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Abstract.

Bridge++ is a general-purpose code set for a numerical simulation of lattice QCD aiming
at a readable, extensible, and portable code while keeping practically high performance. The
previous version of Bridge++ is implemented in double precision with a fixed data layout. To
exploit the high arithmetic capability of new processor architecture, we extend the Bridge++
code so that optimized code is available as a new branch, i.e., an alternative to the original
code. This paper explains our strategy of implementation and displays application examples
to the following architectures and systems: Intel AVX-512 on Xeon Phi Knights Landing, Arm
A64FX-SVE on Fujitsu A64FX (Fugaku), NEC SX-Aurora TSUBASA, and GPU cluster with
NVIDIA V100.

1. Introduction

Bridge++1 is a code set for numerical simulations of lattice QCD2, designed on the object-
oriented programming and described in the C++ language. A goal of the project is to
develop a readable, extensible, and portable code set with sufficiently high performance.
When the development was launched in 2009, our major target platforms were parallel scalar
systems represented by IBM Blue Gene/Q. Recent supercomputers, however, adopt a variety
of architecture: multi-core parallel machines with wide SIMD (A64FX and Intel processors),
and clusters with accelerator devices such as GPUs, PEZY-SC, and vector processors (NEC
SX-Aurora). Soon after the first public release of Bridge++ in 2012 [2], we had started to
investigate possible extensions of our code to exploit these new architectures while keeping the
readability and portability, as well as to develop tuning techniques for them [3, 4, 5, 6, 7, 8].
Recently we have constructed a framework to incorporate the tuned codes as an alternative part
to the previously developed Bridge++ code, and decided to release it as version 2.0.

In this paper, we describe the fundamental structure of this updated code set with several
examples of application to recent architectures. In the next section, after a brief introduction of

1 https://bridge.kek.jp/Lattice-code/
2 Basics of lattice QCD are covered by many text textbooks, e.g., [1].
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the lattice QCD and its bottleneck, we describe the structure of Bridge++ ver.2.0 code set. In
Sec. 3 we show the performance measured on available systems: the SIMD architectures (Intel
AVX-512 and Arm A64FX), vector architecture (NEC SX-Aurora TSUBASA), and GPU devices
with NVIDIA V100. The last section is our conclusion. Some details of the implementation have
been reported in Ref. [8] together with that of a multi-grid solver.

2. Functionality and Code Structure

The lattice QCD is a field theory formulated on a four-dimensional Euclidean lattice. It consists
of fermion (quark) fields and a gauge (gluon) field. The latter mediates the strong interaction
among quarks and are represented by ‘a link variable’, Uµ(x) ∈ SU(3), where x = (x1, x2, x3, x4)
stands for a lattice site and µ = 1–4 is the spacetime direction. In numerical simulations the
lattice size is finite: xµ = 1, 2, . . . , Lµ. The fermion field is represented as a complex vector on
lattice sites, which carries 3 components of ‘color’ and 4 components of ‘spinor’, thus in total
12, degrees of freedom on each site. We set the lattice spacing a = 1 throughout this paper.

The standard steps of lattice QCD simulations are as follows. One first generates gauge
configurations {Uµ(x)} with a Monte Carlo method. Then physical observables are measured on
{Uµ(x)}, and their averages give the expectation values. Typical observables, such as hadronic
matrix elements, are composed of fermion propagators, which are solutions of the linear equation
for a fermion matrix D[U ]. Since such a linear equation must be solved repeatedly also during
the generation of {Uµ(x)}, it is one of the main bottlenecks of lattice simulations. The fermion
matrix, explicitly exemplified below, represents the interaction among quarks and gluons and is
in general a large sparse matrix of a rank proportional to the lattice volume. The discretized
fermion matrix has a variety since the requirement on D[U ] is to coincide with that of QCD
only in the continuum limit (the lattice spacing a→ 0). In addition, efficient solver algorithms
also have a variety depending on the system size, the condition number of the matrix, and so
on.

Our code set Bridge++ is intended to cover a wide range of measurements, fermion matrices,
and algorithms. It is parallelized with MPI and the time consuming parts are multi-threaded
with OpenMP. The data structure initially adopted was in a fixed style with double precision.
For further optimization to up-to-date architectures, we decided to replace the time consuming
part with an alternative code leaving the other parts unchanged. The original code, called
‘core library’, provides building tools, reference results, and measurements that require less
performance. On the other hand, the ‘alternative code’ offers the same functionality as that
of the core library with higher flexibility to achieve better performance. It is possible to use
multiple branches of the alternative code simultaneously if required.

The ‘alternative code’ is composed of the classes in two categories. One is those directly
manipulate the data and thus are performance-sensitive, such as the fermion matrices. These
classes are implemented and optimized in a way specific to each architecture. The other category
contains the algorithms generically described by the C++ template. This structure allows
incremental adoption to a new architecture. One only needs to implement the required operators
and instantiate the desired algorithms.

