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1 Introduction and motivation

The AdS/CFT correspondence [1, 2] plays a central role to investigate the holographic
nature of gravity, which may give a hint for quantum gravity. Even though much evidence
has appeared after the first proposal, the fundamental mechanism why the AdS/CFT
correspondence holds has not been completely understood yet. While the correspondence
may be explained by the close string/open string duality, an alternative but more universal
mechanism might exist because of the holographic nature of gravity.

One of the key questions one may naturally ask is how the additional dimension of the
AdS emerges from CFT, which lives on the boundary of the AdS spacetime. An approach to
this problem, called the HKLL (Hamilton, Kabat, Lifschytz, and Lowe) bulk reconstruction,
is to relate a bulk local field operator in the AdS to CFT operators at its boundary [3, 4].
For example, let us consider a massive free scalar field operator Φ(X) with mass squared
m2 = ∆(∆ − d)/R2 in the AdS with a radius R. Then one may define the CFT field
operator O(t,Ω) with a conformal weight ∆ from Φ(X) through the BDHM relation [5] as

O(x) = lim
ρ→∞

(sinh ρ)∆Φ(t, ρ,Ω), X := (t, ρ,Ω), x := (t,Ω), (1.1)

where ρ is the radial coordinate of the d+ 1 dimensional AdS with its boundary at ρ→∞,
t is a time coordinate, and Ω is a d− 1 dimensional angular variable (see section 2). The
HKLL bulk reconstruction is the inverse mapping: using this O(t,Ω), the bulk field can be
reconstructed as

Φ(X) =
∫

ΣX
dyK(X, y)O(y), (1.2)

where K(X, y) is a smearing function, and the integration at the boundary should be
performed in a region ΣX space-like separated from the bulk point X. We refer to [6, 7] for
recent reviews.

The result of this explicit construction can be elegantly reproduced in a somewhat
abstract way [8]. The starting point of the abstract construction is the space-like Green
function in the bulk (which vanishes if its arguments are not space-like separated). With the
help of the space-like Green function not only the free case is easily reproduced but can also
be used to introduce interactions. In the original HKLL paper (and also in this paper) the
case of a free massive scalar is considered. See also [9] for an alternative derivation based
on Gel’fand-Graev-Radon transforms. Later the reconstruction has been extended to higher
spins as well [10–14]. Recently an interesting connection between the bulk reconstruction
and the theory of quantum error correcting codes was pointed out [15].

The HKLL bulk reconstruction provides the operator to operator relation in the
AdS/CFT correspondence. Recently Terashima argued under reasonable assumptions in
the large N limit that the relation (1.2) follows from CFT considerations without assuming
the BDHM relation [16]. In other words, the BDHM relation (1.1) is shown explicitly.
Moreover, he claimed that the integration in the space-like region ΣX in (1.2) can be
effectively replaced by an integration over a much smaller region Σ(0)

X , which is the boundary
of ΣX and consists of boundary points light-like separated from X [17]. (See also [18].)
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Although it was not explicitly mentioned in the original papers, (1.2) holds only for
∆ > d − 1, due to the convergence for the integral. For applications of the AdS/CFT
correspondence in the case of supersymmetric gauge theories and in particular in the prime
example of the N = 4 SUSY U(N) gauge theory in d = 4 dimensions, this restriction is
not essential since the conformal dimensions of physically relevant operators are typically
(much) larger than this lower bound. However, there is an other family of models often
used in the AdS/CFT context, namely, the O(N) vector models and their holographic
duals: higher spin theories in the bulk [19, 20]. In the most interesting d = 3 case, for
example, the simplest singlet operator has ∆ = 1 (d− 2) and its square, the only relevant
operator which can be used to introduce interactions, is of ∆ = 2 (d − 1). These singlet
scalar operators in the free O(N) vector model cannot be related to the bulk operator by
blindly applying (1.2).

The case ∆ = d− 1 was studied in [10] in Poincare coordinates. It was found that in
this case the support of the smearing function is the intersection of the light-cone of the bulk
point and the boundary. In [21] the range of allowed ∆ was extended to d/2 ≤ ∆ ≤ d− 1
by analytic continuation. Our purpose here is to find a direct derivation of the generalized
HKLL formula for ∆ values below the original lower bound d− 1.

In this paper we present two results for conformal weights smaller than the lower bound
mentioned above. We derive an extension of the HKLL bulk reconstruction to the range
d− 2 < ∆ ≤ d− 1, which is the first main result and is given in (3.4). Our result agrees
with that of [21] (if their limit is explicitly evaluated) in the range where they overlap. We
cannot confirm Terashima’s claim in general, but show that the bulk operator Φ(X) is
expressed in terms of CFT operators living on Σ(0)

X (points light-like separated from X at
the boundary) for the special cases ∆ = d− s, where s is a positive integer. (s is limited by
the requirement that the conformal weight satisfies the unitarity bound ∆ > (d − 2)/2.)
This is the second main result of this paper.

2 Review of HKLL bulk reconstruction

In this section we review the HKLL bulk reconstruction [3, 4] for a massive free scalar
boson field with conformal weight ∆ > d − 1 in d + 1 dimensional AdS spacetime. This
construction is very well-known, and our pupose here is to introduce our notation and
conventions and also some tools which will be needed later in the paper when we extend
the validity of the construction to smaller values of ∆.

2.1 BDHM relation

In the Lorenttzian AdSd+1 space we will use the usual global coordinates (t, ρ, ni) (n ·n = 1)
with the metric

ds2 = R2(dρ)2 −R2(cosh ρ)2(dt)2 +R2(sinh ρ)2dnidni, (2.1)

where R is the AdS radius. We will denote a bulk point in AdSd+1 by Y with global
coordinates Y µ = (t, ρ, ni) (with corresponding derivatives ∂µ = ∂/∂Y µ). Similarly a
boundary point will be denoted by x with coordinates xA : (t̃, ñi) and derivatives ∂A =

– 2 –
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∂/∂xA. We will also use the “flat” coordinates (T = Rt, yi = R sinh ρni) and the notation
y =

√
yiyi = R sinh ρ for the radial coordinate. The metric in these coordinates is given by

ds2 = −y
2 +R2

R2 (dT )2 +
(
δij −

yiyj

y2 +R2

)
dyidyj . (2.2)

In appendix A, we review the complete canonical quantization of a free bulk scalar
field Φ in terms of canonical creation and annihilation operators A+

n`m and An`m, which is
given by

Φ(t, y,Ω) =
∑
n`m

√
NR
2νn`

{
un`(y)Y`m(Ω)An`m e−iνn`t + un`(y)Y`m(Ω)A†n`m eiνn`t

}
, (2.3)

where N is a normalization constant related to the free Lagrangian, νn` = ∆ + ` + 2n
is the eigenfrequency, un`(y) is the radial wave function, and Y`m(Ω) are hyper-spherical
harmonics1 for the d − 1 dimensional sphere parametrized alternatively by the angular
variables Ω or by the d dimensional unit vector ni.

The value of Φ at the middle of (the global coordinate system of) the AdS space
becomes

A(t) = Φ(t, 0,Ω) =
∑
n

√
NR
2νn0

{
e−iνn0t (−1)nPn(d/2)

n! Nn0
1√
Ωd
An00

+ eiνn0t (−1)nPn(d/2)
n! Nn0

1√
Ωd
A†n00

}
,

(2.4)

where Pn(z) is the Pochhammer symbol, defined by

Pn(z) := Γ(n+ z)
Γ(z) = z(z + 1) · · · (z + n− 1), P0(z) = 1, (2.5)

Ωd = 2πd/2
Γ(d/2) is a volume factor, and the normalization constant Nn` is given by (A.37),

but it is not needed explicitly in our analysis.
With the rescaled Fock space operator,

dn =
√
NR
2νn0

(−1)nPn(d/2)
n! Nn0

1√
Ωd
An00, (2.6)

the middle-point field is expressed simply as

A(t) = e−i∆tD
(
e−2it

)
+ ei∆tD1

(
e2it
)
, (2.7)

where formally holomorphic operators are defined by

D(z) =
∑
n

dnz
n, D1(z) =

∑
n

d†nz
n. (2.8)

1We use real hyper-spherical harmonics for simplicity. This will not be important in our analysis since
we only use the hyper-spherical harmonics Y`0, which are real anyway.
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The BDHM relation [5] gives the boundary field O(t,Ω) of conformal weight ∆ as

O(t,Ω) := lim
y→∞

(
y

R

)∆
Φ(t,y,Ω) =

∑
n`m

√
NR
2νn`

{
e−iνn`t Pn(1+α)

n! Nn`Y`m(Ω)An`m

+eiνn`t Pn(1+α)
n! Nn`Y`m(Ω)A†n`m

}
, (2.9)

where α := ∆ − d/2 (see appendix A). It is clear that O(t,Ω) in the above expression is
not a canonical field operator, since it does not satisfy the canonical commutation relation
[O(t,Ω), ∂tO(t,Ω′)] = iδ(Ω− Ω′).

