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1 Introduction

The charge-q Schwinger model [1–4] is the (1 + 1)-dimensional U(1) gauge theory coupled
to a Dirac fermion with the gauge charge q. Here, q must be an integer to satisfy the large
U(1) gauge invariance and this model has the Zq 1-form symmetry that is a remnant of U(1)
1-form symmetry in the pure Maxwell theory. Although the local dynamics of this model is
identical to that of the usual Schwinger model [5] with q = 1, the presence of the 1-form
symmetry gives the crucial difference in the global aspects between these models [6–10].
Especially when we take the chiral limit, the charge-q model has the Zq discrete chiral
symmetry, which we denote (Zq)χ, while the usual one does not have it at all due to the
Adler-Bell-Jackiw (ABJ) anomaly [11, 12].

It is known that there is a mixed ’t Hooft anomaly between the Z[1]
q and (Zq)χ symmetries

so that the anomaly matching condition predicts q distinct vacua as a consequence of the
spontaneous breaking of the discrete chiral symmetry (Zq)χ. It enables us to understand
many dynamical consequences of the Schwinger model studied in ‘70s–’90s [13–23] solely in
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the kinematical way thanks to the language of generalized symmetry [24]. The development
of generalized symmetries has expanded the applicability of the ’t Hooft anomaly matching
condition, and we nowadays find that many new anomalies give the constraints on strongly-
coupled field theories including the 4d gauge theories with massless fermions [25–30], such
as massless quantum chromodynamics (QCD). Furthermore, a recent study shows that 4d
QCD-like theories can be reduced to the 2d QFTs keeping their anomaly constraints [31, 32]
(see also refs. [33–37]), and these anomalies turn out to be almost identical to the ’t Hooft
anomaly of the charge-q massless Schwinger model. These developments motivate us to
reconsider the charge-q Schwinger model for a better understanding of the microscopic
structure of anomaly matching.

We numerically analyze the charge-q Schwinger model on a lattice to study the above
phenomena in this paper. For this purpose, we should investigate parameter regime with
non-small vacuum angle θ which causes the infamous sign problem in the standard Monte
Carlo lattice simulation.1 There are several options to circumvent this issue, such as
the lattice Hamiltonian formulation [39–49], tensor renormalization group [50, 51], or the
use of dual variables with the Villain-type Euclidean lattice [52, 53]. Here we adopt the
Kogut-Susskind Hamiltonian formalism [54] with the staggered fermion in this paper. We
take the open boundary condition instead of the periodic one to make the physical Hilbert
space finite-dimensional, and map the system to a spin chain with a nonlocal interaction by
the Jordan-Wigner transformation. We apply the density-matrix renormalization group
(DMRG) to study the low-energy properties of this system, using the ITensor Library [55].

As a price of the open boundary condition, physical observables receive effects of
boundaries. In particular, the open boundary condition violates the periodicity of the
vacuum angle, θ ∼ θ + 2πq, while it holds for closed spacetime both on the continuum and
lattice. As we need to study physics at large values of θ, this explicit violation of the θ
periodicity is an undesirable feature. We note that the 1-flavor Schwinger model is gapped
even in the chiral limit so that the effect of the boundary should become exponentially small
when we probe local operators. Therefore, we compute energy density, scalar condensate,
and pseudo-scalar condensate using local operators after their UV renormalization. We
carefully analyze the chiral condensate in the continuum limit and show that it draws a
circle around the origin as the θ parameter is changed gradually from 0 to 2πq.

To confirm the consequence of the mixed ’t Hooft anomaly, we compute the local
observables under the presence of Wilson loops, or equivalently external electric charges.
In the chiral limit, the energy densities inside and outside of the probe charge are the
same, which shows that the Wilson loop becomes topological in the long-range limit. The
phase of the chiral condensates rotates by 2π/q across the external charge, so it implies
that the Wilson loop can be regarded as a generator for the discrete axial transformation
for infrared observers. It is nothing but the consequence of the ’t Hooft anomaly for the
charge-q Schwinger model.

This paper is organized as follows. In section 2 we review the charge-q Schwinger model.
In section 3, we present the lattice formulation of the Schwinger model and explain how to

1See [38] for earlier work on the Schwinger model with theta term by a Monte Carlo approach.
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compute observables. In section 4, we present our simulation results. Section 5 is devoted
to summary and discussion.

2 Review on the charge-q Schwinger model

In this section, we give a brief review on the charge-q Schwinger model [1–4]. Although the
local property is exactly identical to the usual Schwinger model, its global aspect turns out
to be more fruitful than the usual one. Especially, the chiral limit of the charge-q Schwinger
model enjoys the discrete chiral symmetry (Zq)χ and the ground states are q-fold degenerate
due to its spontaneous breaking.

2.1 Charge-q Schwinger model and its Z[1]
q symmetry

The Euclidean action of the charge-q Schwinger model is given by2

S =
∫
M2

( 1
2g2F ∧ ?F −

iθ
2πF

)
+
∫
M2

ψ (γµE(∂µ + iqAµ) +m)ψ d2x, (2.1)

where A is the U(1) gauge field, F = dA is the gauge-field strength, ψ is the fermion field,
and γµE is the Euclidean gamma matrix satisfying {γµE, γνE} = 2δµν . The U(1) charge of the
fermion is given by an integer q ∈ Z. This quantization comes from the fact that the (large)
U(1) gauge transformation on closed spacetimes is given by

A 7→ A+ dλ, ψ 7→ e−iqλψ, (2.2)

with eiλ : M2 → U(1), and this is unambiguous only if q ∈ Z. Accordingly, the U(1) gauge
field A satisfies the Dirac quantization condition,

∫
M2

dA ∈ 2πZ, on any oriented closed
2-manifolds, and thus the θ angle becomes the 2π periodic parameter on closed spacetime.

When q > 1, the theory enjoys the Zq 1-form symmetry, which we denote as Z[1]
q . This

is a remnant of the U(1) 1-form symmetry in the pure Maxwell theory partially broken by
inclusion of the charge-q matter to Zq. The presence of the Zq 1-form symmetry implies
that the theory is completely decomposed into q distinct sectors called universe [6–10] and
each sector has a direct relation to the usual Schwinger model as we will review below.

