slightly larger than ln 2 since the bonds carry the EE
of the strongly dimerized pairs sitting in every two sites. Such
large EEs never appear in the optimized TTN, indicating that
the automatic structural optimization algorithm successfully
avoids the bipartitions with the large EEs.

Finally, we discuss the α dependence of the optimal tree
structures. Figure 10(a) shows the optimized TTN for the
chain with α = 1 and N = 64, which is nothing but a uniform
Heisenberg chain. In the bulk limit, the ground state of the
chain is usually described by the uniform MPS. In the finite-
size system with open boundaries, however, the strong dimer
instability induces a sizable staggered component both in the
nearest neighbor spin correlations and the EEs [71]. Reflecting
this dimerization effect, the optimized TTN for α = 1 and
N = 64 has the MPN structure in the unit of the isometries
merging every pair of neighboring bare spins. As α decreases,

(a)

(b)

(c)

FIG. 10. Optimal structures for (a) α = 1.00, (b) α = 0.80, and
(c) α = 0.75. The system size is N = 64. Only the left half of the tree
tensor network (TTN) is presented, while the right half is symmetric
with respect to the center of the system.

the hierarchical distribution of the EE gradually enhances
between the dimerized MPN for α = 1 and the perfect binary
tree for α = 0.5 [Fig. 7(c)]. In Figs. 10(b) and 10(c), we
respectively show the optimal TTN structures for α = 0.8 and
0.75 with N = 64. Here, recall that, in the hierarchical chain,
the weakest coupling is placed at the center of the chain and
the second weakest at the quarter from the open boundary.
Figures 10(b) and 10(c) clearly illustrate that a structure like a
perfect binary tree grows from the regions around the weaker
interactions.

V. CONCLUDING REMARKS

We have proposed the automatic structural optimization
algorithm for the TTN, where the auxiliary bonds between
isometry tensors are locally reconnected based on the least
EE principle during the variational sweeping on the TTN. We
have then demonstrated that, for the hierarchical chain, the
algorithm generates a perfect binary tree as the optimal net-
work structure, where the emergence of the bonds with a large
EE is actually suppressed. The resulting network structure
can be regarded as a fingerprint of the entanglement structure
contained in the quantum state.

In this paper, we have focused on the analysis of the
distribution of the EE in the optimal TTN to verify that
the proposed algorithm indeed works well in terms of the
least EE principle. In practical situations, of course, it is
also an important issue to clarify how the variational energy
Evar in Eq. (4) can be improved with the structural opti-
mization. Preliminary calculations for random quantum spin
systems with long-range interactions suggest that the optimal
TTN realized in the proposed algorithm provides better ac-
curacy of Evar compared with the MPN in the DMRG and
a TTN obtained by the tSDRG. For such complex systems,
the annealing process according to Eq. (11) is essential to
escape from the local minimum in the EE landscape. The
detailed analysis for the random spin system will be published
elsewhere.
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The structural optimization based on the local reconnec-
tion scheme is promising to be effective in a wide variety
of TTN applications to, e.g., 2D or higher dimensional sys-
tems and systems with complicated interactions. Random spin
systems, for which the optimal TTN is expected to exhibit
nontrivial structure, are interesting subjects for the application
of the present algorithm. Quantum chemistry systems con-
taining complex configuration interactions among electrons
[17–22,62,66,67] are another intriguing candidate to be stud-
ied. How the structural optimization of the TTN improves the
computational accuracy of such systems is an interesting fu-
ture problem. In addition, the real-time evolution of quantum
many-body states is often described with the framework of
the TTN [64,69,72]. Emulation of quantum circuits can also
be viewed as a sort of time-evolved quantum state generated
by gate operations and measurements [44]. The dynamical
reconnection of the TTN for such time evolution problems is
also a potential application target.

For the practical application of the algorithm, the estima-
tion of computational costs is another important issue. In the
variational TTN calculation, the most time-consuming part
is the diagonalization of the renormalized Hamiltonian H̃ to
obtain the renormalized ground state wave function �̃. The
cost scales as O(Nintχ

5), where Nint is a numerical factor
that depends on the boundary area or volume of subsystems
connected to the central area and the range of interaction.
(See Appendix B for the evaluation of the cost.) Another
computational hotspot with the cost O(χ6) is the full diago-
nalization of the reduced DM. The cost for this part may be
reduced to O(χ5) or O(χ4 log χ ) by use of the partial SVD
or randomized SVD [73]. These computational costs in the
proposed algorithm based on the TTN are much heavier than
those in the DMRG based on the MPN since, in the DMRG,
two of the four bonds entering the central area always have
the dimension ν, the degree of freedom of a bare spin, and the
relation χ 	 ν usually holds.