An integration over the angular variables simplifies the above formula as

C(t) :=
∫

dΩO(t,Ω) = e−i∆tB(−e−2it) + ei∆tB1(−e2it), (2.10)

where an other pair of formally holomorphic operators is given by

B(z) =
∑
n

bnz
n, B1(z) =

∑
n

b†nz
n (2.11)

in terms of Fock space operators rescaled differently from dn as

bn =
√
NR
2νn0

(−1)nPn(1 + α)
n! Nn0

√
ΩdAn00 = Ωd

Pn(1 + α)
Pn(d/2) dn. (2.12)

2.2 Bulk-boundary mapping

Following HKLL [3, 4], we relate the holomorphic functions D and B as

D(w) =
∑
n

1
Ωd

Pn(d/2)
Pn(1 + α)w

n 1
2πi

∮ dz
zn+1B(z), (2.13)

which, by reversing the order of summation and integration, is rewritten as

D(w) = 1
2πiΩd

∮ dz
z
B(z)

∑
n

Pn(d/2)
Pn(1 + α)

(
w

z

)n
= 1

2πiΩd

∮ dz
z
B(z)2F1(1, d/2; 1 + α;w/z)

= 1
2πiΩd

∮ dz
z
B(wz)2F1(1, d/2; 1 + α; 1/z). (2.14)

The integration contour in the last formula must lie outside the unit circle for the sum
defining the hypergeometric function to be convergent.

In this paper, for simplicity,2 we mainly (except in subsection 4.2) consider the case d
odd. The derivation of the explicit form of the linear relation between the bulk field “at the
middle” and the integrated boundary field found by HKLL is reproduced in appendix B.
Although it was not emphasized in the original HKLL paper [4], this derivation is valid for
the range

∆ > d− 1 (2.15)
2Similar results hold also for even d, but some of the formulas receive logarithmic corrections [3, 4].
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only. The result is given by

A(t) = ξ

∫ t+π/2

t−π/2
du[2 cos(t− u)]∆−dC(u), (2.16)

where the overall constant is

ξ = 1
πΩd

Γ(1− d/2)Γ(1 + α)
Γ(∆− d+ 1) . (2.17)

We can see that the HKLL result (2.16) is valid for the range (2.15) only, because for
∆ ≤ d − 1 this integral is divergent. In the next section and appendix E, we extend the
calculation for ∆ > d− 2 and consider the most interesting special case ∆ = d− 1 in detail.

We finish the review of the HKLL construction by transforming the result, calculated
above for the “middle” of the AdS space, to an arbitrary point in AdS space. The result (2.16)
for the “middle” point Yo = (t = 0, ρ = 0,Ω) is rewritten as

Φ(Yo) =
∫
DxK(x)O(x), (2.18)

where

x = (t̃, Ω̃), Dx = dt̃dΩ̃, K(x) = ξ(2 cos t̃)∆−dΘ
(
π

2 − t̃
)

Θ
(
t̃+ π

2

)
(2.19)

with the step function Θ.
In what follows we will make use the symmetry properties of the solution and use the

notations introduced in appendix C. Applying the Hilbert space isometry action to both
sides of the equation, Φ for a generic bulk point Y = g−1Yo is represented as

Φ(Y = g−1Yo) =
∫
DxK(x)[J(g−1, x)]∆O(g−1x) =

∫
DyK(gy)[J(g, y)]d−∆O(y), (2.20)

where (C.3) is used for the second equality. The solution to the above equation is given by

Φ(Y = g−1Yo) =
∫
Dx I∆−d(Y, x)T (Y, x)O(x), (2.21)

where I and T have to satisfy

I(gY, gx) = J(g, x)I(Y, x), I(Yo, x) = 2 cos t̃, (2.22)

T (gY, gx) = T (Y, x), T (Yo, x) = ξΘ
(
t̃+ π

2

)
Θ
(
π

2 − t̃
)
. (2.23)

Now it is easy to see that (2.21) satisfies (2.20) since

Φ(Y = g−1Yo) =
∫
Dy Jd−∆(g, y)I∆−d(Yo, gy)T (Yo, gy)O(y)

=
∫
Dy Jd−∆(g, y)K(gy)O(y). (2.24)

I and T for Y = (t, ρ, ni) and x = (t̃, ñi) are explicitly constructed in appendix D:

I(Y, x) = 2[cosh ρ cos(t− t̃)− sinh ρn · ñ], T (Y, x) = ξΘ(X1)Θ(X2), (2.25)

– 5 –
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where X1 = t̃ − T1, X2 = T2 − t̃, and T1,2 are defined in (C.1) and (C.2). Geometrically,
if X1(Y, x) = 0 or X2(Y, x) = 0, Y and x can be connected by a past or future oriented
light-like geodesic, respectively. Thus Θ(X1)Θ(X2) is only non-vanishing if T1 < t̃ < T2,
which means that Y and x can be connected by a space-like geodesic. This last observation
leads to the introduction of the space-like Green function, which is useful to introduce
interactions in the bulk. (See [6] for a review.)

3 Bulk reconstruction for the range d − 2 < ∆ ≤ d − 1

We have seen that the derivation of the HKLL formula is only valid for the range (2.15).
(The a priori lower limit for a scalar field is ∆ > (d − 2)/2, which is smaller.) Here we
extend the possible range to

∆ > d− 2. (3.1)

Our starting point is the last line of (2.14) and the identity (B.1). We note that this
hypergeometric identity is valid for odd d and ∆ 6= integer. This last requirement is only
temporary and later we extend the results (by taking limits) to integer ∆, too.

To circumvent the restriction (2.15), we rewrite (2.14) by adding and subtracting B(w)
under the integral as

D(w) = B(w)
2πiΩd

∮ dz
z

2F1(1, d/2; 1 + α; 1/z)

+ 1
2πiΩd

∮ dz
z

[B(wz)−B(w)] 2F1(1, d/2; 1 + α; 1/z). (3.2)

Using this form, the manipulations in appendix B remain valid for the extended range
∆ > d− 2 and we obtain

D(w) = B(w)
Ωd

+ ξ

∫ π/2

−π/2
du e−iu∆[2 cos(u)]∆−d{B(−we−2iu)−B(w)}, (3.3)

where singularities near u = ±π
2 of the integrand become integrable for ∆ > d− 2 thanks

to the subtraction of B(w).
Employing the above expression for D(w) and a similar one for D1(w) (see appendix E

for the details of the derivation), we obtain one of our main results in this paper:

A(t) = η

2Ωd
[C(t− π/2) + C(t+ π/2)] + ξ

∫ t

t−π/2
du[2 cos(u− t)]∆−d{C(u)− C(t− π/2)}

+ ξ

∫ t+π/2

t
du[2 cos(u− t)]∆−d{C(u)− C(t+ π/2)}, (3.4)

which is valid for the extended range (3.1). Here

η = Γ(1− d/2)Γ(1 + α)
Γ2(1 + ∆−d

2 )
. (3.5)

Our explicit derivation confirms the result found in [21] (if the limit is explicitly evaluated)
at least in their overlapping range of validity. For the original range, ∆ > d − 1, (3.4)

– 6 –
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gives back the original HKLL result (2.16), since the subtracted terms, which now can be
integrated separately by using the identity∫ π/2

0
du(2 cosu)A = π

2
Γ(1 +A)

Γ2(1 +A/2) , A > −1, (3.6)

exactly cancel the first term.
An interesting special case is obtained if we take the limit ∆→ d− 1. In this limit, the

integrals do not contribute as ξ = 0, and η simplifies to η = (−1)∆/2. We thus obtain

A(t) = ξo[C(t− π/2) + C(t+ π/2)], ξo := (−1)∆/2

2Ωd
, (3.7)

which means that the bulk field at the middle point in the global AdS is expressed in terms
of the CFT field values only at boundary points connected to the middle point by light-like
geodesics. This is the other main result in this paper, which is in agreement with the result
in [10] and confirms the claim in [18] for the special case ∆ = d− 1. We will consider this
interesting case and its generalization to ∆ = d− s with an integer s in the next section.