A convenient way to observe this fact is to turn on a background gauge field for the
Zq 1-form symmetry that is given by a Zq-valued 2-form gauge field. For this purpose, we
realize it as a pair of the U(1) 2-form gauge field B and the U(1) 1-form gauge field C, with
the constraint

qB = dC. (2.3)

Due to this constraint, the holonomy of B is quantized in Zq ⊂ U(1), and it becomes the
Zq gauge field. The 2-form gauge field has the U(1) 1-form gauge transformation,

B 7→ B + dΛ, C 7→ C + qΛ, (2.4)
2In this section we use the differential form notation since it is convenient to discuss ’t Hooft anoma-

lies and topological aspects. The Lagrangian density for the gauge field in the component notation is
1

4g2FµνF
µν − iθ

4π εµνF
µν .
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where the gauge parameter Λ itself is the U(1) 1-form gauge field. Under this background
gauge transformation, we impose that the dynamical gauge field A is transformed as

A 7→ A− Λ. (2.5)

An action invariant under the above transformation with a minimal coupling is

Sgauged[B] =
∫
M2

( 1
2g2 (F + B) ∧ ?(F + B)− iθ

2π (F + B)
)

+
∫
M2

ψ (γµE(∂µ + i(qAµ + Cµ)) +m)ψ d2x. (2.6)

By performing the path integral for dynamical fields, we obtain the partition function with
the background gauge field B as

Zq[g, θ;B] :=
∫
DADψDψ exp (−Sgauged[B]) . (2.7)

While we can go back to the original partition function by simply taking B = 0, as we
will see below, we can relate the charge-q Schwinger model to the usual q = 1 case if we do
‘’taking B = 0” in a bit sophisticated way. This is done by performing the path integral over
B with an appropriate weight and summing over the weight. In this process, we consider
the following topological action

ik
∫
M2
B. (2.8)

Under the U(1) 1-form gauge transformation, this is gauge invariant modulo 2πikZ, and
thus it is well-defined if k is an integer. This quantity is quantized in 2πik

q Z, so k is identified
with k + q, i.e. k ∈ Zq. Let us perform the path integral over B including its discrete
topological term:∫

DBZq[θ;B]eik
∫
B =

∫
DBDC

∫
DADψDψ exp

(
−Sgauged[B] + ik

∫
B
)

=
∫
DCDψDψ exp

(
−S′

)
, (2.9)

where

S′ =
∫
M2

( 1
2(qg)2 dC ∧ ?dC + iθ + 2πk

2πq dC
)

+
∫
M2

ψ (γµE(∂µ + iCµ) +m)ψ d2x. (2.10)

This is nothing but the charge-1 Schwinger model, with the gauge coupling g′ = qg and the
vacuum angle θ′ = (θ + 2πk)/q. Therefore we find∫

DBZq[g, θ;B]eik
∫
B = Z1

[
qg,

θ + 2πk
q

;B = 0
]
. (2.11)

We can undo the Z[1]
q gauging by summing over the discrete labels k = 0, 1, . . . , q − 1:

Zq[g, θ;B = 0] = 1
q

q−1∑
k=0

∫
DBZq[g, θ;B]eik

∫
B = 1

q

q−1∑
k=0

Z1

[
qg,

θ + 2πk
q

;B = 0
]
. (2.12)
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Therefore, the charge-q Schwinger model can be understood as the disjoint union of the
charge-1 Schwinger models with different vacuum angles. In general, such an operation
could have violated the locality property of QFTs, but the charge-q Schwinger model is
well-defined as a local QFT [6–10].

This feature of the charge-q Schwinger model is called the decomposition of QFT in
refs. [6–10] as the Hilbert space on the closed space completely decomposes into q distinct
sectors. Each sector of the decomposition is called as the universe [9, 56–58]. The above
relation (2.12) also tells us that changing θ → θ + 2π gives a jump of a universe to a
next universe and each universe has the periodicity θ ∼ θ + 2πq while the whole charge-q
Schwinger model has the θ-periodicity θ ∼ θ + 2π. If we put the theory on space with
boundary, then we automatically pick up one specific universe and no longer have the sum
over the universes. Although the 1-form symmetries in higher-dimensions do not have the
above decomposition feature, we can still generalize the notion of the decomposition to
d-dimensional QFTs with (d− 1)-form symmetries [56].

2.2 Chiral symmetry and ’t Hooft anomaly

When we set the fermion mass to be zero, m = 0, the classical theory enjoys the U(1)
axial symmetry,

ψ 7→ ψ
′ = ψe−iαγE , ψ 7→ ψ′ = e−iαγEψ, (2.13)

where γE = iγ1
Eγ

2
E gives the chirality. Quantum mechanically, we have the following change

of the path integral measure [59]

Dψ′Dψ′ = DψDψ exp
(2iqα

2π

∫
dA
)
, (2.14)

and thus the continuous axial symmetry is explicitly broken. This is called the Adler-
Bell-Jackiw (ABJ) anomaly [11, 12]. When q > 1, however, there still exists a nontrivial
subgroup, Z2q, of the axial transformation, which gives the genuine symmetry,

ψ 7→ ψe−i 2π
2q γE , ψ′ = e−i 2π

2q γEψ. (2.15)

We note that Z2 ⊂ Z2q gives the fermion parity, which is a part of the U(1) gauge redundancy,
and thus the axial symmetry group is given by (Zq)χ.

Under the presence of the background gauge field for the 1-form symmetry, the discrete
chiral symmetry is broken:

(Zq)χ : Zq[g, θ;B] 7→ ei
∫
BZq[g, θ;B]. (2.16)

This is the mixed ’t Hooft anomaly between the 1-form symmetry and the discrete chiral
symmetry [1–4]. The anomaly matching condition claims that there must be q vacua
associated with the spontaneous chiral symmetry breaking.

It is convenient to rephrase this fact from the viewpoint of (extended) operators. In 2
spacetime dimensions, the 0-form (ordinary) symmetries are generated by the topological
1-dimensional objects, and the 1-form symmetries are generated by the topological 0-
dimensional objects, i.e. local operators with the scaling dimension = 0. In the charge-q
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massless Schwinger model, there has to be a line operator Uχ(L) defined on the loop
L, which generates the Zq chiral symmetry, and there is also a local operator V (x),
which generates the 1-form symmetry. These operators are topological in the sense that
infinitesimal deformations do not affect the correlation functions, which generalizes the
Ward-Takahashi identity.

The fact that Uχ(L) generates the Zq chiral symmetry can be seen from its commutation
relation with the chiral condensate operator,

O±(x) := ψ(1± γE)ψ(x). (2.17)

Its real and imaginary parts are called the scalar and pseudo-scalar condensates, respectively:

O±(x) = S(x)± iP (x). (2.18)

Let us consider the situation, where x is inside the loop L and we deform L to L′ so that x
is outside the loop L′, and then

Uχ(L)O±(x) = e±
2πi
q Uχ(L′)O±(x). (2.19)

This equality is understood as the operator identity, so we assume that we can deform the
loop L to L′ without crossing any operators except O±(x).