A possible scheme to reduce the computational cost is to
carry out the structural optimization with a small χ and then
improve isometries in the obtained optimal TTN structure
with a large χ . This two-step optimization is effective if the
convergence of the TTN structure with respect to χ is fast.
Variational improvement of the isometries can also be accel-
erated by employing the single-site update algorithm [74,75],
in which the central area contains only a single isometry.
The dimension of H̃ is thus suppressed to be of the order of
χ3 so that the cost of diagonalizing H̃ becomes O(Nintχ

4).
If the system possesses high symmetry, the use of the sym-
metric bases [76] would be further efficient. The techniques
in the real-space parallel DMRG [77] that are effective in
accelerating the sweep process for large systems can also be
incorporated with the present algorithm.

Finally, we would like to comment on structural optimiza-
tion for tensor networks other than the TTN. In general, the
philosophy of optimal network structure with the least EE
principle can be relevant to a wider class of tensor networks
containing loop structure. How to clarify the optimal MERA
structure may be an interesting problem in connection with
this paper since the MERA network is constructed by inserting
disentanglers into the TTN.
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APPENDIX A: SWEEP PROCEDURE

The automatic optimization scheme we have explained
performs local reconnection of isometries when it is neces-
sary; therefore, computational care must be taken so that all
the isometries are updated at least once during a sweep. We
introduce the flags for all the bonds and isometries to indicate
whether they have been updated (flag on) or not (flag off).
At the beginning of each sweep, all the boundary bonds that
are directly connected to bare spins are set to be flag on, while
other bonds and all the isometries are flag off. We may choose
an arbitrary bond, excluding the boundary ones, as the origin
and start the sweeping by selecting a bond which is flag off
and neighboring to the origin as the central one for the first
update step.

After the optimal local connection in the central area is
determined in each step, we select a bond from flag-off ones
entering the current central area as the central bond in the next
step. If there are multiple choices, we select the one which is
most distant from the origin. If there is still more than one
choice, one may choose any of them. For each isometry in
the current central area, if both the entering bonds are flag on,
we turn on the flag of the isometry and that of the outgoing
bond, which is the current central bond. An exception applies
to the step when the central bond comes to the origin; after the
update of the isometry and local connection, we keep the flags
off for the origin bond and the isometries connected to it even
if the condition for turning on the flags is satisfied.

By means of these flag operations, the central bond maneu-
vers around in the manner that it moves toward the boundary
of TTN, if possible, along the bonds which are flag off. If the
central bond hits a dead end of flag-on bonds, it steps back
toward the origin with turning on the flags of the bond and
isometry of the dead end branch. We finish the sweep when
all the bonds neighboring the central bond are flag on; this
situation occurs in the step where the central bond is at the
origin. (We note that, even when the central bond comes to
the origin, we continue the sweep if there remains a flag-off
bond neighboring the origin.) At the end of the sweep, we
update the isometries and local network connection around
the origin. We perform the next sweep in the same manner.

We note that the procedure discussed above is not the only
way to realize the adequate sweep. The sweeping path of
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the central bond should affect the convergence speed of the
calculation. Finding the best way of sweeping in practice will
be a future problem.

APPENDIX B: COMPUTATIONAL COST

The computational cost for the diagonalization of the
renormalized Hamiltonian H̃ to obtain the renormalized
ground state wave function �̃ scales with the cost to multiply
H̃ to a vector ψ̃ in the Hilbert space of the super-block,
which is expanded by the four bonds entering the central
area. Here, let us consider the general Heisenberg model in
which any pair of spins may have the exchange interaction.
The configuration of a conventional DMRG-like super-block
Hamiltonian, described for example in Fig. 3, is given by

H̃ = H̃ (ab)
0 + H̃ (cd )

0 +
∑

i∈(ab)

∑

i′∈(cd )

Ji,i′Si · Si′ , (B1)

where H̃ (ab)
0 and H̃ (cd )

0 are renormalized Hamiltonians for
the subsystems (ab) and (cd ), respectively, and Ji,i′ is the
exchange constant between spins in ith and i′th sites. If
one employs this decomposition, a computational cost of
O(Ñintχ