It is also straightforward to extend the range to ∆ > d− 3, by rewriting (2.14) as

D(w) = 1
2πiΩd

∮ dz
z

[
B(w) +B′(w)w(z − 1)

]
2F1(1, d/2; 1 + α; 1/z)

+ 1
2πiΩd

∮ dz
z

[B(wz)−B(w)−B′(w)w(z − 1)] 2F1(1, d/2; 1 + α; 1/z), (3.8)

but we do not pursue this direction further in this paper.

4 Bulk reconstruction for ∆ = d − s with an integer s

In this section we consider the special cases ∆ = d− s with integer s < (d+ 2)/2 satisfying
the lower bound, ∆ > (d− 2)/2. For these special cases we have found a simpler derivation
of the bulk reconstruction formulas, in particular for (3.7) with odd d, without using the
limiting procedure starting from integrals like (3.4). Interestingly the bulk field operator at
the middle point can be expressed in terms of CFT field operators and their t derivatives
only at boundary points light-like separated from the middle point. This is shown by (4.7)
and (4.8), which are also one of our main results in this paper. For even d, we can derive
similar results, which however also contain a derivative with respect to ∆.

From (2.12) we see that the bulk fleld can be written in terms of boundary operators
bn and b†n as

A(t) = 1
Ωn

∑
n

X∆
n

{
e−i(∆+2n)tbn + ei(∆+2n)tb†n

}
, X∆

n :=
Pn(d2)

Pn(α+ 1) . (4.1)

On the other hand we have

C±(t) := C
(
t+ π

2

)
± C

(
t− π

2

)
=
(
e−i∆

π
2 ± ei∆

π
2
)∑

n

{
e−i(∆+2n)tbn ± ei(∆+2n)tb†n

}
. (4.2)

Thus C±(t) = 0 if ∆ is an odd/even integer.
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4.1 Results for ∆ = d − s with odd d

As a warmup, we first give a much simpler derivation of (3.7) for ∆ = d− 1. Since X∆
n = 1

in this case, we have

A(t) = 1
Ωd

∑
n

{
e−i(∆+2n)tbn + ei(∆+2n)tb†n

}
= (−1)∆/2

2Ωd
C+(t), ∆ = d− 1, (4.3)

which reproduces (3.7), because C+(t) = 2C(t± π
2 ).

For ∆ = d− 2, since X∆
n = (∆ + 2n)/(d− 2), we obtain

A(t) = 1
Ωd

∑
n

X∆
n

{
e−i(∆+2n)tbn + ei(∆+2n)tb†n

}
= − (−1)∆−1

2

2(d− 2)Ωd

∂

∂t
C−(t), (4.4)

where in this case C−(t) = ±2C(t± π
2 ).

For general ∆ = d− s with s < (d+ 2)/2, we have

Xd−(2`+1)
n = Xd−1

n

∏`
k=1(∆n + 2k − 1)(∆n − 2k + 1)∏2`

k=1(d− 2k)
, Xd−1

n = 1, (4.5)

Xd−(2`+2)
n = Xd−2

n

∏`
k=1(∆n + 2k)(∆n − 2k)∏2`+1

k=2 (d− 2k)
, Xd−2

n = ∆n

d− 2 (4.6)

for ` = 1, 2, · · · , where ∆n := ∆ + 2n. We thus obtain

A(t) = (−1) d−1
2

2Ωd

∏̀
k=1

{
∂2

∂t2
+ (2k − 1)2

}
∏2`
k=1(d− 2k)

C+(t), (4.7)

for ∆ = d− (2`+ 1), where C+(t) = 2C(t± π
2 ), while

A(t) = (−1) d−1
2

2Ωd

∏̀
k=1

{
∂2

∂t2
+ 4k2

}
∏2`+1
k=1 (d− 2k)

∂

∂t
C−(t), (4.8)

for ∆ = d− 2(`+ 1), where C−(t) = ±2C(t± π
2 ). (4.7) and (4.8) cover all cases ∆ = d− s

for odd d.

4.2 Results for ∆ = d − s with even d

For an even dimension d, the bulk field operator becomes

A(t) = (−1)`
Ωd

∏̀
k=1

{
∂2

∂t2
+ (2k − 1)2

}
∏2`
k=1(d− 2k)

∑
n

{
e−i(∆+2n)tbn + ei(∆+2n)tb†n

}
(4.9)

for ∆ = d− (2`+ 1), while

A(t) = (−1)`
Ωd

∏̀
k=1

{
∂2

∂t2
+ 4k2

}
∏2`+1
k=1 (d− 2k)

i∂

∂t

∑
n

{
e−i(∆+2n)tbn − ei(∆+2n)tb†n

}
(4.10)
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for ∆ = d− 2(`+ 1). On the other hand, the boundary field operators satisfy

∂

∂∆C+(t)
∣∣∣∣
∆=d−(2`+1)

= π(−1)d/2−`
∑
n

{
e−i(∆+2n)tbn + ei(∆+2n)tb†n

}
, (4.11)

∂

∂∆C−(t)
∣∣∣∣
∆=d−2(`+1)

= (−i)π(−1)d/2−`−1∑
n

{
e−i(∆+2n)tbn − ei(∆+2n)tb†n

}
. (4.12)

Combining these, we obtain

A(t) = (−1)d/2
πΩd

∏̀
k=1

{
∂2

∂t2
+ (2k − 1)2

}
∏2`
k=1(d− 2k)

∂

∂∆C+(t)
∣∣∣∣
∆=d−(2`+1)

, (4.13)

A(t) = (−1)d/2
πΩd

∏̀
k=1

{
∂2

∂t2
+ 4k2

}
∏2`+1
k=1 (d− 2k)

∂

∂t

∂

∂∆C−(t)
∣∣∣∣
∆=d−2(`+1)

. (4.14)

For ∆ = d− 1, d− 2, for example, we have

A(t) = (−1)d/2
πΩd

∂

∂∆C+(t)
∣∣∣∣
∆=d−1

, A(t) = (−1)d/2
(d− 2)πΩd

∂

∂t

∂

∂∆C−(t)
∣∣∣∣
∆=d−2

. (4.15)

5 Bulk reconstruction at generic points for small integer ∆

In this section we derive the bulk field operator at generic points for ∆ = d−1 and ∆ = d−2
with odd d, along the same logic we used in section 2 for the (2.15) case.

5.1 Bulk reconstruction for ∆ = d − 1 with odd d at generic bulk points

For the middle point Yo, we write

Φ(Yo) =
∫
Dx k(x)O(x), k(x) := ξo[δo(t̃+ π/2) + δo(t̃− π/2)], (5.1)

where δo is the standard delta function of one argument. Making the isometry transformation
in the Hilbert space as before, we obtain

Φ(g−1Yo) =
∫
DyJd(g, y)J∆(g−1, gy)k(gy)O(y) =

∫
Dy k(gy)J(g, y)O(y), (5.2)

which is solved by
Φ(Y = g−1Yo) =

∫
DxD(Y, x)O(x), (5.3)

where D(Y, x) has to satisfy

D(gY, gx) = D(Y, x)
J(g, x) , D(Yo, x) = k(x), (5.4)

since, with this definition,

Φ(g−1Yo) =
∫
DxD(g−1Yo, x)O(x) =

∫
DxJ(g, x) k(gx)O(x). (5.5)
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The kernel function D(Y, x) is constructed explicitly in appendix F and is given by

D(Y, x) = ξo
R(Y, x) [δo(X1) + δo(X2)], (5.6)

where

R(Y, x) = cosh ρ cos Ψ =
√

cosh2 ρ− sinh2 ρ(n · ñ)2, R(Yo, x) = 1. (5.7)

The final result for the bulk reconstruction for ∆ = d− 1 with odd d is

Φ(Y ) = ξo

∫
dΩ̃ 1
R(Y, x) [O(T1, Ω̃) +O(T2, Ω̃)], (5.8)

which again shows that the field operator at a generic bulk point is reconstructed from
operators having support only on boundary points light-like separated from the bulk point.