Similarly, the presence of the Z[1]
q symmetry implies the presence of the topological

point-like operator V (x), which has the nontrivial commutation relation with the Wilson
loop W (C) = exp(i

∮
C A). Let us move the location of V from a point x of the inside of C

to another point x′ of the outside of C, then

V (x)W (C) = e
2πi
q V (x′)W (C). (2.20)

So far, everything we mentioned about Uχ(L) and V (x) is the defining property of
symmetry generators, and there is nothing specific to the charge-q Schwinger model. The
interesting feature of the charge-q Schwinger model is the mixed ’t Hooft anomaly (2.16).
In the language of the symmetry generators, the ’t Hooft anomaly implies the nontrivial
commutation relation between the symmetry generators,

Uχ(L)V (x) = e
2πi
q Uχ(L′)V (x′), (2.21)

where x is inside of L and x′ is the outside of L′.
Let us compare (2.21) with (2.19). This suggests that the chiral condensate operator

O+(x) becomes with the 1-form symmetry generator V (x) by performing the renormalization
group (RG) transformation.3 Similarly, the comparison between (2.21) and (2.20) shows
that W (C) is identified with Uχ(C) via the RG transformation. Therefore, we can confirm
the existence of ’t Hooft anomaly by checking the following equality,

〈W (C)O+(x)〉 = e
2πi
q 〈W (C)O+(x′)〉, (2.22)

where x is inside of C, x′ is outside of C, and x, x′ are sufficiently far away from the loop
C. For this condition to be satisfied, we must make the loop C sufficiently larger than the
size of mass gap.

3To be precise, we assume the existence of the mass gap for this statement, and we know that the massless
Schwinger model is gapped due to the ABJ anomaly.
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2.3 Analytical results

So far, we have discussed the kinematical aspects of the charge-q Schwinger model. As the
massless Schwinger model is exactly solvable [5, 13–23], we can confirm these features by
an explicit calculation.

It is known that there is a correspondence between Dirac fermion and compact boson
in two dimensions. This is called Abelian bosonization. Specifically, the kinetic term ψ/∂ψ

for the Dirac fermion is mapped to 1
8π |dφ|

2 with a 2π-periodic scalar field φ. The vector
and axial currents correspond to

ψγµEψ ↔
1

2πε
µν∂νφ, ψ γEγ

µ
Eψ ↔

1
2π∂µφ. (2.23)

The chiral condensate operators are related as

O±(x)↔ C(M)e±iφ, (2.24)

where C(M) is a multiplicative renormalization constant proportional to the renormalization
scale M .

The bosonized action of the charge-q Schwinger model is given by

S =
∫
M2

( 1
2g2 dA ∧ ?dA+ i

2π (qφ− θ)dA+ 1
8πdφ ∧ ?dφ

)
. (2.25)

In the bosonized description, the discrete chiral symmetry is realized as the shift symmetry,
φ 7→ φ + 2π

q . By completing the square in terms of dA, we find that φ becomes the
massive boson,

S = 1
8π

∫
M2

(
(∂µφ)2 + g2

π
(qφ− θ)2

)
d2x+ 1

2g2

∫
M2

(
F01 + ig2

2π (qφ− θ)
)2

d2x.

(2.26)
Although this expression does not respect the 2π periodicity of the compact boson φ, it is
useful to identify the mass gap µ2,

µ2 = q2g2

π
. (2.27)

Since φ and A are dual to each other via the topological coupling, this is often called as the
photon mass of the massless Schwinger model.

In order to understand the consequence of ’t Hooft anomaly, we are interested in the
phase of the chiral condensate operator. For this purpose, we can take the massive limit,
g →∞, where the mass gap becomes infinite. In this case, the path integral for A becomes∫

DA exp
( i

2π

∫
M2

(θ − qφ)dA
)
∝ δ(dφ)

∑
n∈Z

ein(θ−qφ). (2.28)

The first factor on the right-hand-side is the consequence of the equation of motion, dφ = 0,
and thus φ should be constant to obtain the nontrivial values of this path integral. The
second factor comes from the summation over the instanton sectors, and this becomes
nonzero only when θ − qφ ∈ 2πZ. Therefore, because of the 2π periodicity of φ, possible

– 7 –
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values of φ are φ = (θ + 2πk)/q with k = 0, 1, . . . , q − 1. This implies that the theory has q
distinct vacua characterized by

〈eiφ〉k ∼ ei θ+2πk
q . (2.29)

This is exactly what we expect for the spontaneous breaking of the Zq chiral symmetry as
a consequence of the ’t Hooft anomaly matching.

In order to confirm (2.22), we should perform the path integral under the presence of
the Wilson loop W (C). Since we can write W (C)p = eip

∫
D

dA with C = ∂D, the Wilson
loop can be represented as the spacetime-dependent θ angle, where

θ(x) =

θ for x 6∈ D
θ + 2πp for x ∈ D

. (2.30)

We can perform the path integral of A exactly in the same way, and we find

〈eiφ(x)〉k ∼ ei θ(x)+2πk
q . (2.31)

Since the value of the θ angle jumps by 2π across the Wilson loop, we obtain the rela-
tion (2.22) as required by the ’t Hooft anomaly combined with the RG argument.

While the above discussion gives an immediate confirmation of the relation (2.22), we
have taken the limit g → ∞ in which the mass gap is infinite. Let us also confirm the
relation (2.22) in a more elementary fashion keeping g finite. In this case, we setM2 = R2 and
take the rectangular Wilson loop W (CT×L)p, where CT×L = ∂([−T/2, T/2]× [−L/2, L/2]).
By taking the limit T → ∞, the classical configuration becomes constant along the
imaginary-time direction, and thus the classical equation of motion becomes

− ∂2
xφ(x) + µ2

(
φ(x)− θ(x)

q

)
= 0, (2.32)

where

θ(x) =

θ for |x| > L
2

θ + 2πp for |x| < L
2

. (2.33)

We solve this equation with the boundary condition φ(x)→ θ
q for x→ ±∞. We then obtain

φ(x) = θ

q
+


2πp
q sinh

(
µL
2

)
eµx for x < −L

2
2πp
q

(
1− e−

µL
2 cosh (µx)

)
for − L

2 < x < L
2

2πp
q sinh

(
µL
2

)
e−µx for x > L

2

. (2.34)

This tells us that φ(x) is almost constant away from the Wilson loop at x = ±L/2:

φ(x) '


θ
q for |x| � L

2
θ+2πp
q for |x| � L

2

. (2.35)
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Figure 1. Position dependence of the scalar condensate S(x) and pseudo-scalar condensate P (x) in
the massless charge-3 Schwinger model with the charge-qp Wilson loop. We set g = 1, θ = 0 and
put the Wilson loop at x = ±20 (i.e. L = 40). The yellow and blue curves denote the cases for the
probe charges qp = 2 and qp = −1, respectively.

