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We investigate how the derivative expansion in the HAL QCD method works to extract
physical observables, using a separable potential in quantum mechanics, which is solvable
but highly non-local in the coordinate system. We consider three cases for inputs to de-
termine the HAL QCD potential in the derivative expansion: (1) energy eigenfunctions,
(2) time-dependent wave functions as solutions to the time-dependent Schrödinger equa-
tion with some boundary conditions, and (3) a time-dependent wave function made by a
linear combination of a finite number of eigenfunctions at low energy to mimic the finite
volume effect. We have found that, for all three cases, the potentials provide reasonable scat-
tering phase shifts even at the leading order of the derivative expansion, and they give more
accurate results as the order of the expansion increases. By comparing the above results with
those from the formal derivative expansion for the separable potential, we conclude that the
derivative expansion is not a way to obtain the potential but a method to extract physical
observables such as phase shifts and binding energies, and that the scattering phase shifts
from the derivative expansion in the HAL QCD method converge to the exact ones much
faster than those from the formal derivative expansion of the separable potential.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction
Nowadays, in addition to simple quantities such as hadron masses and matrix elements, more
complicated quantities such as hadron interactions can be extracted in lattice quantum chro-
modynamics (QCD). Hadron interactions have been investigated in lattice QCD by two main
methods. One is the finite volume method [1], the other is the HAL QCD potential method [2–
4]. While both methods utilize the fact that the Nambu–Bethe–Salpeter wave function encodes
information of the S-matrix in QCD [1–10], they each have their own pros and cons. In partic-
ular, the systematic errors of these methods are very different. The systematic errors associated
with the finite volume method are well understood, once finite volume spectra are precisely
determined. On the other hand, the non-local potential in the HAL QCD method, which by
definition correctly reproduces the scattering phase shift, needs in practice to be approximated
by the derivative expansion, whose systematic errors are difficult to quantify. Indeed, there was
some misunderstanding on this point in the literature; see some correspondence in Refs. [11–13].
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In this paper we investigate how the derivative expansion of the potential works in the HAL
QCD method by applying it to a solvable model in quantum mechanics whose potential has
a separable form. Separable potentials are suitable for this purpose, since they are in general
solvable but highly non-local in the coordinate space. In addition, the solvable potential is for-
mally expanded in terms of derivatives, which can be compared with the derivative expansion
in the HAL QCD method. We give the basic properties of the separable potential we consider
in Sect. 2. We investigate how the derivative expansion works in the HAL QCD method for
three cases in Sect. 3. The first one is to construct potentials from energy eigenfunctions. This is
the cleanest case, where the systematic errors for the derivative expansion are easy to estimate.
In Appendix Appendix A, the coefficient functions in the derivative expansion of the potential
are presented for this case. We compare them with those in the formal derivative expansion of
the separable potential. The second case is to evaluate potentials from time-dependent wave
functions in an infinite volume, constructed as a solution of the time-dependent Schrödinger
equation with some initial condition. While the finite volume method by definition does not
work in this case, the time-dependent HAL QCD method works to extract physical observ-
ables [14]. An issue in this case is how reliable the results from the derivative expansion are.
We compare phase shifts obtained from the potentials at the lowest few orders in the deriva-
tive expansion with the exact result. Finally, we consider the construction of the potential from
time-dependent wave functions composed of a finite sum of eigenfunctions, which mimic time-
dependent wave functions in the finite volume. This is most similar to actual setups in lattice
QCD simulations performed on a finite volume with a finite lattice spacing. We give our con-
clusions in Sect. 4. Details of the calculation of time-dependent wave functions are presented
in Appendix Appendix C.

Preliminary results of a similar analysis with a different separable potential can be found in
Refs. [15,16].

2. Separable potential
Let us consider the Schrödinger equation with non-local potential,

(Ek − H0)ψk(�x) =
∫

d3yV (�x, �y)ψk(�y) = ωv(�x)
∫

d3y v†(�y)ψk(�y), (1)

where

Ek :=
�k2

2m
, H0 = −

�∇2

2m
, (2)

and we take a separable potential V (�x, �y) := ωv(�x)v†(�y) in the last line. For the general method
for investigating scattering problems with separable potentials, see, for example, Ref. [17].