Although the BDHM relation [5] was our starting point in the construction, it is by far
not obvious that the representation (5.8) reproduces this relation. It is a nice check on our
results that, as explicitly shown in appendix G, Φ(Y ) in (5.8) for Y = (t, ρ,Ω) does satisfy
the BDHM relation

lim
ρ→∞

(sinh ρ)∆Φ(t, ρ,Ω) = O(t,Ω). (5.9)

5.2 Bulk reconstruction for ∆ = d − 2 with odd d at generic bulk points

For this special case the bulk reconstruction at the origin can be written in a symmetric
way as

A(t) = −ξ̃o
∂

∂t
[C(t+ π/2)− C(t− π/2)], ξ̃o = (−1)∆−1

2

2(d− 2)Ωd
. (5.10)

To extend the result to an arbitrary bulk point we can proceed analogously to the ∆ =
d− 1 case.

In a more compact notation (5.10) for the middle point Yo can be written as

Φ(Yo) =
∫
Dxk2(x)O(x), k2(x) = −ξ̃o[δ′o(t̃+ π/2)− δ′o(t̃− π/2)]. (5.11)

Here δ′o is the derivative of the delta function. Making the isometry transformation in the
Hilbert space, we find

Φ(g−1Yo) =
∫
Dx k2(x)J∆(g−1, x)O(g−1x) =

∫
Dy k2(gy)J2(g, y)O(y). (5.12)

Motivated by the ∆ = d − 1 result we now take the ansatz Φ(Y ) =
∫
DxD2(Y, x)O(x),

where we require that D2(Y, x) satisfies

D2(gY, gx) = D(Y, x)
J2(g, x) , D2(Yo, x) = k2(x). (5.13)

We can now verify that (5.12) holds:

Φ(g−1Yo) =
∫
DxD2(g−1Yo, x)O(x) =

∫
DxJ2(g, x) k2(gx)O(x). (5.14)

The derivation of the solution of (5.13) is given in appendix F:

D2(Y, x) = − ξ̃o
R2(Y, x)

{
[δ′o(X1) + δ′o(X2)]− tan Ψ[δo(X1) + δo(X2)]

}
. (5.15)
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6 Conclusions and discussion

In this paper we extended the applicability of the HKLL bulk reconstruction for non-
interacting scalar theories, which was restricted to ∆ > d− 1, to smaller conformal weights
∆ of the boundary CFT in the range d − 2 < ∆ ≤ d − 1. The explicit formula is given
in (3.4). In addition, we have derived a simple formula for ∆ = d− s with positive integer
s, which (for these special cases) confirms Terashima’s claim that a field at a point X in
the AdS bulk can be reconstructed from CFT fields smeared only over boundary points
connected to X by light-like geodesic curves [17, 18].

Results in this paper enable us to apply the HKLL bulk reconstruction to O(N) vector
models, which are expected to be dual to higher spin theories [19, 20]. Moreover, explicit
demonstration of Terashima’s claim, even though only for the above special cases, may bring
new insights [18] to the sub-region duality and its relation to quantum error corrections [15].

It would be interesting to generalize the Green function method so that it covers the
extended range and to reproduce (3.4) with this technique. We hope that this will enable
us to introduce interactions systematically.
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A Canonical quantization of the free scalar field

Quantization in a general curved background is difficult, but it is straightforward if there
exists a global time t and the metric has a form,

ds2 = −H(dt)2 + gijdxidxj , (A.1)

where {x1, . . . , xd} are the space coordinates, and both H and gij are time-independent. In
such a background the Lagrangian of a (dimensionless) free scalar Φ is defined as

L = 1
2N

∫
ddx
√
−g
H

[Φ̇2 − ΦKΦ], (A.2)

where N = Bd−1, B is a parameter of length dimension,

K = − H√
−g

∂i
(√
−ggij∂j

)
+Hm2, (A.3)
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and m2 is a parameter of dimension mass squared. The consistency of the quantization
procedure requires that the operator K is self-adjoint such that 〈f1|Kf2〉 = 〈Kf1|f2〉 for
any two functions f1, f2 in the domain of definition of K, where the scalar product of two
functions is defined with the measure √−g/H as

〈f1|f2〉 =
∫

ddx
√
−g
H

f1 f2. (A.4)

The Euler-Lagrange equations following from the Lagrangian (A.2) can be written in a
covariant form as 1√

−g
∂µ
(√
−ggµν∂νΦ

)
= m2Φ. (A.5)

We will expand the free field in terms of eigenfunctions of K satisfying

Kψa = ω2
aψa, 〈ψa|ψb〉 = δab, (A.6)

where the frequencies ωa are all real because K (for large enough m2) is positive self-adjoint.
Writing the field as

Φ(x) =
∑
a

Qaψa(x) (A.7)

the Lagrangian becomes
L = 1

2N
∑
a

[Q̇2
a − ω2

aQa
2]. (A.8)

A complete set of solutions to the equations of motion (A.5) is {fa(t, x)}, {f∗a (t, x)}, where
fa(t, x) = e−iωatψa(x), so that the general solution is expanded in terms of constant
amplitudes {βa} as

Φ(t, x) =
∑
a

[fa(t, x)βa + f∗a (t, x)β∗a]. (A.9)

We introduce canonical momentum variables and the Hamiltonian of the system as

H = 1
2
∑
a

(
Np2

a + ω2
a

N
Q2
a

)
= 2
N
∑
a

ω2
aβ
∗
aβa, pa := 1

N
Q̇a, (A.10)

then we promote the canonical variables pa, Qa to operators satisfying [pa, Qb] = −iδab.
The quantized amplitudes become

βa =
√
N

2ωa
Aa, β+

a =
√
N

2ωa
A†a, (A.11)

where Aa, A†a are operators in a Fock space such that [Aa,A†b] = δab and Aa|0〉 = 0, and
the corresponding quantum Hamiltonian becomes

H = E0 +
∑
a

ωaA†aAa, (A.12)

where E0 is the vacuum energy and {ωa} is the spectrum of 1-particle states in the Fock
space. Finally the canonical quantum field operator is expanded as

Φ(t, x) =
∑
a

√
N

2ωa

[
fa(t, x)Aa + f∗a (t, x)A†a

]
. (A.13)
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A.1 Radial quantization

We will apply the above quantization scheme to the global AdS space. For the metric (2.2),
we have

H = y2 +R2

R2 ,
√
−g = 1, gij = δij + yiyj

R2 , (A.14)

and the operator K becomes

K = H
{
L2

y2 −
( 1
y2 + 1

R2

)
(D2 + dD) + 2

y2D +m2
}
, (A.15)

where
L2 := −1

2LijLij , Lij := yi
∂

∂yj
− yj ∂

∂yi
, D := yi

∂

∂yi
. (A.16)

Eigenfunctions of the Casimir operator L2 are hyper-spherical harmonics Y`m(Ω), where Ω
are the angular variables (ni). The spectrum is given by

L2 Y`m(Ω) = `(`+ d− 2)Y`m(Ω), (A.17)

where ` = 0, 1, . . . and m is a multi-index. The hyper-spherical harmonics in a real basis
are normalized to ∫

dΩY`′m′(Ω)Y`m(Ω) = δ`′`δm′m, (A.18)

where dΩ is the measure of the angular integration,
∫

ddy =
∫∞

0 dy yd−1dΩ. Using the
ansatz ψ`m(y,Ω) = u`(y)Y`m(Ω) for eigenfunctions, the radial functions u`(y) must satisfy
the differential equation

H
{
`(`+ d− 2)

y2 −
( 1
y2 + 1

R2

)
(D2 + dD) + 2

y2D +m2
}
u`(y) = ω2

` u`(y), (A.19)

where now D = y d
dy , and the radial scalar product is defined by

〈u(1)
` |u

(2)
` 〉 =

∫ ∞
0

dy yd−1 R2

y2 +R2u
(1)
` (y)u(2)

` (y). (A.20)

Introducing dimensionless quantities

µ = mR, ν` = ω`R, ξ = y2

y2 +R2 , 1− ξ = R2

y2 +R2 , (A.21)

(A.19) becomes

Krad
` u`(ξ) = 1

1− ξ

{
`(`+ d− 2)(1− ξ)

ξ
− 1
ξ

(D2 + dD) + 2(1− ξ)
ξ

D + µ2
}
u`(ξ)