In particular, when µL is large, φ(x) around the Wilson loop quickly changes from θ/q to
(θ+ 2πp)/q if we go from outside to inside. In terms of φ(x), the chiral condensate operator
under the presence of the Wilson loop is then given by

O+(x) = S(x) + iP (x) = eγqg
2π3/2 eiφ(x), (2.36)

where the overall coefficient is determined from the knowledge on the charge-1 Schwinger
model [18–23]. Therefore, this is also almost constant away from the Wilson loop:

S(x) + iP (x) '


eγqg
2π3/2 ei θ

q for |x| � L
2

eγqg
2π3/2 ei θ+2πp

q for |x| � L
2

, (2.37)

where the mod(q) structure of the p-dependence reflects the Zq 1-form symmetry. When
we cross the Wilson loop from outside to inside, it quickly rotates along the circular arc
from the angle θ/q to (θ + 2πp)/q, where rotating direction is counterclockwise for p > 0
and clockwise for p < 0.

Figure 1 illustrates the behaviors of S(x) and P (x), given by (2.36) with the x-dependent
phase factor (2.34). The probe charge is put at x = ±20, i.e. L = 40 and it is sufficiently
large compared with the mass gap µ = qg√

π
' 1.7. We can see that the chiral condensate

rotates its phase by 120 degrees (2π/3 in radian) when crossing the Wilson loop W qp with
qp = ±1 mod 3. This is nothing but the anomaly relation (2.22).

3 Lattice Hamiltonian formulation and numerical setup

In this section, we describe the lattice Hamiltonian formulation of the charge-q Schwinger
model and explain our setup for the numerical computations. In section 3.1, we introduce
the lattice Hamiltonian U(1) gauge theory with the staggered fermion [39, 40] with a
special emphasis on the charge-q model [49]. We here adopt the recent proposal [60] for

– 9 –
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the correspondence between the lattice and continuum parameters. In section 3.2, we
define local operators such as energy density and chiral condensate operators, and their UV
renormalization shall be discussed in detail. In section 3.3, we explain the simulation method.

3.1 Lattice Hamiltonian for charge-q Schwinger model with θ term

The continuum Lagrangian in the Minkowski metric ηµν = diag(1,−1) is given by

L = 1
2g2F

2
01 + θ

2πF01 + iψγµ(∂µ + iqAµ)ψ −mψψ, (3.1)

where we take the gamma matrices as γ0 = σ3, γ1 = iσ2 and γ = γ0γ1 = σ1. We take the
temporal gauge A0 = 0 for the canonical quantization. The Gauss law is obtained by the
equation of motion for A0,

∂1

( 1
g2F01 + θ

2π

)
= q ψ†ψ(x), (3.2)

where the dynamical charge q appears explicitly on the right-hand-side. Introducing the
canonical momentum Π(x) = δL

δȦ1(x) , the Hamiltonian is given by

H(x) = g2

2

(
Π− θ

2π

)2
− i ψ̄γ1(∂1 + iqA1)ψ +mψ̄ψ. (3.3)

The Gauss law constraint (3.2) is rewritten as

∂1Π(x) = q ψ†ψ(x). (3.4)

The lattice regularization of the model can be found as follows. Introducing a lattice
with N sites and lattice spacing a, we define the staggered fermion χn for the two-component
Dirac fermion ψ(x), where n labels the lattice site (x = na). Here, χn is a single component
complex fermionic operator, and the Dirac fermion at x extends over two sites on the lattice:

ψ(x)↔ 1√
a

(
χ2bn/2c
χ2bn/2c+1

)
. (3.5)

The gauge field and its canonical momentum are represented by the link variables,

Un ↔ eiaA1(x), Ln ↔ −Π(x), (3.6)

which are defined on the link between the sites n and n+ 1. The canonical commutation
relations for the lattice fields are given

[Ln, Um] = Umδnm,
{
χn, χ

†
m

}
= δnm. (3.7)

Then the lattice Hamiltonian is

H = J
N−2∑
n=0

(
Ln + θ

2π

)2
− iw

N−2∑
n=0

[
χ†n(Un)qχn+1 − h.c.

]
−mlat

N−1∑
n=0

(−1)nχ†nχn, (3.8)
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where
J = g2a

2 , w = 1
2a. (3.9)

We relate the lattice fermion mass mlat with the continuum fermion mass m as

mlat = m− q2g2a

8 , (3.10)

following the recent proposal [60], which is reviewed in appendix B.
As in the continuum theory, physical states are constrained by the lattice version of

the Gauss law

Ln − Ln−1 = q

[
χ†nχn −

1− (−1)n

2

]
. (3.11)

We remove all degree of freedom for the variables (Un, Ln) by taking open boundary
condition L0 = 0, solving the Gauss law and fixing the gauge so that Un = 1 for all n. Then
the Hamiltonian is written pure in terms of the fermion operators as

H = −iw
N−2∑
n=0

[
χ†nχn+1 − h.c.

]
−mlat

N−1∑
n=0

(−1)nχ†nχn

+ J
N−2∑
n=0

[
θ

2π + q
n∑
j=0

(
χ†jχj −

1− (−1)j

2

)]2

, (3.12)

which acts on a finite dimensional Hilbert space. We note that the periodicity of θ is lost
by taking the open boundary condition in this formulation.

To see the ’t Hooft anomaly, we introduce the Wilson loop, which size is ˆ̀, on the
lattice. It corresponds to putting the two probe charges +qp and −qp with a distance ˆ̀. It
is realized by introducing the position-dependent θ-angle,

ϑn =
{
θ + 2πqp for ˆ̀0 ≤ n < ˆ̀0 + ˆ̀,

θ otherwise.
(3.13)

Under the open boundary condition, it would be appropriate to take

ˆ̀0 = N − ˆ̀− 1
2 , (3.14)

with odd ˆ̀ for even N and even ˆ̀ for odd N . The lattice Hamiltonian in the presence of
the probes is

H =− iw
N−2∑
n=0

[
χ†nχn+1 − h.c.

]
−mlat

N−1∑
n=0

(−1)nχ†nχn

+ J
N−2∑
n=0

[
ϑn
2π + q

n∑
j=0

(
χ†jχj −

1− (−1)j

2

)]2

, (3.15)

where θ in (3.12) is replaced by the position dependent one, ϑn in (3.13).
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At the end of this subsection, let us give a relation between q = 1 and general charge-q
Schwinger model:

H (q, J, ϑn) = H

(
1, q2J,

ϑn
q

)
, (3.16)

and this realizes the decomposition (2.12) in the case of the open boundary condition. This
translation to q = 1 is possible because we take the open boundary condition. If we took
the periodic boundary condition, then we could not eliminate the spatial link variables
completely by gauge fixing. The spatial hopping term, χ†n(Un)qχn+1, genuinely depends
on the choice of q ≥ 1, and we cannot relate them by simple replacements of coupling
constants.