The corresponding Lippmann–Schwinger equation becomes

ψk(�x) = ei�k·�x − ω

∫
d3yGk(�x, �y)v(�y)

∫
d3z v†(�z)ψk(�z), (3)

where the Green’s function is given by

Gk(�x, �y) :=
∫

d3 p
(2π )3

2mei�p(�x−�y)

�p2 − k2 − iε
= m

2π

eik|�x−�y|

|�x − �y| . (4)

Equation (3) can be solved as

ψk(�x) = ei�k·�x − 〈�x|Gk|v〉 〈v|�k〉
1
ω

+ 〈v|G|v〉
, ei�k�x = 4π

∑
lm

il jl (kr)Ylm(��x)Ylm(��k)†, (5)
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where we define

〈v|�k〉 :=
∫

d3xv†(�x)ei�k·�x, (6)

〈�x|Gk|v〉 :=
∫

d3y Gk(�x, �y)v(�y), 〈v|Gk|v〉 :=
∫

d3x v†(�x)〈�x|Gk|v〉. (7)

In this paper we take one choice for v(�x) as

v(�x) = e−μx

x
= v†(�x), x = |�x|. (8)

2.1 Explicit solutions
Using the formula

eik|�x−�y|

|�x − �y| = 4π ik
∞∑

l=0

l∑
m=−l

h(+)
l (kr>) jl (kr<)Ylm(��x)Y †

lm(��y), (9)

where r> := max (x, y) and r< := min (x, y), we obtain

〈v|�k〉 = 4π

μ2 + k2
,

〈v|G|v〉 = 8πm
(μ2 + k2)2

[
μ2 − k2

2μ
+ ik

]
,

〈�x|G|v〉 = 2m(eikx − e−μx)
(μ2 + k2)x

, (10)

where we use

Y00(��x) := 1√
4π

, h(+)
0 (z) := −i

eiz

z
, j0(z) := sin z

z
. (11)

Thus, scattering states exist only for the S-wave (l = 0) as

ψ0
k (x) = sin(kx + δ(k)) − sin δ(k)e−μx

kx
(12)

for k ≥ 0, and the scattering phase shift becomes

k cot δ(k) = 1
a0

+ re

2
k2 + P4k4, (13)

where the scattering length, the effective range, and the shape parameter are respectively given
by

1
a0

= −μ

2

[
1 + μ3

c

]
, re = 1

μ

[
1 − 2μ3

c

]
, P4 = − 1

2c
, (14)

with c := 4πmω.
For the bound state |B〉, Eq. (3) leads to

〈v|B〉 = −ω〈v|Gk|v〉〈v|B〉, 〈�x|B〉 = −ω〈�x|Gk|v〉〈v|B〉, (15)

which determines the binding momentum k = iγ B and the normalized bound state as

γB =
√−c

μ
− μ, 〈�x|B〉 = μNB

2πx(μ − γB)

(
e−γBx − e−μx) , N2

B := 2πγB(μ + γB)
μ

. (16)

2.2 Infrared cutoff
The effective range expansion of the scattering phase shift in Eq. (13) is too simple, as it is a
second-order polynomial of k2. In order to make the effective range expansion of the phase
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shift a more complicated function of k2, we introduce an infrared cutoff R and modify the
wave function as

ψR
k (x) =

⎧⎨
⎩

ψ0
k (x) (r < R),

C(k)
sin(kx + δR(k))

kx
(r ≥ R),

(17)

where the continuity of the wave function and its derivative at x = R leads to

C(k) = X
sin(kR + δR(k))

, k cot δR(k) = k
X + cot(kR)Y
cot(kR)X − Y

, (18)

X = sin(kR + δ(k)) − sin δ(k)e−μR, Y = cos(kR + δ(k)) + μ

k
sin δ(k)e−μR. (19)

Thus, the scattering length aR is given by

aR = a0
1 − (1 + μR)e−μR

1 + a0μe−μR
. (20)

Note that the introduction of R also modifies γ B and 〈�x|B〉, where γ B in the presence of the
infrared cutoff R is estimated by an analytic continuation of k cot δR(k), as will be shown later.

2.3 Formal derivative expansion
Using the Taylor expansion, we decompose the separable potential directly in terms of deriva-
tives as

V (�x, �y) =
∞∑

n=0

V μ1···μn
n (�x)∂x

μ1
· · · ∂x

μn
δ(3)(�x − �y), (21)

where

V μ1···μn
n (�x) = 1

n!
ωv(�x)

∫
d3y v(�y)(y − x)μ1 · · · (y − x)μn . (22)

The lowest few orders corresponding to V (�x) in Eq. (8) are given by

V0(x) = 4πωe−μx

μ2x
, V μ

1 (�x) = −V0(x)xμ, V μν

2 (�x) = V0(x)
[
δμν

μ2
+ xμxν

2

]
. (23)

Defining Vn := V μ1·μn
n ∂μ1 · · · ∂μn , we obtain

V1

(
x,

d
dx

)
= V0(x) − V0(x)

d
dx

x,

V2

(
x,

d
dx

)
= V1

(
x,

d
dx

)
+ V0(x)

(
1
μ2

+ x2

2

)
1
x

d2

dx2
x. (24)