= ν2
` u`(ξ). (A.22)

Using the ansatz

u`(ξ) = ξ
`
2 (1− ξ)

∆+
2 F(ξ), ∆± := d

2 ± ᾱ, ᾱ :=

√
d2

4 + µ2 ≥ 0, (A.23)

we can verify that F(ξ) must satisfiy the hypergeometric equation with parameters

a = ∆+ + `− ν`
2 , b = ∆+ + `+ ν`

2 , c = `+ d

2 . (A.24)
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A.2 Boundary conditions

At this point it is necessary to discuss boundary conditions. First of all, we notice that the
point y1 = y2 = · · · = yd = 0 is just as any other point in AdS (and can be transformed to
any other point) therefore ψ`m must be analytic at yi = 0. Since y`Y`m(Ω) is a polynomial
in yi (of order `), we have to require u`(y) = y`f(y2) near y = 0 with an analytic f(y2).
Since the hypergeometric equation with c = `+ d

2 has two linearly independent solutions,
one is constant at ξ = 0 (this is given by the hypergeometric function), the other is singular
like F(ξ) ∼ (1/ξ)`−1+d/2, we conclude that the radial solution must be of the form

u`(y) =M`

(
R2

y2 +R2

)∆+
2
(

y2

y2 +R2

) `
2

2F1

(
a, b; , c; y2

y2 +R2

)
, (A.25)

whereM` is a normalization constant to be determined later.
Next we discuss the y → ∞ behaviour of the solutions. We assume that it is of the

form u`(y) ∼ y−L[1 + O(y−2)]. In principle the domain of definition may consist of several
such classes of functions with different asymptotic behaviour L = L1, L2, · · · . Since the
solutions are normalizable with respect to the scalar product (A.20), we require 2L+ 2 > d.
Another condition is that the radial operator defined by (A.22) is self-adjoint such that∫ ∞

0
dy yd−1 R2

y2 +R2u
(1)
` (y)Krad

` u
(2)
` (y) =

∫ ∞
0

dy yd−1 R2

y2 +R2u
(2)
` (y)Krad

` u
(1)
` (y), (A.26)

where we have to ensure that the boundary terms (emerging from an integration by part)
do not contribute. For this condition, we find that

• If u(1)
` and u(2)

` belong to the same class then the self-adjointness conditions require
2L1 + 2 > d and 2L2 + 2 > d, which is the same as coming from normalizability.

• If u(1)
` and u(2)

` belong to different classes then the self-adjointness condition becomes
L1 + L2 > d.

A.3 Spectrum and eigenfunctions

Let us assume (temporarily) that ᾱ is not integer. Then using identities satisfied by the
hypergeometric function we can write our solution (A.25) in an alternative form

u`(y) =M`Γ(`+d/2)
(

y2

y2+R2

) `
2

×

{(
R2

y2+R2

)∆+
2 Γ(−ᾱ)

Γ
(
`+∆−−ν`

2

)
Γ
(
`+∆−+ν`

2

)2F1

(
`+∆+−ν`

2 ,
`+∆++ν`

2 ;1+ᾱ; R2

y2+R2

)

+
(

R2

y2+R2

)∆−
2 Γ(ᾱ)

Γ
(
`+∆+−ν`

2

)
Γ
(
`+∆++ν`

2

)2F1

(
`+∆−−ν`

2 ,
`+∆−+ν`

2 ;1−ᾱ; R2

y2+R2

)}
.

(A.27)

– 14 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
5

The first term has asymptotic exponent L1 = ∆+ and the second terms has L2 = ∆−. Since
∆+ + ∆− = d, the second condition L1 + L2 > d can never be satisfied. This means that
both terms cannot simultaneously be present in (A.27). Since 2∆+ + 2 = d+ 2 + 2ᾱ > d,
the first term is always normalizable. On the other hand, 2∆− + 2 = d + 2 − 2ᾱ > d is
satisfied only if ᾱ < 1.

A.3.1 ∆+ case

The second term in (A.27) is absent if we choose

∆+ + `− ν`
2 = −n n = 0, 1, · · · , ν` = νn` = ∆+ + `+ 2n, (A.28)

since the inverse Gamma function in front of the second term then vanishes. In this case
the first term simplifies to

un`(y) =Mn`(−1)n Pn(ᾱ+ 1)
Pn(`+ d/2)

(
y2

y2 +R2

) `
2
(

R2

y2 +R2

)∆+
2

× 2F1

(
−n,∆+ + `+ n; 1 + ᾱ; R2

y2 +R2

)
. (A.29)

We see that the limit ᾱ→ integer is smooth.

A.3.2 ∆− case

If we choose
∆− + `− ν`

2 = −n n = 0, 1, · · · , ν` = νn` = ∆− + `+ 2n, (A.30)

the first term in (A.27) vanishes and the second term becomes

un`(y) =Mn`(−1)n Pn(1− ᾱ)
Pn(`+ d/2)

(
y2

y2 +R2

) `
2
(

R2

y2 +R2

)∆−
2

× 2F1

(
−n,∆− + `+ n; 1− ᾱ; R2

y2 +R2

)
. (A.31)

A.3.3 Final form of the solution

The possible range of asymptotic exponents (which later become conformal weights) is
d−2

2 < ∆. If we introduce the parameters

α = ∆− d

2 (α > −1; ᾱ = |α|), β = `+ d

2 − 1, (A.32)

the solutions (A.29) and (A.31) can be uniformly written as

un`(y) = Nn` ξ`/2(1− ξ)∆/2P (α,β)
n (x), νn` = ∆ + `+ 2n, (A.33)

where
Nn` = (−1)n n!

Pn(`+ d/2)Mn`, x = 2ξ − 1, (A.34)

– 15 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
5

and P (α,β)
n (x) is the Jacobi polynomial given by

P (α,β)
n (x) = Γ(n+ α+ 1)

n!Γ(α+ 1) 2F1

(
−n, α+ β + 1 + n;α+ 1; 1− x

2

)
. (A.35)

Using the known orthogonality properties of the Jacobi polynomials, we can make our set
of solutions orthonormal:∫ ∞

0
dy yd−1 R2

y2 +R2un`(y)um`(y) = δnm. (A.36)

This requirement fixes the normalization constants as

N 2
n` = 2νn`

Rd
n!Γ(n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1) . (A.37)

For later use we note that

y →∞ : un`(y) ≈ Pn(α+ 1)
n! Nn`

(
R

y

)∆
, (A.38)

y → 0 : un`(y) ≈ (−1)nPn(β + 1)
n! Nn`

(
y

R

)`
. (A.39)

To summarize, we have found the expansion of the free scalar on the AdS background
in terms of mode functions

fn`m(t, y,Ω) = e−iνn`tun`(y)Y`m(Ω) (A.40)

for all possible boundary conditions/conformal weights.

B Derivation of the bulk reconstruction for ∆ > d − 1 with odd d

We evaluate the integral (2.14), using the hypergeometric function identity (valid for odd d)

2F1(1, d/2; 1 + α; 1/z) = 2αz
2− d 2F1(1, 1− α; 2− d/2; z)

+ Γ(1− d/2)Γ(1 + α)
Γ(∆− d+ 1)

(
−1
z

)−d/2
(1− z)∆−d, (B.1)

where the first term is regular except for a cut starting at z = 1. Around the branch point
z = 1, its behaviour is

regular + const. (1− z)∆−d. (B.2)

When calculating the integral of this first term in (2.14), we can shrink our contour so that
it becomes a very small circle around the branch point z = 1, and then, its contribution
vanishes in our case (2.15), because a value of the integral gets smaller and smaller as our
integral contour gets smaller and smaller.

The second term has a cut starting already at z = 0. The contour can be shrunken so
that it becomes just the unit circle, since the singularity around the second branch point
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z = 1 is an integrable one for (2.15). After a change of integration variable z = −e−2iu, the
integral along the unit circle becomes

D(w) = 1
πΩd

Γ(1− d/2)Γ(1 + α)
Γ(∆− d+ 1)

∫ π/2

−π/2
duB

(
−we−2iu

)
e−i∆u(2 cosu)∆−d. (B.3)

Thus we obtain

e−i∆tD
(
e−2it

)
= ξ

∫ t+π/2

t−π/2
du e−i∆uB

(
−e−2iu

)
[2 cos(t− u)]∆−d (B.4)

with overall constant ξ in (2.17). If we repeat the whole calculation for D1, we have

ei∆tD1
(
e2it
)

= ξ

∫ t+π/2

t−π/2
du ei∆uB1

(
−e2iu

)
[2 cos(t− u)]∆−d. (B.5)

We can simply add the two contributions to arrive at (2.16).