3.2 Local observables and UV renormalization

In this subsection, we define energy density and chiral condensates as local observables in
the lattice Hamiltonian formalism and discuss the treatment of their UV divergence. Local
operators play the central role in quantum field theories. Moreover, when we use the open
boundary condition, use of local operators has a huge advantage to reduce the boundary
effects [49].

Let us first define the local behavior of the energy E(n) at each site n. As it is defined
by the Hamiltonian density, we can simply obtain it by extracting the summand of (3.15)
with one caution. Since the staggered fermion is used, a pair of even and odd sites forms
the actual spatial point and thus we have to take an average between the neighboring sites
to define the physical local quantities. As a result, we define the site-dependent energy
density by4

Ebare(n) =
(
hwn−1

4 + hwn
2 +

hwn+1
4

)
︸ ︷︷ ︸
fermion kinetic term

+
(
hMn−1

4 + hMn
2 +

hMn+1
4

)
︸ ︷︷ ︸

fermion mass term

+
(
hJn−1

4 + hJn
2 +

hJn+1
4

)
︸ ︷︷ ︸
gauge kinetic term

,

(3.17)
where

hwn = −iw
(
χ†nχn+1 − χ†n+1χn

)
, hMn = −(−1)nmlatχ

†
nχn,

hJn = J

[
ϑn
2π + q

n∑
j=0

(
χ†jχj −

1− (−1)j

2

)]2

. (3.18)

This is a bare quantity, and its expectation value 〈Ebare(n)〉 is UV divergent when we
take a→ 0. We note that the Schwinger model is super-renormalizable as it only has the
dimensionful couplings, so its UV divergence can be subtracted by the normal-ordering
procedure. Furthermore, since the UV divergence does not depend on the θ parameter in

4In this paper, we take a specific averaging around the site n. We may also consider more smooth one,
such as

∑
n′ N exp

(
− (n−n′)2

2n2
0

)
hw,M,J
n′ , and then the energy density is averaged over the region ∆x = an0.

We can regard it as a local operator as long as it satisfies a� an0 � ξ = µ−1.
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our formulation, it can be simply achieved by subtracting the ground-state expectation
value at θ = 0:

E(n) = Ebare(n)− 〈Ebare ([N/2])〉|θ=0 . (3.19)

Next, we define the local scalar condensate, ψψ → S(n), and local pseudo-scalar
condensate, −iψγψ → P (n), at site n by using the correspondence (3.5):

Sbare(n) = sn−1
4 + sn

2 + sn+1
4 , Pbare(n) = pn−1

2 + pn
2 , (3.20)

where
sn = (−1)n 2wχ†nχn, pn = (−1)n+1w

(
χ†nχn+1 − χ†n+1χn

)
. (3.21)

Here, we take suitable average over neighboring sites to take into account the even-odd
inequality of staggered fermion. As we have done for the energy density, one can eliminate
UV divergences of these quantities by subtracting their expectation values at θ = 0. However,
as we are going to confirm the anomaly relation (2.37), we would like to define the origin of
the chiral condensate in the limit m→ 0.

As the UV divergence of chiral condensates comes only from the fermion one-loop
diagram due to the super-renormalizability, we can evaluate the UV-divergent piece using
free fermion:

Sdiv = − m

π
√

1 + (µa)2 K

(
1√

1 + (µa)2

)

= −
mlat + q2g2a

8
π
√

1 + (µa)2 K

(
1√

1 + (µa)2

)
, (3.22)

where K(k) denotes the complete elliptic integral of the first kind,

K(k) =
∫ π/2

0

1√
1− k2 sin2 t

dt. (3.23)

We have replaced the fermion mass parameter in the loop integral by the mass gap µ as it
does not change the UV structure and it circumvents the IR singularity in the chiral limit.
The renormalized condensates are given by

S(n) = Sbare(n)− Sdiv, P (n) = Pbare(n). (3.24)

When we subtract the UV divergence Sdiv, the O(a) correction (3.10) for one-dimensional
staggered fermion proposed in ref. [60] is taken into account. As continuum fermion mass
and lattice fermion mass are different, we have a nonzero subtraction even for mlat = 0. As
a→ 0, Sdiv behaves as

Sdiv =
(
mlat
π

+ q2g2a

8π

)(
ln µa4 +O((µa)2 ln(µa))

)
. (3.25)

We note that there is no UV divergence if we set mlat = 0 and this is consistent with the
super-renormalizability. However, the convergence in the limit a→ 0 behaves as O(a ln a)
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and this is slower than polynomials.5 Subtraction of Sdiv is practically useful to achieve the
continuum limit of the scalar condensate6 because we can take the polynomial ansatz for
the continuum extrapolation after the subtraction of Sdiv.

3.3 Simulation method

In our previous papers [48, 49], we employed the adiabatic state preparation formulated for
digital quantum simulation to study the ground state of the same model. We carried out the
numerical simulations up to the lattice size N = 25 with the IBM qiskit simulator. In the
present paper, to investigate the model more quantitatively, we scale up the simulation up
to the lattice size N = 801 by applying the density-matrix renormalization group (DMRG)
with the ITensor Library [55].

Here, we first convert the fermionic degrees of freedom into the spin degrees of freedom
via the Jordan-Wigner transformation [61],

χn = Xn − iYn
2

(
n−1∏
i=0
−iZi

)
, χ†n = Xn + iYn

2

(
n−1∏
i=0

iZi

)
, (3.26)

where (Xn, Yn, Zn) stands for the Pauli matrices (σ1, σ2, σ3) located at site n. Accordingly,
the Hamiltonian takes the form,

H = J
N−2∑
n=0

[
q

n∑
i=0

Zi + (−1)i

2 + ϑn
2π

]2

+ w

2

N−2∑
n=0

[
XnXn+1 + YnYn+1

]
− mlat

2

N−1∑
n=0

(−1)nZn, (3.27)

and it acts on the Hilbert space H ' ⊗Ni=1C2. We represent the wave function |Ψ〉 ∈ H in
the form of the matrix-product state (MPS):

|Ψ〉 =
d∑

i1,...iN=1
Tr
(
A

(i1)
1 A

(i2)
2 · · ·A(iN )

N

)
|i1i2 . . . iN−1iN 〉, (3.28)

where d denotes the dimension of local Hilbert space corresponding to a local spin degrees
of freedom i.e. d = 2 here, and A

(in)
n is a D × D complex matrix. D is called the bond

dimension, and MPS can represent any elements of the Hilbert space when D ≥ dN/2. When
applying the DMRG, we assume that the ground-state wave function can be approximated
by the MPS with a fixed bond dimension, and the ground state is searched using variational

5The presence of O(a ln a) in the continuum limit itself has been recognized, for example, in ref. [44].
However, to our best knowledge, its physical origin has not been known so its coefficient is treated as one of
fitting parameters. We here show that it comes from the O(a) shift for the lattice mass parameter, and its
coefficient is fixed by the requirement of the discrete axial anomaly relation.