By introducing the infrared cutoff R again as V0(x) → V0(x)θ (R − x) in the above expressions,

we calculate the scattering phase shifts with the potential Un :=
n∑

i=0

Vi for n = 0, 1, 2. In the

presence of the infrared cutoff, the exact phase shift, denoted by δ̃R(k), is given by

k cot δ̃R(k) = −k
Re(1 − S(k))
Im(1 − S(k))

, (25)

where

S(k) := c
μ(k + iμ)2

(
1 − e−μR{e−μR(k + iμ) − 2iμeikR}

k − iμ

)
, (26)

which is obtained by replacing |v〉 → |vc〉 with vc(�x) := θ (R − x)v(�x) in Eq. (11). The resulting
potential is no longer Hermitian, but the on-shell T-matrix satisfies the unitarity condition and
the scattering can be described by a real phase shift, δ̃R(k). Although δ̃R(k) and δR(k) in Eq. (18)
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Fig. 1. The scattering phase shift calculated with the potential in the formal derivative expansion plotted
as a function of k

μ
with m = 0.5 and μ = 0.3. the results with U0, U1, and U2 are shown by red, blue, and

orange lines, respectively; the exact one, δ̃R(k), is shown by a black line. (Left) c = −0.012 and R = 9.5,
which allows no bound state. (Right) c = −0.048 and R = 8, which produces one bound state.

are different in their expressions, they are almost identical in numbers as long as R is reasonably
large.

Figure 1 shows the scattering phase shift with m = 0.5 and μ = 0.3. In the left panel we
take c = −0.012 and R = 9.5, which is attractive but without bound states, while in the right
we take c = −0.0048 and R = 8 to have one bound state whose binding energy is given by
γ 2

B 
 0.00570. In the figure, the red, blue, and orange lines represent the phase shift obtained
with U0, U1, and U2, respectively; the exact one, δ̃R(k) in Eq. (25), is shown by the black line for
comparison. In both cases (with and without bound state), while U0 reasonably approximates
the behavior at low energies, U1 worsens but U2 improves the agreement.1 The approximation
is a little better for c = −0.012. The binding energy is approximated as γ 2

B 
 0.0685 (U0), 0.384
(U1), and 0.000471 (U2).

In the next section we consider the HAL QCD method, and we reconstruct the potential in a
derivative expansion of a similar kind, using behaviors of wave functions under the separable
potential in Eq. (8).

3. Derivative expansion in the HAL QCD method
3.1 Potential from eigenfunctions
In this subsection we assume that n eigenfunctions ψR

k in Eq. (17) are available for us to con-
struct the potential, which thus satisfies

(Eki − H0)ψR
ki

(x) = Vn

(
x,

d
dx

)
ψR

ki
(x), i = 0, 1, . . . , n, (27)

where V (�x, ∇ ) is replaced by Vn
(
x, d

dx

)
, since the scattering occurs only in S-wave by the sepa-

rable potential defined with Eq. (8).
Equation (27) for n + 1 eigenfunctions determines n + 1 independent local functions in Vn(x,

∇) for n = 0, 1, 2, …, which is taken as

Vn(x, ∇ ) =
n∑

i=0

Vn,i(x)(∇2)i, ∇2 = 1
x

d2

dx2
x, (28)

1We also confirm that U3 and U4 do not improve the approximations at all.
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Fig. 2. (Left) Scattering phase shift δ(k) as a function of k
μ

at m = 0.5, μ = 0.3, c = −0.012 and R = 9.5.
The LO results from eigenfunctions at k = 0 and k = μ are plotted by red and blue lines, respectively,
while the NLO and NNLO results are given by green and magenta lines, respectively; the exact results,
δR(k), are shown by the black line. (Right) The corresponding k

μ
cot δ(k) as a function of k2

μ2 with the
same parameters.

where the absence of odd-derivative terms is our choice for a scheme to define potentials in the
HAL QCD method. Although it is certainly possible to take another scheme including odd-
derivative terms for the potential, we think that our scheme without them is more efficient. Since
odd-derivative terms are absent in the Hermitian potential with rotational and time-reversal
symmetries, we do not need such terms to describe the scattering phase shift. Indeed, the first-
derivative term in the formal derivative expansion worsens the approximation, as seen in the
previous section.

Equation (27) leads to Vn, i as
n∑

j=0

Ti j (x)Vn, j (x) = Ki(x) ⇒ Vn,i(x) =
n∑

j=0

[
T −1(x)

]
i j Kj (x), (29)

where

Ti j (x) := 1
x

d2 j

dx2 j

{
xψR

ki
(x)

}
, Ki(x) := 1

2m

(
k2

i + 1
x

d2

dx2
x
)

ψR
ki

(x). (30)

Note that Vn is an approximated potential, which depends on the choice of ki (i = 0, 1, 2, …, n)
as it gives correct results only at ki (i = 0, 1, 2, …, n). In this subsection we show the results with
the leading order (LO), n = 0, next-to-leading order (NLO), n = 1, and next-to-next-to-leading
order (NNLO), n = 2.