C Geometry of the AdS space

C.1 Geodesics

An important feature of the geometry of AdS space is that Y and x can be connected with
a past directed light-like geodesic if

t̃ = T1, T1 = t− π

2 + Ψ, Ψ = arcsin[(tanh ρ)n · ñ]. (C.1)

Similarly, Y and x can be connected with a future directed light-like geodesic if

t̃ = T2, T2 = t+ π

2 −Ψ. (C.2)

Finally, Y and x can be connected with a space-like geodesic if T1 < t̃ < T2.

C.2 Infinitesimal transformations

There is a symmetry action by the isometry grop SO(d, 2) on AdS space. The transformed
point will be denoted by gY , where g is the group element and Y is transformed to gY . Since
it is a group action, the relation g2(g1Y ) = (g2g1)Y is satisfied. The corresponding group
action in the Hilbert space is given by the unitary operators U(g) satisfying U(g2)U(g1) =
U(g2g1), under which a scalar field Φ(Y ) transforms as U †(g)Φ(Y )U(g) = Φ(g−1Y ). The
symmetry group acts also on boundary points by conformal transformations as x → gx

satisfying g2(g1x) = (g2g1)x. A primary scalar field O(x) transforms under the conformal
transformation by the unitary operator as

U †(g)O(x)U(g) = J∆(g−1, x)O(g−1x), J(g, x) :=
∣∣∣∣∣det ∂(gx)A

∂xB

∣∣∣∣∣
1
d

= 1
J(g−1, gx) . (C.3)

The infinitesimal version of the symmetry transformations are given by

δΦ = −δY µ∂µΦ, δO = −δxA∂AO −
ω∆
d
O, ω := ∂δxA

∂xA
. (C.4)
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The infinitesimal parameters of the SO(d, 2) transformations are EAB = −EBA, A,B =
0, D, i (i = 1, . . . , d). The infinitesimal bulk transformations are given explicitly by

δt = −E0D + tanh ρ(n · E0 sin t+ n · ED cos t), n · E0 := niEi0, n · ED := niEiD,

δρ = −n · E0 cos t+ n · ED sin t,
δni = Eijnj + coth ρ(n · E0 ni − Ei0) cos t− coth ρ(n · ED ni − EiD) sin t. (C.5)

The boundary (conformal) version of the above is

δt̃ = −E0D + ñ · E0 sin t̃+ ñ · ED cos t̃,
δñi = Eijñj + (ñ · E0 ñi − Ei0) cos t̃− (ñ · ED ñi − EiD) sin t̃.

(C.6)

For the boundary points there is no ρ̃ coordinate, but for later use we keep the notation
δρ̃ = −ñ · E0 cos t̃+ ñ · ED sin t̃. Also for later use we note that δJ = −δρ̃ = ω/d.

D Bulk reconstruction for ∆ > d − 1 at generic bulk points

In this appendix we construct the building blocks I(Y, x) and T (Y, x), which are necessary
to complete the bulk reconstruction for generic bulk points discussed in section 2.

D.1 The explicit form of I(Y, x)

The infinitesimal version of the first requirement in (2.22) is δI = (δJ)I = ω
d I = −δρ̃ I. We

start from the invariant function depending on two bulk points in AdS given by

S = cosh ρ cosh ρ̃ cos(t− t̃)− sinh ρ sinh ρ̃ n · ñ, δS = 0. (D.1)

For large ρ̃, the second point goes to the boundary and we have approximately

S ≈ 1
4eρ̃ I, I = 2[cosh ρ cos(t− t̃)− sinh ρn · ñ]. (D.2)

In this limit, the infinitesimal variation gives 0 = δS = 1
4eρ̃(δρ̃ I + δI), which leads to

δI = −δρ̃ I. The first requirement in its infinitesimal form is thus satisfied by this I, which
also satisfies the second requirement since I(Yo, x) = 2 cos t̃ for t = ρ = 0.

D.2 The explicit form of T (Y, x)

A natural guess is to take T (Y, x) = ξΘ(X1)Θ(X2), where X1 = t̃ − T1 and X2 =
T2 − t̃. The second requirement in (2.23) is satisfied with this choice since T (Yo, x) =
ξΘ
(
t̃+ π

2
)

Θ
(
π
2 − t̃

)
.

The infinitesimal variation of X1 can be calculated using the formulas given in (C.5)
and (C.6). After some calculation, we obtain

δX1 = 2sin X1
2

{
n ·E0

(
−tanhρ

cosΨ sin t̃+T1
2

)
+n ·ED

(
−tanhρ

cosΨ cos t̃+T1
2

)

+ ñ ·E0
(

tanΨsin t̃+T1
2 +cos t̃+T1

2

)
+ ñ ·ED

(
tanΨcos t̃+T1

2 −sin t̃+T1
2

)}
,

(D.3)
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so that X1 = 0 implies δX1 = 0. Thus Θ (X1) is invariant: Θ(X1) = Θ(X1 + δX1) for
infinitesimal changes. We also observe that lim

X1→0
δX1/X1 = δλ, where

δλ = n · E0
(
−tanh ρ

cos Ψ sin T1

)
+ n · ED

(
−tanh ρ

cos Ψ cosT1

)
+ ñ · E0(tan Ψ sin t̃+ cos t̃) + ñ · ED(tan Ψ cos t̃− sin t̃).

(D.4)

We can make similar calculations and draw similar conclusions for X2. For its infinites-
imal variation, we obtain

δX2 =−2sin X2
2

{
n ·E0

(
−tanhρ

cosΨ sin t̃+T2
2

)
+n ·ED

(
−tanhρ

cosΨ cos t̃+T2
2

)

+ ñ ·E0
(

tanΨsin t̃+T2
2 −cos t̃+T2

2

)
+ ñ ·ED

(
tanΨcos t̃+T2

2 +sin t̃+T2
2

)}
,

(D.5)

so that X2 = 0 implies δX2 = 0. Finally lim
X2→0

δX2/X2 = δλ̄, where

δλ̄ = n · E0
(tanh ρ

cos Ψ sin T2

)
+ n · ED

(tanh ρ
cos Ψ cosT2

)
− ñ · E0 (tan Ψ sin t̃− cos t̃

)
− ñ · ED(tan Ψ cos t̃+ sin t̃).

(D.6)

E Bulk reconstruction for ∆ > d − 2

We separate the bulk and boundary fields, A(t) and C(t), into positive/negative frequency
parts, A+(t)/A−(t) and C+(t)/C−(t), which are given by the two terms of (2.7) and (2.10),
respectively. Using these definitions, we have the identity

e−i∆tB(e−2it) = e−i
∆π
2 C+(t− π/2) = ei

∆π
2 C+(t+ π/2). (E.1)

Thus (3.3) leads to

A+(t) = 1
Ωd

e−
i∆π

2 C+(t−π/2)+ξ

∫ 0

−π/2
du[2 cos(u)]∆−d{C+(u+ t)−e−i(u+π/2)∆C+(t−π/2)}

+ξ

∫ π/2

0
du[2 cos(u)]∆−d{C+(u+ t)−e−i(u−π/2)∆C+(t+π/2)}. (E.2)

Next by adding and subtracting an integral proportional to k+ for the first integral and k−
for the second integral, where

k± = ξ

∫ π/2

0
du(2 cosu)∆−d[1− e±i∆(u−π/2)], (E.3)

which are convergent for ∆ > d− 2, we obtain

A+(t) =
{ 1

Ωd
+ e

i∆π
2 k+ + e

−i∆π
2 k−

}
e−

i∆π
2 C+(t− π/2)

+ ξ

∫ t

t−π/2
du[2 cos(u− t)]∆−d{C+(u)− C+(t− π/2)}

+ ξ

∫ t+π/2

t
du[2 cos(u− t)]∆−d{C+(u)− C+(t+ π/2)}.