6Another option is to set mlat = − q
2g2a

8 to achieve the chiral limit, m = 0, and then we need no
subtractions as Sdiv = 0. This is the procedure suggested by ref. [60] and it is indeed more convenient than
setting mlat = 0. In this paper, however, we do not take this option and we simply set mlat = 0 to study
the chiral limit, since this is the numerical setup in almost all previous literature and it would be easier for
readers to compare our results with them.
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methods within the ansatz. The number of variational parameters is roughly given by
NdD2, and thus the numerical cost only grows linearly in terms of the system size N when
D is treated as a constant. Once the ground state is obtained in the form of MPS, the
expectation values of local observables can be also efficiently calculated.

This prescription is thought to give a good approximation for searching the ground
state of (1 + 1)d quantum many-body systems with local and gapped Hamiltonian. The
bond dimension gives the upper bound for the entanglement entropy as SEE ≤ lnD, and
thus DMRG is useful if the entanglement entropy stays constant in the infinite-volume
limit. As SEE generically obeys the area law for gapped systems, the above criterion is
satisfied for such systems and the DMRG becomes useful for numerical computations. The
Schwinger model in the chiral limit m → 0 is a gapped system, and thus we can expect
DMRG is applicable to study the ’t Hooft anomaly of the charge-q Schwinger model.7

4 Numerical results with density-matrix renormalization group

In this section, we show the results of DMRG about the charge-3 Schwinger model (i.e. q = 3)
while we expect similar results for other values of q > 1. The lattice parameters are set to
a ∈ [0.05, 0.20], mlat ∈ [0, 0.60] and θ ∈ [0, 2πq] in the g = 1 unit. The bond dimension D
is taken in the range [200, 300] in our simulation. We carefully study the D-dependence
to check the validity of DMRG, and we confirm that the observables near the chiral limit
(mlat ' 0) saturate within 10 digits of precision by taking D ≥ 50 (see appendix A).

4.1 Boundary effects and periodicity of theta angle

Since we are working in the finite size lattice with the open boundary condition, observables
generically receive finite volume corrections including effects of the boundaries. In particular,
not only values of observables deviate from that of the infinite volume limit but also
periodicity of theta is broken due to the presence of the boundaries. Here we study the
boundary effects [49].8 We will see that it strongly depends on whether or not observables
involve operators located close to the boundaries.

Specifically we study the boundary effects by comparing behaviors of the local energy
E(n) of the ground state and its average ε(θ) over the space:

ε(θ) := 1
L

N−1∑
n=0

E(n), (4.1)

7Strictly speaking, the area law of the entanglement entropy for the (1+1)d quantum many-body systems
is shown only for systems with finite-dimensional local Hilbert space for the gapped Hamiltonian with
finite-range interactions [62]. We should note that the Schwinger model does not belong to this class: before
solving the Gauss law, the local Hilbert space for the gauge field is infinite-dimensional, and after solving
the Gauss law, the range of interaction becomes infinite. Still, electric fields of the ground state for the
Schwinger model cannot be too large practically; thus, it is reasonable to believe in the validity of the
area law.

Let us give another remark about the bond dimension. The correlation length in the lattice unit is given
by ξ = 1

µa
, and we can expect that the entanglement entropy behaves as SEE = O(ln ξ). As we approach

the continuum limit, the bond dimension should be also increased.
8See also a very recent study [63] of the Schwinger model that relates the boundary conditions between

the lattice and continuum theories.
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Figure 2. Results of the averaged energy ε(θ) and local energy E(n) for the fixed physical volume
L = (N − 1)a = 20 and lattice mass mlat = 0.15. (Left) The averaged energy against θ/(2π) for
some values of (N, a). The solid curves denote the results (4.3) of the mass perturbation theory
at O(m) (orange) and O(m2) (yellow) in the infinite volume limit. (Right) Site dependence of the
local energy E(n) for θ/(2π) = 0 and 3π with (N, a)=(101, 0.20).

which is the same as the total ground state energy divided by the physical volume L. In
the infinite volume limit, the translational symmetry is restored and therefore the both
are expected to approach the same value unless the site n in the local energy E(n) is
close to the boundaries. Let us denote the above two quantities in the infinite volume and
continuum limits for the k-th universe by Ek(θ). It has been calculated for the q = 1 case
by the mass perturbation theory9 up to O(m3) [23]. Using the relation (2.12) between the
charge-q Schwinger model and q = 1 case, one can find the result for generic q by making
the replacement g → qg, θ → (θ − 2πk)/q:

Ek(θ) = −m eγqg
2π3/2 cos θ − 2πk

q
−m2 e2γ

16π2

(
C+ cos 2(θ − 2πk)

q
+ C−

)
+O

(
m3
)
,

(4.2)
where10 C+ ' −8.9139 and C− ' 9.7384. Here we choose the k = 0 sector by setting L0 = 0
as the open boundary condition. Strictly speaking, Ek(θ) has a UV divergence dependent
on m and (4.2) is the expression after a regularization. Therefore, instead of E0(θ) itself,
we will compare our simulation results with

E0(θ)− E0(0) = m
eγqg
2π3/2

(
1− cos θ

q

)
+m2 e2γ

16π2C+

(
1− cos 2θ

q

)
+O

(
m3
)
, (4.3)

which does not suffer from the UV divergence.
The left panel in figure 2 shows the averaged energy ε(θ)− ε(0) as a function of θ/(2π).

We fix the physical volume L = a(N −1) and lattice mass mlat as L = 20 and mlat = 0.15 to
demonstrate the typical behavior of the massive charge-q Schwinger model on finite volume
with the open boundary condition. In the figure, we vary values of (N, a) keeping L to

9The result is given in eq. (68) of ref. [23].
10The precise definitions of C+ and C− (denoted as µ2E+ and µ2E− in [23] respectively) are C+ =

2π
∫∞

0 dr
[
r
(
e−2K0(r) − 1

)]
and C− = 4π

∫∞
0 dr

[
r log r

(
(rK1(r)− 1)e2K0(r) + 1

)]
.
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Figure 3. The local energy density E(n, θ) at the center n = (N − 1)/2 as a function of θ. Square
symbol in each panel denotes the results taken the continuum extrapolation. The mass parameter
from left to right panel is mlat = 0.15 and 0.60, respectively, and we compare the results with the
O(m) and O(m2) mass perturbations.

grasp a behavior in the continuum limit. We see that the simulation data do not show the
2πq-periodicity of θ for all the values of (N, a) and do deviate from the results (4.3) of the
mass perturbation theory in the infinite volume limit for non-small θ. In particular, the data
at θ/(2π) = 3 do not approach zero as decreasing the lattice spacing a. This is expected
behavior in the continuum limit as continuum theory on a space with boundaries does not
have the 2πq-periodicity: the total ground state energy has a constant term that violates
the periodicity due to the emergence of boundary charges and then the averaged energy
slowly converges to the infinite volume limit as O(1/L). To extract the correct θ dependence
using the averaged energy approximately, one has to take an infinite volume limit L→∞
first and then take the continuum limit a→ 0, and thus the double extrapolation procedure
is necessary (see, for example, appendix B of ref. [46]).