Figure 2 represents the scattering phase shift δ(k) as a function of k
μ

(left) and k
μ

cot δ(k) as

a function of k2

μ2 (right) at m = 0.5, μ = 0.3, c = −0.012, and R = 9.5, which produces no
bound state. The LO result from the eigenfunction at k = 0 (low energy) shown by the red line
correctly reproduces the exact one shown by the black line at k = 0. The LO result from the
eigenfunction at k = μ (high energy) shown by the blue line, on the other hand, agrees with the
exact one at k = μ. Pretending that μ in V (�x) is a mass exchange particle, we may regard k 
 μ

as the threshold of the inelastic scattering in quantum field theory. We obtain the NLO result,
plotted by the green line, by using two eigenfunctions, which by definition agree with the exact
ones at k = 0 and k = μ, and give a reasonable approximation in the energy range between the
two. Adding a third eigenfunction at k = μ/2 we can calculate the NNLO result, which is nearly
exact from k = 0 to k = μ, as shown by the magenta line. This analysis demonstrates how the
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Fig. 3. (Upper left) Scattering phase shift δ(k) as a function of k
μ

at m = 0.5, μ = 0.3, c = −0.048, and
R = 8.0. The LO results from eigenfunctions at k = 0 and k = 0.7μ are plotted by red and blue lines,
respectively, while the NLO and NNLO results are given by green and magenta lines, respectively; the
exact results, δR(k), are shown by the black line. (Upper right) The corresponding k

μ
cot δ(k) as a function

of k2

μ2 with the same parameters. (Lower) k cot δ(k) for k2 < 0, together with the bound state condition

−√−k2 shown by the orange dotted line.

derivative expansion works in the HAL QCD method. In contrast to the formal expansion,
the HAL QCD method can incorporate information from the eigenfunction at high energy to
improve the accuracy of the approximation.

In Appendix Appendix A we plot the coefficient functions of the potential for these parame-
ters as a function of x. In this paper we consider only attractive interactions (c < 0), which are
physically more interesting than repulsive ones, in the main text. However, show LO and NLO
analyses for repulsive interactions in Appendix Appendix B.

Figure 3 shows the scattering phase shift δ(k) as a function of k
μ

(upper left) and k
μ

cot δ(k)

as a function of k2

μ2 (upper right) at m = 0.5, μ = 0.3, c = −0.048, and R = 8.0, which produces
one bound state. As before, red and blue lines represent the LO results from the eigenfunctions
at k = 0 (low energy) and k = 0.7μ (high energy), respectively, while the green line gives the
NLO result from two eigenfunctions at k = 0 and 0.7μ. Finally, we obtain the NNLO result
(magenta line) by adding the third eigenfunction at k = 0.35μ. As seen from the figure, the
NLO (green) and the NNLO (magenta) results agree with the exact one (black line) between k
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= 0 and k = 0.7μ with these parameters. The derivative expansion in the HAL QCD method
also works well for a coupling strong enough to have a bound state.

The lower panel shows analytic continuations of k cot δ(k) to k2 < 0, where the meanings
of the colors are the same, while the orange dotted line represents the bound state condi-
tion, −√−k2, as a function of k2 < 0. Note that k is not normalized by μ in this figure.
The existence of an intersection k2

0 between k cot δ(k) and −√−k2 means the existence of a

bound state whose binding energy is given by −k2
0

2m . As we increase the order of the expansion
(LO (red), NLO (green), and NNLO (magenta)), the intersection moves toward the exact one,
k2

0 = −γ 2
B = −0.0052, estimated by an intersection between k cot δR(k) (black solid line) and

−√−k2 (orange dotted line), which is nearly reproduced by the the NNLO result. Note that we
do not include the wave function for the bound state to construct the potentials. The eigenfunc-
tion at low energy at k 
 0 in some sense “knows” information of the bound state. Interestingly,
the LO result (blue line) from the eigenfunction at high energy (k = 0.7μ) leads to the worst
result of all, γ 2

B 
 0.0022, a factor of 2.6 smaller than the exact value, γ 2
B 
 0.0057.

3.2 Potential from correlation functions in the time-dependent HAL QCD method
Since it is not so easy to obtain each eigenfunction separately from correlation functions, which
are linear combinations of eigenfunctions, the time-dependent HAL QCD method [14] has
been proposed to extract the potential directly from correlation functions without decomposing
them into eigenfunctions. In this subsection we apply the derivative expansion in the time-
dependent HAL QCD method to extract the potential from correlation functions.