(E.4)
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Analogously, repeating the calculation with D1(w), B1(w), A− and C−, we have

ei∆tB1(e2it) = ei
∆π
2 C−(t− π/2) = e−i

∆π
2 C−(t+ π/2) (E.5)

and

A−(t) =
{ 1

Ωd
+ e

i∆π
2 k+ + e

−i∆π
2 k−

}
e
i∆π

2 C−(t− π/2)

+ ξ

∫ t

t−π/2
du[2 cos(u− t)]∆−d{C−(u)− C−(t− π/2)}

+ ξ

∫ t+π/2

t
du[2 cos(u− t)]∆−d{C−(u)− C−(t+ π/2)}.

(E.6)

These results can be further simplified by using the following two identities.

C(t− π/2) + C(t+ π/2) = C+(t− π/2) + C−(t− π/2) + C+(t+ π/2) + C−(t+ π/2)

= 2 cos ∆π
2
{

e−
i∆π

2 C+(t− π/2) + e
i∆π

2 C−(t− π/2)
}
,

(E.7)

∫ π/2

0
du(2cosu)A

{
cosBπ2 −cosBu

}
= π

2 Γ(1+A)
{

cos Bπ2
Γ2(1+A/2)−

1
Γ(1+A−B

2 )Γ(1+A+B
2 )

}
,

(E.8)
for A > −2, B = A+ d, d = 3, 5, 7, · · · . Using the second identity we find

e
i∆π

2 k+ +e−
i∆π

2 k− = ξ

∫ π/2

0
du (2cosu)∆−d

{
2cos ∆π

2 −2cos∆u
}

= 1
Ωd

{
η cos ∆π

2 −1
}
.

(E.9)

Finally, adding A+ and A− we obtain the final result (3.4), valid for the extended range
∆ > d− 2.

F Details of the derivation of bulk reconstruction for small integer ∆

F.1 Bulk reconstruction for ∆ = d − 1 at generic bulk points

We will look for a solution to the infinitesimal form of the first requirement, δD = −δJ D =
δρ̃D. For the ansatz D(Y, x) = ξo[f(Y, x)δo(X1) + g(Y, x)δo(X2)], the second requirement
is satisfied if f(Yo, x) = g(Yo, x) = 1. Using the delta function relations

δo(X1 + δX1) = δo(X1 + δλX1) = (1− δλ)δo(X1),
δo(X2 + δX2) = δo(X2 + δλ̄X2) = (1− δλ̄)δo(X2)

(F.1)

we see that the first requirement is equivalent to

δf

f
= δλ+ δρ̃ (on the X1 = 0 hyperplane), (F.2)

δg

g
= δλ̄+ δρ̃ (on the X2 = 0 hyperplane). (F.3)
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Considering

sin T1 = sin Ψ sin t− cos Ψ cos t, cosT1 = cos Ψ sin t+ sin Ψ cos t, (F.4)

we have

δλ = − tanh ρn · E0(tan Ψ sin t− cos t)− tanh ρn · ED(sin t+ tan Ψ cos t)
+ ñ · E0(tan Ψ sin t̃+ cos t̃) + ñ · ED(tan Ψ cos t̃− sin t̃)

= − tan Ψ(δt+ E0D)− tanh ρ δρ+ tan Ψ(δt̃+ E0D)− δρ̃
= tan Ψδ(t̃− t)− tanh ρ δρ− δρ̃.

(F.5)

Under the condition X1 = 0

δλ+ δρ̃ = − tanh ρ δρ+ tan ΨδΨ = −δ cosh ρ
cosh ρ −

δ cos Ψ
cos Ψ . (F.6)

Thus the solution to (F.2) is obtained by f = 1
R
, where R = cosh ρ cos Φ is given in (5.7).

Similarly we have
δλ̄ = tan Ψδ(t− t̃)− tanh ρ δρ− δρ̃, (F.7)

which, under the condition X2 = 0, implies

δλ̄+ δρ̃ = − tanh ρ δρ+ tan ΨδΨ = −δR
R
. (F.8)

We find that (F.3) has the same solution, g = 1
R
. Thus the result for the complete kernel

function is given by (5.6).

F.2 Bulk reconstruction for ∆ = d − 2 at generic bulk points

Let us first concentrate on the X1 part of D2. Motivated by the ∆ = d− 1 result we take
the ansatz

D2(Y, x) = −ξ̃o[f2(Y, x)δ′o(X1) + p2(Y, x)δo(X1)] +X2 part. (F.9)

The first requirement is δD2 = −2δJD2 = 2δρ̄D2. The second requirement will be satisfied
if f2(Yo, x) = 1 and p2(Yo, x) = 0.

F.2.1 Delta function identities

We start from the well-known delta function relation

δo(f(x)) = 1
|f ′(0)|δo(x), (F.10)

where we assume that the only zero of f(x) is at x = 0. Then∫
dxδ′o(f(x))F(x) =

∫
dxδ′o(f(x))f ′(x) F(x)

f ′(x) = −
∫

dxδo(f(x))
[F(x)
f ′(x)

]′
= − F ′(0)
|f ′(0)|f ′(0) + F(0)f ′′(0)

|f ′(0)|f ′2(0)
.

(F.11)
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This gives the delta function identity

δ′o(f(x)) = 1
|f ′(0)|f ′(0)δ

′
o(x) + f ′′(0)

|f ′(0)|f ′2(0)
δo(x). (F.12)

We will apply the above identities to the infinitesimal variation of X1:

δX1 = ε0X1 + ε1X
2
1 + O(X3

1 ). (F.13)

In this case, δ′o(X1 + δX1) = (1− 2ε0)δ′o(X1) + 2ε1δo(X1). The infinitesimal change of the
delta function and its derivative is thus

δ[δo(X1)] = −ε0δ0(X1), δ[δ′o(X1)] = −2ε0δ
′
0(X1) + 2ε1δo(X1). (F.14)

Later we will also use the identity X1δ
′
o(X1) = −δo(X1).

F.2.2 Expansions

For later use we now calculate and simplify the expansion coefficients in (F.13) and in the
expansion of δρ̃ (defined under (C.6)): δρ̃ = r0 + r1X1 + O(X2

1 ). Using

t̃ = T1 +X1,
t̃+ T1

2 = T1 + X1
2 (F.15)

we find from (D.3)

ε0 = n · E0
(
−tanh ρ

cos Ψ sin T1

)
+ n · ED

(
−tanh ρ

cos Ψ cosT1

)
+ ñ · E0 (tan Ψ sin T1 + cosT1) + ñ · ED (tan Ψ cosT1 − sin T1) ,

(F.16)

2ε1 = n · E0
(
−tanh ρ

cos Ψ cosT1

)
+ n · ED

(tanh ρ
cos Ψ sin T1

)
+ ñ · E0 (tan Ψ cosT1 − sin T1)− ñ · ED (tan Ψ sin T1 + cosT1) .

(F.17)

For the expansion of δρ̃ we find

r0 = −ñ · E0 cosT1 + ñ · ED sin T1, r1 = ñ · E0 sin T1 + ñ · ED cosT1. (F.18)

Using the relations (F.4), (C.5), (C.6) we make the following calculations (for later use).

ε0 +r0 = tanhρn ·E0(cos t−tanΨsin t)−tanhρn ·ED(sin t+tanΨcos t)
+tanΨ[ñ ·E0 sin(t̃−X1)+ ñ ·ED cos(t̃−X1)]

=− tanΨ(δt+E0D)−tanhρδρ+tanΨ[(δt̃+E0D)+r0X1]+O(X2
1 )

=− tanhρδρ+tanΨ(δΨ+δX1 +r0X1)+O(X2
1 )

= tanΨδΨ−tanhρδρ+tanΨ(ε0 +r0)X1 +O(X2
1 ).

(F.19)

2ε1 +2r1 =− tanhρn ·E0(sin t+tanΨcos t)−tanhρn ·ED(cos t−tanΨsin t)
+tanΨ(ñ ·E0 cos t̃− ñ ·ED sin t̃)+(ñ ·E0 sin t̃+ ñ ·ED cos t̃)+O(X1)

=−(δt+E0D)+tanΨtanhρδρ−r0 tanΨ+(δt̃+E0D)+O(X1)
= δΨ+tanΨtanhρδρ−r0 tanΨ+O(X1).