Figure 1 shows a sample code which employs the extended Bridge++ with a branch for SIMD
architecture. In line-3, AField<double,SIMD> indicates a class of field object in double precision
for the ‘SIMD’ branch. The template class Fprop Standard lex alt Mixedprec determines a
fermion propagator by a mixed precision solver algorithm. The sets of parameters for the
fermion matrix and the linear equation solver are stored in the objects params fopr and
params solver, respectively, including the types of fermion and algorithm. Once the object
‘fprop’ is instantiated, the solution of the linear equation is determined and returned in the
format of the core library, Field F. One does not need to modify observables that use the
solution ‘sq[idx]’ to use the ‘alternative’ codes.
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1 // prepare a mixed precision solver for architecture SIMD

2 // details of the fermion op.: params_fopr; details of the solver: params_solver

3 Fprop_Standard_lex_alt_Mixedprec<AField<double,SIMD>, AField<float,SIMD>> fprop( params_fopr, params_solver );

4 fprop.set_config(U.get()); // set the gauge field

5 fprop.set_mode("D"); // mode is D, Ddag, DdagD,...

6

7 // source and solution are from core library

8 Source source("Local"); source.set_parameters(params_source);

9 std::vector<Field_F> sq(Nc * Nd); // Nc=3, Nd=4 : propagator (= 12 solution vectors)

10 Field_F b;

11

12 int nconv; double diff;

13 for (int id = 0; id < Nd; ++id) {

14 for (int ic = 0; ic < Nc; ++ic) {

15 int idx = ic + Nc * id;

16 sq[idx].set(0.0);

17 source.set(b, idx); // set the source

18 fprop.invert(sq[idx], b, nconv, diff); // solve the linear equation

19 }

20 }

Figure 1. A sample code to calculate a fermion propagator with a mixed precision solver.
The blue-colored codes are from the ‘alternative’ code with the red-colored template parameter,
while the orange-colored objects are from the ‘core library’.

3. Implementation and Performance for each Architecture

We describe our code implementation and performance results for several architectures. While
the code is available in both double precision and single precision, we mainly describe the latter
since it plays a main role in multi-precision solver algorithms. We quote weak scaling behavior
of the performance of matrix-vector multiplication without details of the tuning and execution
setup.

A fermion matrix D[U ] acts on a fermion vector ψ(x). As a typical example, we examine the
O(a)-improved Wilson fermion matrix, also called clover fermion matrix,

Dx,y = [1 + F (x)]δx,y − κ
4

∑

µ=1

[

(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U
†
µ(x− µ̂)δx−µ̂,y

]

, (1)

where x, y are lattice sites, µ̂ the unit vector along µ-th axis, and the hopping parameter
κ = 1/(8 + 2m0) related to the quark mass m0. The link variable Uµ(x) is a 3 × 3 complex
matrix acting on the color and γµ is a 4 × 4 matrix acting on the spinor degrees of freedom.
F (x) is a 12 × 12 Hermitian matrix made of the link variables, and helps to reduce the finite
lattice spacing artifact. Thus D is a complex matrix of the rank 4 · 3LxLyLzLt. The boundary
condition, such as a periodic boundary, is imposed in each direction.

3.1. SIMD architectures: Intel AVX-512 and Fujitsu A64FX

We start with the implementation for two SIMD architectures: Intel AVX-512 and Armv8.2-A
with SVE (Scalable Vector Extension). Intel AVX-512 is the latest SIMD extension of x86
instruction set architecture with the 512-bit SIMD length. It is available on recent Xeon
processors as well as Xeon Phi Knights Landing. The Armv8.2-A with SVE is adopted by
the Fujitsu A64FX processor for the Fugaku supercomputer. While SVE enables variable SIMD
length, currently 512-bit length is available on A64FX.

Although in both architectures the SIMD length corresponds to 16 single precision floating
numbers, the efficient way of packing variables into the SIMD unit depends on the structure
of arithmetic operation units. In the case of AVX-512, we pack 8 complex numbers which are
consecutive in the x-direction as displayed in the left panel of Fig. 2. This requires that the
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Figure 2. SIMD data layout we adopted for AVX-512 (left) and A64FX (right) architectures.