The time-dependent correlation function is defined by

R(t, �x) =
∫

d3k
(2π )3

e−Ekt f (�k)ψk(�x) + fBe−EBt〈�x|B〉, (31)

where

Eλ
k = k2

2m
, Eλ

B = − γ 2
B

2m
, (32)

and f (�k) and fB are determined so as to satisfy a given initial condition as R(0, �x) = σ 2e−σx

4πx with
a parameter σ , which leads to R(0, �x) = δ(�x) in the σ → ∞ limit. Details of the calculations
for R and its derivative are presented in Appendix Appendix C.

Suppose that we prepare n + 1 independent correlation functions by taking n + 1 different σ ,
denoted as Rσi (t, x) (i = 0, 1, …, n) since they are functions of x = |�x|. As before, n local terms
are extracted as

Vn,i(t, x) =
n∑

j=0

[
T −1(t, x)

]
i j Kj (t, x), (33)

where

Ti j (t, x) := 1
x

d2 j

dx2 j

{
xRσi (t, x)

}
, Kj (t, x) =

(
− ∂

∂t
+ 1

x
d2

dx2
x
)

Rσ j (t, x). (34)

We then introduce the infrared cutoff as V R
n,i(t, x) = θ (R − x)Vn,i(t, x). As in the previous sub-

section, we calculate the scattering phase shifts for n = 0 (LO), 1 (NLO), and 2 (NNLO), and
compare them with the exact one.

Figure 4 show the scattering phase shifts δ(k) as a function of k
μ

at m = 0.5 and μ = 0.3. We
take c = −0.012 (c = −0.048) and R = 9.5 (R = 8) in the left (right) panels, where the LO results
from Rσ (t, x) at σ = ∞ and σ = 0.3 with t = 28 are denoted by red and blue lines, respectively,
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Fig. 4. The scattering phase shift δ(k) as a function of k
μ

at m = 0.5 and μ = 0.3. (Left) c = −0.012 and R
= 9.5. (Right) c = −0.048 and R = 8. The LO results from Rσ (t = 28, x) at σ = ∞ and σ = 0.3 are plotted
by red and blue lines, respectively, while the NLO and NNLO results are given by green and magenta
lines, respectively; the exact results, δR(k), are shown by the black line.

while the NLO from both is shown by the green line. One more additional Rσ (t, x) at σ = 0.6
leads to the NNLO result, the magenta line, and the black line represents the exact one, δR(k).

As Fig. 4 shows, the LO results reproduce the exact one at low energy at k 
 0. At k ≤ 1.2μ,
which is a little larger than μ, the LO results at σ = ∞ (red) and σ = 0.3 (blue) are not so
different, and are almost identical for c = −0.048 (right). Combining these two, we obtain the
NLO (green), which is not so much better than the LOs for c = −0.012 (left), but is certainly
better than the LOs for c = −0.048 (right). In both cases, the NNLO result nearly reproduces
the exact one between k = 0 and k = μ. In particular, the agreement is excellent for c = −0.048.
This indicates that the derivative expansion in the (time-dependent) HAL QCD method can be
applied not only to eigenfunctions but also to t-dependent correlation functions.

3.3 Potential from correlation functions with finite volume spectra
Since lattice QCD simulations are usually performed in a finite box with a finite lattice spac-
ing, the energy eigenvalues are discrete and bounded from above. Thus, the integral over �k in
Eq. (31) becomes a summation over discrete momentum with the ultraviolet cutoff. It is natu-
ral to ask how this discrete summation for the definition of R affects the previous analysis for
the derivative expansion in the HAL QCD method. Since it is difficult to solve the Schödinger
equation in a finite box analytically, however, we emulate a similar situation by replacing the
integral in Eq. (31) with a finite discrete summation by hand.

Explicitly, we construct an S-wave correlation function as a sum over discrete momenta,�k�ν =
2π
L �ν = 2π

L (ν1, ν2, ν3) with ν i = 0, ±1, ±2, … Defining n ≡ �ν2 = ν2
1 + ν2

2 + ν2
3 , we can express the

correlation function as

RL(x; τ, s) =
N∑

n=0

c(τ, s, n)ψ0
kn

(x), (35)

where

c(τ, s, n) = w(n)sne−τEn, En := k2
n

2m
, kn := 2π

L

√
n, (36)

L is a spatial extension of the box, and w(n) is the number of states whose energy is En. The
parameters τ and s = ±1 control the size and the sign of the coefficient for each state. In this
subsection we consider three correlation functions with (a) (τ , s) = (5, 1), (b) (τ , s) = (20, −1),
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Table 1. Parameters for three wave functions.

c(τ , s, n)

n w(n) kn (a) (τ , s) = (5, 1) (b) (τ , s) = (20, −1) (c) (τ , s) = (40, 1)