(F.20)
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After temporarily dropping the −ξ̃o factor the first requirement (for the X1 part) reads

δ[f2δ
′
o(X1) + p2δo(X1)] = 2δρ̃[f2δ

′
o(X1) + p2δo(X1)], (F.21)

which can be expanded as

δf2δ
′
o + f2[−2ε0δ

′
o + 2ε1δo] + δp2δo − ε0p2δo = 2r0f2δ

′
o − 2r1f2δo + 2r0p2δo. (F.22)

Reducing to zero and dividing by f2 we get[
δf2
f2
− 2(ε0 + r0)

]
δ′o + δo

[
2(ε1 + r1) + δp2

f2
− (2r0 + ε0)p2

f2

]
= 0. (F.23)

Thus the condition that the leading term multiplying δ′o vanishes leads to f2 = R−2.
Introducing the parametrization p2 = f2ω2, the requirement that the coefficient of δo
vanishes becomes

2 tan Ψ(ε0 + r0) + 2(ε1 + r1) + 2(ε0 + r0)ω2 + δω2 − (2r0 + ε0)ω2 = 0. (F.24)

This can be simplified to

2 tan Ψ(ε0 + r0) + δΨ + tan Ψ tanh ρδρ− r0 tan Ψ + δω2 + ε0ω2

= ε0 tan Ψ + tan2 ΨδΨ + δΨ + δω2 + ε0ω2 = δΨ
cos2 Ψ + δω2 + ε0(ω2 + tan Ψ) = 0.

(F.25)

Now it is easy to see that ω2 = − tan Ψ solves this equation, and indeed p2(Yo, x) = 0.
The calculation of the X2 part is completely analogous.

G BDHM relation for ∆ = d − 1

Although the BDHM relation (5.9) [5] is one of the staring points of our derivation for (5.8),
it is instructive to check it directly from the final formula (5.8).

By writing

ε := 1
sinh ρ, tanh ρ = 1√

1 + ε2
, ny · nx := cos γ, R =

√
ε2 + sin2 γ

ε
, (G.1)

we should show

O(t,Ωy) = lim
ε→0

ξo
ε∆−1

∫
dΩ 1√

ε2 + sin2 γ
[O(T1,Ω) +O(T2,Ω)] , (G.2)

where
T1 = t− π

2 + Ψ, T1 = t+ π

2 −Ψ, Ψ := sin−1
( cos γ√

1 + ε2

)
. (G.3)

Since the BDHM relation (5.9) is a linear mapping, it is enough to verify it mode by mode.
For the operator Anlm, what we need to show is

Ylm(Ωy) = lim
ε→0

ξo
ε∆−1

∫
dΩ

Ylm(Ω)√
ε2 + sin2 γ

[
eiνnl(π/2−Ψ) + e−iνnl(π/2−Ψ)

]
. (G.4)
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Without loss of generality, we can take Ωy ∼ n0 := (1, 0, 0, · · · , 0), so that γ = θ and
Ψ = π

2 − θ. From the property of the hyper-spherical harmonics

Ylmm̂(Ω) = Nd
lmm̂(sin θ)mCα+m

l−m (cos θ)Ymm̂(Ω̂), α := d

2 − 1, m := mm̂, (G.5)

where Ω̂ is a solid angle of the d− 2 dimensional sphere, we obtain

Ylm(Ωy ∼ n0) = δm,0Yl0(n0), Yl0(n0) = Nd
l0C

α
l (1)ad−1 (G.6)

since Y0(Ω̂) = ad−1 = 1/
√

Ωd−1. Furthermore, using dΩ = sind−2 θ dθ dΩ̂, we have

ξo

∫
dΩYlm(Ω)F (θ) = δm,0N

d
l0ξoad−1Ωd−1

∫ π

0
dθ sind−2 θF (θ)Cαl (cos θ), (G.7)

where
F (θ) := 1

ε∆−1
1√

ε2 + sin2 θ

[
eiνnlθ + e−iνnlθ

]
. (G.8)

We then evaluate the integral given by

X := lim
ε→0

1
ε∆−1

∫ π

0
dθ

sind−2 θ√
ε2 + sin2 θ

Cαl (cos θ)
[
eiνnlθ + e−iνnlθ

]
. (G.9)

For odd d = 2s+ 3 with ∆ = d− 1, we have

X = lim
ε→0

1
εd−2

∫ π

−π
dθ

sind−2 θ√
ε2 + sin2 θ

Cαl (cos θ)eiνnlθ. (G.10)

By rewriting
1

εd−2
sind−2 θ√
ε2 + sin2 θ

= Dε(θ) + δDε(θ), (G.11)

where

Dε(θ) := 1
εd−2

sind−2 θ√
ε2 + sin2 θ

− δDε(θ), (G.12)

δDε(θ) := 1
ε

s∑
k=0

(2k − 1)!!
(2k)!! (−1)k

(
sin2 θ

ε2

)s−k
, (G.13)

we see that ∫ π

−π
dθ δDε(θ)Cαl (cos θ)eiνnlθ = 0, (G.14)

since δDε(θ) and Cαl (cos θ) are polynomials of eiθ, e−iθ of order (d− 3) and l, respectively,
while νnl = d− 1 + 2n+ l.

Since Dε(θ) satisfies

lim
ε→0

Dε(θ) =
{
O(ε) → 0, for sin θ 6= 0,
(−1)s+1O(ε−1) → (−1)s+1∞, for sin θ = 0, (G.15)

and Dε(π − θ) = Dε(θ), we conclude

lim
ε→0

Dε(θ) = A(s) [δ(θ) + δ(π − θ)] . (G.16)
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G.1 Calculation of A

We write

A = lim
ε→0

(A0 +A1), A0 :=
∫ π

0
dθ

1
εd−2

sind−2 θ√
ε2 + sin2 θ

, A1 := −
∫ π

0
dθ δDε(θ). (G.17)

Thus, A1 becomes

A1 = −
√
π

ε2s+1

s∑
k=0

[
ε2k(−1)k (2k − 1)!!

(2k)!!
Γ(s− k + 1

2)
Γ(s− k + 1)

]
. (G.18)

The calculation of A0 is more involved. Making a change of variables as cos θ =
√

1 + ε2 sinw,
we obtain

A0 =
∫ a

−a
dw

[
cos2w − ε2 sin2w

]s
, (G.19)

where

a := sin−1 1√
1 + ε2

= cos−1 ε√
1 + ε2

= π

2 −
ε

1 + ε2

∞∑
n=0

(2n)!!
(2n+ 1)!!

(
ε2

1 + ε2

)n

= π

2 − ε
[
1− ε2

3 + 3ε4
15 +O(ε6)

]
. (G.20)

We calculate A0 for s = 0, 1, 2 as follows.

εA0(s = 0) = 2a, (G.21)

ε3A0(s = 1) = a(1− ε2) + sin(2a)(1 + ε2)
2 = a(1− ε2) + ε, (G.22)

ε5A0(s = 2) = a
(3− 2ε2 + 3ε4)

4 + sin(2a)(1− ε4)
2 + sin(4a)(1 + 2ε2 + ε4)

16
= 1

4
[
a(3− 2ε2 + 3ε4) + 3ε(1− ε2)

]
, (G.23)

where we use
sin(2a) = 2ε

1 + ε2
, sin(4a) = 4ε(ε2 − 1)

(1 + ε2)2 . (G.24)

On the other hands,

A1(s = 0) = −π
ε
, (G.25)

A1(s = 1) = − π

2ε3 (1− ε2), (G.26)

A1(s = 2) = − π

8ε5
(
3− 2ε2 + 3ε4

)
. (G.27)

By combining these, we obtain

A(s = 0) = −2, A(s = 1) = 4
3 , A(s = 2) = −16

15 . (G.28)
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G.2 The result

The right-hand side of (G.4) now becomes

A(s)Nd
l0ξoad−1Ωd−1

[
Cαl (1) + (−1)lCαl (−1)

]
δm,0 = 2A(s)ξoΩd−1Ylm(n0), (G.29)

where we have used Cαl (−1) = (−1)lCαl (1). Since

2ξoΩd−1 = (−1)s+1(2s+ 1)!!
2s+1s! = −1

2 ,
3
4 ,−

15
16 , (G.30)

for s = 0, 1, 2, which implies A(s)2ξoΩd−1 = 1, so that the BDHM relation (G.4) holds for
s = 0, 1, 2. We expect in general

A(s) = (−1)s+1 2s+1s!
(2s+ 1)!! , (G.31)

for all non-negative integer s, which we verified up to s = 10 by Mathematica.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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