In contrast, the boundary effects should be exponentially small for the local energy
density E(n) away from the boundaries as this is a gapped system. We can estimate that
the effects of the boundaries exponentially decay as a function of n/ξ, where the correlation
length ξ is roughly given by

ξ ≈


1
aµ =

√
π

aqg for small m (� qg),
1
am for large m (� qg).

(4.4)

In the right panel of figure 2, we depict the bare local energy Ebare(n) as a function of site
n for θ = 0 and θ/(2π) = q. We easily see that as going from the boundaries to the center
of the lattice, both data quickly become almost the same constant although the values
around the boundaries are different. This implies that away from the boundaries, we have
the 2πq-periodicity approximately while more precise checks should be demanded.

To see a restoration of the 2πq-periodicity in detail, let us focus on the local energy E(n)
at the central point n = (N − 1)/2 that should receive the least boundary effects O(e−L/2ξ).
Now, we shall plot the local energy density at the center as a function of θ in figure 3. Here,
the lattice fermion mass is mlat = 0.15 and 0.60 from the left to right panels, respectively. In
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Figure 4. The local pseudo-scalar condensate P (n) at n = (N − 1)/2 as a function of θ. The mass
parameter from left to right panels is mlat = 0.15 and 0.60, respectively.

each panel, the square symbol denotes the result in the continuum limit, where we perform
the linear extrapolation of a using three data points; (N, a) = (101, 0.20), (201, 0.10) and
(401, 0.05). The results clearly show the emergence of 2πq periodicity for local observables.
Moreover, the result for mlat = 0.15 is consistent with that of mass perturbation, while the
higher-order corrections become important for mlat = 0.60.

Let us also discuss the topological charge density, dE(θ)
dθ . Using the ABJ anomaly, it

can be related to the expectation value of the pseudo-scalar condensate,

d〈E(n, θ)〉
dθ = m

q
〈P (n)〉. (4.5)

The results for the pseudo-scalar condensate is shown in figure 4, and we can again observe
the emergence of the 2πq-periodicity of θ. We note that the pseudo-scalar condensate P (n)
does not suffer from the UV divergence in our lattice regularization, and thus the results
can be compared directly with the analytical results, such as the mass perturbation. For
m = 0.15, the results are consistent with one another. Detailed study about the continuum
limit of the chiral condensates is done in the next subsection.

4.2 Chiral condensates and ’t Hooft anomaly in the chiral limit

In the chiral limit, m = 0, the chiral condensate can be computed analytically11 and we
find a vacuum expectation value of the chiral condensate operator O± in (2.18) as

S(θ)± iP (θ) = eγqg
2π3/2 e

±i θ
q . (4.6)

As varying θ in the range [0, 2πq], the chiral condensate (S, P ) draws a circle around
the origin.

11The mass perturbation of chiral condensates is computed by ref. [23]. We note that the bare scalar
condensate has UV divergence and it has to be renormalized. However, except the chiral limit, the scalar
condensate requires the additive renormalization, so we have to match the renormalization scheme to compare
the analytical results and numerical computations. As this is a nontrivial problem for nonperturbative
renormalization, we restrict our attention to the chiral limit to circumvent this issue when we compare the
numerical and analytical results.
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Figure 5. (Left): θ dependence of the scalar and pseudo-scalar condensate at n = (N − 1)/2 site
for mlat = 0.00 in a fixed volume L = (N − 1)a = 20. (Right): the data in continuum limit (square
symbol) and the result of mass perturbation theory.
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Figure 6. The continuum extrapolation of the scalar (◦, red) and pseudo-scalar (×, green) for θ = 2π
using the quadratic function of the lattice constant a. The square and triangle symbols at a = 0
denotes the analytic formula S = eγqg

2π3/2 cos 2π
q ' −0.240 and P = eγqg

2π3/2 sin 2π
q ' 0.415, respectively.

Let us confirm the above property by the simulation. Figure 5 shows the chiral
condensate (S(θ), P (θ)) in the case of mlat = 0 at various values of θ. We measure the
condensates with the interval ∆(θ/2π) = 0.2 in a fixed volume L = (N − 1)a = 20 with
N = 101, 201, 301 and 401 to take the continuum limit. At θ = 0, the numerical data are
located on the positive real axis, and as θ increases, the data rotate in the counterclockwise
direction. In the right panel of figure 5, we show the data in the continuum limit. To obtain
these data, we perform the quadratic extrapolations of a for S and P . We show its detail in
figure 6 taking θ = 2π as an example. As these results indicate, the data in the continuum
limit are consistent with the analytical prediction.

Now let us confirm the effects of the ’t Hooft anomaly discussed in section 2: the
analytical computation shows that Wilson loops can be regarded as a generator of the
discrete chiral transformation for infrared observers. We will investigate whether the phase
of the chiral condensation S(x) + iP (x) rotates by 2π/q across the Wilson loop. For this
purpose, we introduce the probe charges +qp and −qp with a distance ˆ̀ = (N − 1)/2 on
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Figure 7. (Left): site dependence of the local energy, E(n) with a = 0.05, N = 801, mlat = 0.00,
θ = 0 in the presence of the probe charges with qp = 2.0 at n = 200 and n = 600. (Right): the data
in the continuum limit of the local energy at n = 400.

the middle of the lattice, and then the sites between these probe charges are identified as
the inside of the Wilson loop.

Let us first check if the Wilson loop obeys the perimeter law in the chiral limit meaning
that the probe charges are not confined. This can be checked by looking at the difference of
the local energies between inside and outside of the charges, which gives the string tension
for the confined case and is expected to be exponentially small as a function of the probe
distance, namely almost zero, for the screening case. In the left panel of figure 7, we put
the probe charges at the sites n = 200 and n = 600 and plot the local energy density E(n).
We can see that the local energy density has the sharp peaks around the location of probe
charges and it quickly converges to constant values.12 In the right panel of figure 7, we
take the quadratic extrapolation of the local energy at n = 400 in terms of a to take the
continuum limit. We can see that the local energy inside the Wilson loop is consistent
with the one outside the Wilson loop after taking continuum limit and thus the Wilson
loop obeys the perimeter law. Therefore, for infrared observers, the Wilson loops can be
regarded as topological line operators.