 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100  120  140

Weak scaling

Oakforest-PACS

T
F

lo
p
s

numbers of nodes

64x32x8x8
64x64x16x16

409 GFlops/node
172 GFlops/node

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300

Weak scaling

Fugaku
T

F
lo

p
s

numbers of nodes

64x64x8x4
64x64x32x8

300 GFlops/node
315 GFlops/node

Figure 3. Weak scaling of the performance of the clover matrix multiplication on Oakforest-
PACS (left) and Fugaku (right). The dotted lines are scaling from the largest numbers of node.

lattice size in x-direction must be a multiple of 8. The details of the tuning with the AVX-
512 instruction set were presented in [7]. For Armv8.2-A-SVE, we adopt a different packing:
as depicted in the right panel of Fig. 2, real and imaginary parts are separately stored. This
packing shows better performance, found through the development of QCD Wide SIMD (QWS)
library [9] as a product of the Post-K co-design project. With this layout, the field variables on
16 sites are executed in parallel. To keep flexibility in choosing the lattice size, we pack variables
in the x-y plane into a SIMD vector, while a one-dimensional packing was adopted in QWS.
Therefore we prepare two branches of code for the AVX-512 and A64FX architectures. Since
the branch for A64FX also intends to call the QWS library, we need to convert the data layout
and the physical convention that are different in Bridge++ and QWS.

We measure the performance of our code on the Oakforest-PACS system at JCAHPC, a
cluster composed of the Intel Xeon Phi Knights Landing processors, and the supercomputer
Fugaku at RIKEN. In Fig. 3, weak scaling behavior of the Clover matrix multiplication is
displayed for these SIMD architectures. The results show good scaling on both systems, although
Oakforest-PACS shows significant dependence on the lattice size per node as the smaller local
volume is too small to hide the neighboring communication overlapped with the computation
in bulk. The peak performance of each node is about 6 TFlops on both the systems so that
the current sustained performance is around 5 %. This is reasonable performance for practical
simulations, though there is still room for improvement.
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Figure 4. Weak scaling behavior of the performance of matrix-vector multiplication for the
Wilson matrix on SX-Aurora TSUBASA (left) and the Clover matrix on the Cygnus system
(right). The dotted lines are scaling from the largest numbers of nodes or vector engines.

3.2. Vector architecture: NEC SX-Aurora TSUBASA

The latest vector architecture of NEC is adopted in the NEC SX-Aurora TSUBASA system
whose vector length is 256 in units of double precision floating-point number. The best
performance is obtained for the loop size with multiples of this vector length, and thus we
assign this vector index to the lattice sites. The data layout suitable to this setup is so-called
Structure of Array (SoA) layout. We rearrange the data so that the site degrees of freedom are
consecutively stored on the memory, including the padding to avoid the bank conflict.

We measure the performance on the NEC SX-Aurora TSUBASA at KEK. Each node of the
system is composed of one Vector Host (Intel Xeon processor) and eight Vector Engines (VE).
Each VE has 2.42 TFlops of the peak performance and 1.2 TB/s memory bandwidth, indicating
the byte-per-flop of 0.5 as an advantage of this architecture. One can execute MPI jobs in units
of core in VE (8 cores/VE).

In the left panel of Fig 4, we show the weak scaling behavior of the Wilson matrix
multiplication (setting F (x) = 0) since the clover fermion matrix is in preparation. While
sufficient performance is obtained on the single core, the performance decreases on multi-
process for unspecified reasons. Results on multiple VE show good scaling behavior. The
vector instruction ratio is 99.90% with average vector length 256.0.

3.3. GPU Cluster

On the clusters with accelerator devices, one needs to offload the data and tasks to the devices
employing an offloading scheme. We implement such a code using OpenACC, which is a widely
used directive-based framework. By calling an interface object, the data layout is rearranged to
that respects so-called coalesced access, and the data are automatically transferred between the
host and device. Thus one can generally compose the algorithms using these classes without
worrying about the data transfer. The tasks to be offloaded are specified by OpenACC directives.
We extract such kernel functions and collect them as a library so that one can replace them
with more optimized functions with CUDA or OpenCL if necessary.

As an example of GPU cluster, we use the Cygnus system at the University of Tsukuba. Each
node of Cygnus is composed of two Intel Xeon processors and four NVIDIA Tesla V100 GPUs.
Each V100 GPU has 5120 CUDA cores which amount to 14 TFlops for FP32 arithmetics. While
a GPU has high arithmetic performance, bottlenecks are the data transfer between the host and
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device (PCIe 3.0 with 16 lanes) and between the device global memory and device cores (900
GB/s for V100). Together with the Infiniband connection among nodes, one needs to choose
the parameters considering the heterogeneous structure of the GPU cluster.

In the right panel of Fig. 4, we show the weak scaling of clover fermion matrix multiplication
on the Cygnus system. The sustained performance is governed by the device memory bandwidth.
Increasing the number of nodes, the overhead of inter-node communication becomes sizable.

4. Conclusions

We presented features of our forthcoming major update of Bridge++ that incorporates an
optimized code for recent architectures as an alternative to the original code. We described our
fundamental strategy of implementation and displayed several examples in practical application.
These results demonstrate that our framework indeed works with sufficient performance for
practical application. While we only showed sustained performance for the Wilson and Clover
fermion matrices, other types of fermion and a variety of algorithms including multi-grid solvers
and eigenvalue solvers are available. Now we are in the final stage toward the public release of
the Bridge++ version 2.0.
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