0 1 0.0 1.0 1.0 1.0
1 6 0.1309 5.50736 − 4.25913 3.02336
2 12 0.18512 10.1103 6.04673 3.04691
3 8 0.226725 6.18682 − 2.86153 1.02355
4 6 0.261799 4.25913 1.52346 0.386819

Fig. 5. The scattering phase shift δ(k) as a function of k
μ

at m = 0.5, μ = 0.3 with L = 48 and N = 4.
(Left) c = −0.012 and R = 9.5. (Right) c = −0.048 and R = 8. In both figures, the LO results are plotted
in red ((a) (τ , s) = (5, 1)) and blue ((b) (τ , s) = (20, −1)) lines, while the NLO and NNLO results are
given by green and magenta lines, respectively; the exact results, δR(k), are shown by the black line. To
obtain the NNLO result, we combine one more RL (c) (τ , s) = (40, 1)) with the previous two.

and (c) (τ , s) = (40, 1), taking L = 48 and N = 4 for all cases. Table 1 shows w(n) and c(τ , s, n)
for each case. The size of the maximum momentum gives k 
 0.26. Note that the bound state
is not included.

Figure 5 presents the scattering phase shift δ(k) as a function of k
μ

at m = 0.5 and m = 0.3
with L = 48 and N = 4. In the left (right) panel we take c = −0.012 and R = 9.5 (c = −0.048
and R = 8) as before, where the LO results are obtained from RL(x; τ , s) at (a) (τ , s) = (5, 1)
(red) and (b) (τ , s) = (20, −1) (blue), while the NLO from both and the NNLO from these
two plus an additional RL(x; τ , s) at (c) (τ , s) = (40, 1) are shown by green and magenta lines,
respectively.

As can be seen from the left panel, the LO results from RL(x; τ , s) at both (a) (red) and (b)
(blue) roughly reproduce the overall behavior of the exact phase shift (black), but the agree-
ments are not so good. While the NLO (green) improves the agreement a little, the NNLO
(magenta) almost reproduces the exact phase shift at k ≤ 0.8μ, but deviates a lot from the exact
one at k > μ. This is understandable, since the correlation functions RL do not contain any
states with k > 0.9μ. From this point of view, the agreement between the NLO (green) and the
exact one (black) at k > 0.9μ is unexpected. It might be accidental, or states with k < 0.9μ

might “know” δR(k) at k > 0.9μ. A similar but much milder tendency is also found in the right
panel.
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Fig. 6. k cot δ(k) as a function of k2 < 0 at m = 0.5, μ = 0.3, c = −0.048, R = 8, N = 4, and L = 48. The
LO results are plotted in red (a), blue (b), and brown (c) solid lines, while the NLO and NNLO results
are given by green and magenta solid lines, respectively; the exact results, k cot δR(k), are given by the
black solid line, and the bound state condition −√−k2 by the orange dotted line.

In Fig. 6 we plot k cot δ(k) as a function of k2 for k2 < 0 at c = −0.048, keeping m, μ, R, and L
the same as before, together with the bound state condition −√−k2, so that the crossing point
between k cot δ(k) and −√−k2 gives the binding energy. Let us first consider the LO results,
plotted in red ((a) (τ , s) = (5, 1)), blue ((b) (τ , s) = (20, −1)), and brown ((c) (τ , s) = (40, 1)). The
LO result from (a) (red) is better than the LO from (b) (blue), and is almost as good as the NLO
(green) to give the bound state energy, while the LO from (c) (brown) is a factor of three larger
than the exact value. This seems counterintuitive, since the correlation function (c) contains
low-energy states more than other two, as seen in Table 1. It might be that the low-energy states
are more affected by the presence of the bound state, which is not included in the correlation
function. The NNLO results (magenta), obtained using all three correlation functions, almost
reproduce the exact value of the bound state, even though a bound state is not included in
RL(x; τ , s).

4. Conclusion and discussion
We have demonstrated how the derivative expansion of the potential works to reproduce the
scattering phase shift and the possible binding energy by applying the HAL QCD method to
a highly non-local but solvable potential, the separable potential in quantum mechanics. Our
results strongly indicate that the derivative expansion in the HAL QCD potential method is not
a way to reproduce the potential approximately. This can be easily seen from Fig. A.1. In addi-
tion, the formal derivative expansion for the separable potential does not give better results for
the scattering phase shift, as we increase the order of the expansion. Instead, our results show
that the derivative expansion in the HAL QCD method gives an approximate way to extract
scattering phase shifts from correlation functions as inputs. The more inputs we employ, the
better the approximation for the phase shift obtained. Even though the potential sometimes
becomes singular in the coordinate space, as seen in Appendix A (Fig. A.1 at NNLO), the scat-
tering phase shift shows reasonable behavior and gives a better approximation. Interestingly,
even without the eigenfunction for the bound state, the binding energy is well reproduced in
the HAL QCD method, probably because the position of the bound state in k2 < 0 is well con-
strained by k cot δ(k) at k2 > 0 through analyticity. The analyses in this paper can be extended
to interactions in coupled channels such as the ��–N�–�� system, though the analyses be-
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come more complicated because more parameters need to be controlled. We leave such studies
for future investigation.