6) is required for the operation of H̃ψ̃ , where Ñint is
the number of operations to multiply the exchange interaction
terms in Eq. (B1) to ψ̃ . For the systems with short-range
interactions, only Ji,i′ for the spins close to the boundary
between the subsystems (ab) and (cd ) is nonzero so that Ñint

scales with the boundary area between the subsystems. For
the systems with long-range interactions, all Ji.i′ are nonzero
in general. In this case, one can rewrite the exchange in-
teraction part in Eq. (B1) as

∑
i∈(ab) Si · [

∑
i′∈(cd ) Ji,i′Si′ ] or∑

i′∈(cd ) Si′ · [
∑

i∈(ab) Ji,i′Si] so that Ñint scales with the volume
of the smaller subsystem. Furthermore, one can reduce the
order of the computational cost with respect to χ by dividing
the super-block into four subsystems:

H̃ =
∑

p

H̃ (p)
0 +

∑

p

∑

p′(>p)

∑

i∈p

∑

i′∈p′
Ji,i′Si · Si′ , (B2)

where p, p′ ∈ {a, b, c, d}, and H̃ (p)
0 is a renormalized

Hamiltonian for the subsystem p. In this decomposi-
tion, the cost to multiply H̃ to ψ̃ is O(Nintχ

5), where
Nint is the number of operations to multiply the ex-
change interaction part in Eq. (B2). Here, Nint scales
with the boundary area between (the volume of the
smaller one of) two out of the four subsystems in
the case of short-range (long-range) interactions. Employing
the decomposition in Eq. (B2) is thus useful when dealing
with χ satisfying Ñintχ 	 Nint.

Another computational hotspot with the cost of O(χ6) is
the full diagonalization of the reduced DM, whose dimension
is of the order of χ2 in the TTN calculation. Here, if we do not
need to care about the degeneracy of singular values due to the
symmetry of the target state, the partial SVD may effectively
reduce the cost down to O(χ5) [73]. The randomized SVD
may further reduce the cost to O(χ4 log χ ).

The computational costs in the TTN calculation discussed
above are much larger than the corresponding ones in the
DMRG since, in the MPN employed in the DMRG, two of
the four bonds entering the central area, two out of {a, b, c, d}

y

2

1

0
x

x
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(b)

(a)

FIG. 11. Schematic pictures for the coordinates indicating the
positions of the auxiliary bonds for (a) the optimized tree tensor
network (TTN) and (b) the matrix product network (MPN). In (a),
the coordinates for the bond denoted by a thick arrow (blue) are
(x, y) = (3.5, 2). In (b), the coordinate for the bond is x = (3.125 +
4.0625)/2 = 3.59375.

in Fig. 3, have the dimension ν, which is usually much smaller
than χ . As a result, the cost for the diagonalization of H̃
represented in the decomposition in Eq. (B2) is O(Nintν

2χ3)
in the DMRG, being much smaller than O(Nintχ

5) in the
TTN algorithm. Similarly, the cost for the full diagonaliza-
tion of the reduced DM in the DMRG is O(ν3χ3), which
is significantly small compared with O(χ6) in the TTN
algorithm.

APPENDIX C: COORDINATES OF AUXILIARY
BONDS IN FIG. 9

In Fig. 9, we have introduced the coordinates to indicate
the position of the auxiliary bonds. The horizontal coordi-
nate x introduced for both the optimized TTN and MPN are
defined as follows. We first assign the site index i to the hori-
zontal coordinate of bare spins. The position of an isometry
is then given by the average of the horizontal coordinates
of bare spins or the isometries connected with the incom-
ing bonds. The position x of the auxiliary bonds is finally
defined by the average of the coordinates of the connected
isometries.

For the case of the optimized TTN, moreover, we have
introduced the height coordinate y, which is defined as the
distance of the bond from the nearest bare spin; we assign
y = 0 for the bonds directly connected to a bare spin, and y
increases by one as the position of the bond moves away from
the bare spin.

Figure 11 presents the schematic pictures to illustrate the
coordinates in the optimized TTN and the MPN. We note that
the horizontal coordinate x for the isometries and auxiliary
bonds in the MPN is shifted toward the open edges of the
system compared with the diagram shown in Fig. 7(a), where
we do not use the coordinate x for readability.
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