The lessons learned from this work are as follows. Even the LO approximations give reason-
able results for the phase shift, and the results can be improved as the order of the derivative
expansion is increased. Singular behaviors, which may appear at higher order such as the next-
to-leading order in the derivative expansion, are not obstructions for the potential method in
principle. In practice, however, less singular behavior is better to reduce statistical fluctuations.
The approximation for the scattering phase shift may break down at higher energy. However,
we know the applicable range of the method in QCD, since the HAL QCD potential method,
as well as Lüscher’s finite volume method, work only below the inelastic threshold. In principle,
by comparing results among different orders of the derivative expansion, we can estimate the
size of the systematics associated with the approximation. In practice, however, it is not so easy
to extract the potential at higher orders reliably. Therefore, combining both the HAL QCD
method and the finite volume method to extract scattering phase shifts seems the best way to
increase the reliability and validity for lattice QCD calculations on hadron interactions.
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Appendix A. LO, NLO, and NNLO potentials
As a representative example, we present the shapes of the LO, NLO, and NNLO potentials
constructed from eigenfunctions at k = 0, μ/2, and μ with m = 0.5, μ = 0.3, c = −0.012, and R
= 9.5. In Fig. A.1 (upper left), we plot the LO potential V0, 0(x) obtained from an eigenfunction
at k = 0 (red), 0.5μ (brown), and μ (blue), while we show coefficient functions of the NLO po-
tentials V1, 0(x) (black) and V1, 1(x) (green) obtained from two eigenfunctions at k = 0, and μ in
the upper right panel of Fig. A.1. The NNLO potential obtained from all three eigenfunctions
is plotted in the lower panel, where V2, 0(x) (magenta), V2, 1(x) (orange), and V2, 2(x) (purple)
are shown. As can be seen, the potential may become larger near the infrared cutoff, even for
the LO potential. In addition, each term of the NNLO potential shows very singular behavior
at x 
 2. As already observed in the main text, however, the corresponding phase shift shows
smooth behavior as a function of k and improves the agreement with the exact result.

Appendix B. Analysis for repulsive interactions
Figure B.1 represents the scattering phase shift δ(k) as a function of k

μ
(left) and k

μ
cot δ(k) as a

function of k2

μ2 (right) for a repulsive interaction with m = 0.5, μ = 0.3, c = 0.02, and R = 8. As
in the case of attractive interactions in the main text, the LO result from the eigenfunction at k
= 0 (low energy) shown by the red line correctly reproduces the exact one shown by the black
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Figure A.1. The shape of the potentials at m = 0.5, μ = 0.3, c = −0.012, and R = 9.5. (Upper left) The
LO potential V0, 0(x) from eigenfunctions at k = 0 (red), k = 0.5μ, and k = μ (blue). (Upper right) The
NLO potentials V1, 0(x) (black) and V1, 1(x) (green) from two eigenfunctions at k = 0 and μ. (Lower) The
NNLO potentials V2, 0(x) (magenta), V2, 1(x) (orange), and V2, 2(x) (purple) from all three eigenfunctions.

Figure B.1. (Left) The scattering phase shift δ(k) as a function of k
μ

at m = 0.5, μ = 0.3, c = 0.02,
and R = 8. The LO results from eigenfunctions at k = 0 and k = μ are plotted by red and blue lines,
respectively, while the NLO result is given by the green line; the exact result, δR(k), is shown by the black
line. (Right) The corresponding k

μ
cot δ(k) as a function of k2

μ2 with the same parameters.

line at k = 0, while the LO result from the eigenfunction at k = μ (high energy) shown by the
blue line agrees with the exact one at k = μ. The NLO result obtained from two eigenfunctions
at k = 0 and k = μ, plotted by the green line, agrees with the exact ones at k = 0 and k = μ by
definition, and gives a reasonable approximation in the energy range between the two.
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Appendix C. Construction of correlation functions
We define a correlation function through the Schrödinger equation as

(−∂t − H0) R(t, �x) =
∫

d3yV (�x, �y)R(t, �y) (C1)

for t ≥ 0, with an initial condition R(0, �x) = σ 2e−σx

4πx , where V (�x, �y) is the separable potential in
the main text.

With this initial condition, R(t, �x) is given in Eq. (31), where

f (�k) =
∫

d3x ψk(�x)†R(0, �x), fB =
∫

d3x 〈B|�x〉R(0, �x). (C2)

After straightforward but tedious calculations, we obtain

R(t, �x) = R0(t, �x) + R1(t, �x), (C3)

K (t, �x) := (−∂t − H0)R(t, �x) = (−∂t − H0)R1(t, �x), (C4)

where

R0(t, �x) = σ 2e− mx2
2t

8πx

[
e

t
2m (σ+ν)2

{
erf

(√
t

2m
(σ + ν )

)
− 1

}

− e
t

2m (σ+ν)2

{
erf

(√
t

2m
(σ − ν )

)
− 1

}]
(C5)

−→
( m

2πt

) 3
2

e− mx2
2t , σ → ∞, (C6)

R1(t, �x) = σ 2μγB(μ + γB)(e−γBx − e−μx)
2πx(σ + μ)(σ + γB)(μ − γB)

e−EBtθ (Re(γB)) + σ 2μ(μ + γB)2

2πx(σ + μ)

×
[

μe
tμ2

2m −μx

(μ − γB)(3μ + γB)(σ + μ)

{
erf

(√
t

2m
(ν − μ)

)
+ erf

(√
t

2m
μ

)}

− γBe
tγ 2

B
2m

2(μ − γB)(μ + γB)(σ + γB)

{
e−γBx

(
erf

(√
t

2m
(ν − γB)

)
+ ε(Re(γB))

)

+ e−μx

(
erf

(√
t

2m
γB

)
− ε(Re(γB))

)}
− (2μ + γB)e

t(2μ+γB )2

2m

2(3μ + γB)(μ + γB)(σ − 2μ − γB)

×
{

e(2μ+γB )x

(
erf

(√
t

2m
(ν + 2μ + γB)

)
− 1

)

− e−μx

(
erf

(√
t

2m
(2μ + γB)

)
− 1

)}
+ σe

tσ2
2m

(σ + μ)(σ + γB)(σ − 2μ − γB)

×
{

eσx

(
erf

(√
t

2m
(ν + σ )

)
− 1

)
− e−μx

(
erf

(√
t

2m
σ

)
− 1

)}]
(C7)
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−→ μγB(μ + γB)(e−γBx − e−μx)
2πx(μ − γB)

e−EBtθ (Re(γB)) + μ(μ + γB)2

2πx

×
[

μe
tμ2

2m −μx

(μ − γB)(3μ + γB)

{
erf

(√
t

2m
(ν − μ)

)
+ erf

(√
t

2m
μ

)}

− γBe
tγ 2

B
2m

2(μ − γB)(μ + γB)

{
e−γBx

(
erf

(√
t

2m
(ν − γB)

)
+ ε(Re(γB))

)

+ e−μx

(
erf

(√
t

2m
γB

)
− ε(Re(γB))

)}
− (2μ + γB)e

t(2μ+γB )2

2m

2(3μ + γB)(μ + γB)

×
{

e(2μ+γB )x

(
erf

(√
t

2m
(ν + 2μ + γB)

)
− 1

)

− e−μx

(
erf

(√
t

2m
(2μ + γB)

)
− 1

)}]
, σ → ∞, (C8)

K (t, �x) = − σ 2μγB(μ + γB)2e−μx

4πmx(σ + μ)(σ + γB)
e−EBtθ (Re(γB)) − σ 2μ(μ + γB)2

4πmx(σ + μ)
e−μx

×
⎡
⎣ γBe

tγ 2
B

2m

2(σ + γB)

{
erf

(√
t

2m
γB

)
− ε(Re(γB))

}

+ (2μ + γB)e
t(2μ+γB )2

2m

2(σ − 2μ − γB)

{
erf

(√
t

2m
(2μ + γB)

)
− 1

}

− σ (σ − μ)e
tσ2
2m

(σ + γB)(σ − 2μ − γB)

{
erf

(√
t

2m
σ

)
− 1

}]
(C9)

−→ −μγB(μ + γB)2e−μx

4πmx
e−EBtθ (Re(γB)) − μ(μ + γB)2

4πmx
e−μx

×
⎡
⎣√

2m
πt

+ γBe
tγ 2

B
2m

2

{
erf

(√
t

2m
γB

)
− ε(Re(γB))

}

+ (2μ + γB)e
t(2μ+γB )2

2m

2

{
erf

(√
t

2m
(2μ + γB)

)
− 1

}⎤
⎦ , σ → ∞. (C10)

Here, ε(x) := 2θ (x) − 1, and the error function is defined as

erf(x) := 2√
π

∫ x

0
ds e−s2 → 1 − e−x2

√
πx

, x → ∞. (C11)
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