Figure 8 shows the numerical results of S(n) and P (n) as functions of site n. We also
draw the analytical results (2.36) based on the bosonization in figure 1. The numerical
results around the probe charges are completely consistent with the result of the analytical
computation. Furthermore, both the condensates with qp = −1.0 and qp = 2.0 become
almost the same constants away from the Wilson loop, which reflects the fact that the
charge-q Schwinger model has the Zq 1-form symmetry. We note that the plateau values
inside the Wilson loop (300 . n . 500) between the numerical data and the analytical
results show a small discrepancy, and it comes from the finite a correction that is consistent
with figures 5 and 6. To see the phase of S(x) + iP (x) clearly, we take a projection of
figure 8 to the complex plane and it is shown in the left panel of figure 9. The data of

12When we look the data carefully, our local energy density (3.17) has a slightly jagged pattern in addition
to the smooth exponential decay in the vicinity of the probe charge. This can be thought of a remnant effect
of the staggered fermion, and one may try to remove it by adopting more smooth averaging for the local
operator as commented in the footnote for eq. (3.17).
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Figure 8. Position dependence of the local scalar and pseudo-scalar condensates for N = 801, a =
0.05,m = 0, θ = 0 in the presence of the probe charges at n = 200 and 600. We drop the data at
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Figure 9. Scalar and pseudo-scalar condensates in complex plane. The lattice size is (N, a) =
(801, 0.05) in all plots. The mass parameters are mlat = 0.00, 0.15 and 0.45 from left to right
panels, respectively.

qp = −1.0 rotates clockwise as n increases in n . 400 and back to the starting point in
n > 400, while the one of qp = 2.0 rotate counterclockwise in n . 400 and then back to the
starting point. The maximum rotation angle is achieved at n = 400. We conclude that the
rotation angle by inserting the Wilson loop is 2πqp/q as expected from (2.20).

So far we have considered the massless case that is exactly solvable while it is not easily
accessed by the conventional Monte Carlo approach. Lastly, let us study how situations
are changed when we turn on the nonzero fermion mass mlat, where analytical results
are not available. We show the results of the site-dependent chiral condensates under the
presence of external charges qp in figure 9 for mlat = 0.15 and 0.45. We can see that the
rotation angle of chiral condensate becomes shallower as we increase the fermion mass
mlat. This behavior can be understood from formula (4.5) for the topological charge. Since
the topological charge stays finite in the massive fermion limit m → ∞, it suggests that
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the pseudo-scalar condensate P behaves as O(1/m) as m→∞. This tendency is already
observed also for small fermion mass.

5 Summary and discussion

In this paper, we numerically studied the charge-q Schwinger model by DMRG with a
special emphasis on the mixed ’t Hooft anomaly between the 1-form symmetry and discrete
chiral symmetry in the chiral limit. Upon applying DMRG, we mapped the Schwinger model
to the spin chain with the non-local interaction via the Jordan-Wigner transformation,
and we took the open boundary condition instead of the periodic one to make the Hilbert
space finite-dimensional. When computing the local energy density or chiral condensate,
we found that using the local operators significantly reduces the boundary effect compared
with the computation of corresponding extensive quantities divided by the volume. In
particular the local observables exhibited the right periodicity of θ with a good accuracy in
our simulation. This point should be useful also in simulating more realistic theories such as
QCD in future when we take open boundary conditions. We confirmed that the Wilson loops
generate discrete chiral transformations by carefully analyzing the continuum limit. When
renormalizing the chiral condensate, we find it helpful to relate the lattice fermion mass
and the continuum one with the O(a) correction, mlat = m− q2g2a

8 , suggested by ref. [60].
Lastly, we also studied how the above property of the chiral condensate operator is changed
when we turn on the fermion mass, which is outside of the analytically calculable regime.

For the charge-q Schwinger model, the deconfinement of Wilson loops is the consequence
of the discrete chiral symmetry. A similar phenomenon is known to occur also for (1 + 1)d
adjoint QCD in the chiral limit [64–66], but it cannot be understood solely from the ordinary
chiral symmetry [67] and requires the presence of noninvertible topological lines [57] (For
noninvertible symmetries in (1 + 1)d QFTs, see refs. [68–70]). It would be an interesting
future study to develop the lattice Hamiltonian formulation for those models and to study
them using DMRG.
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A Bond dimension dependence

In this appendix, let us investigate systematic errors that come from the fixed bond dimension
D in the MPS ansatz (3.28). Figure 10 shows the D dependence of the ground state energy,
εD − εDmax for (N, a,mlat.)=(401, 0.05, 0.15), (401, 0.05, 0.01), and (801, 0.05, 0.01). Here,
we take the maximal bond dimension as Dmax = 300, and this is used as the reference.
We can see from figure 10 that the result converges for D & 50, and indeed the difference
becomes zero within 10 digits of precision for D ≥ 50.

In order to confirm the system size dependence, we introduce the effective bond
dimension Deff : in the ITensor, we introduce a cutoff ε in the singular value decomposition
and truncate the smallest singular values in a way that the truncation error is less than ε. We
here define Deff as the number of remaining singular values, and we set ε = 10−10. Although
Deff is not a physical quantity, it gives an upper bound for the entanglement entropy,
SEE ≤ lnDeff , so it is helpful to get an idea about how the DMRG works. In figure 11,
we plot Deff as we increase the system size N for (a,mlat., θ/2π) = (0.05, 0, 0), and Deff
seems to converge around 50 as N →∞. This convergence implies that the entanglement
entropy of the massless Schwinger model obeys the area law, and it is consistent with the
fact that this model is gapped due to the ABJ anomaly. At generic values of m and θ, the
Schwinger model is a gapped system and thus the approximation with fixed bond dimension
is expected to be good.

The charge-1 Schwinger model has 2 vacua for large fermion mass m > m∗ at θ = π due
to the spontaneous C breaking, and its endpoint m∗ is described by the Ising conformal field
theory (CFT). The critical value of the mass was estimated as m∗ ' 0.33 in refs. [71–73].
In the charge-q model, this critical point is mapped to θ/(2π) = q/2 and (m∗/g) ≈ 0.33q,
and its local dynamics is again described by the Ising CFT. The entanglement entropy
of (1 + 1)d CFT has the log correction to the area law and it behaves as SEE ∼ c

3 lnN as
N →∞ with the central charge c, and thus Deff should grow as Deff ≥ O(N c/3) at least.
Although we do not study this case in detail in this paper, let us quickly check the behavior
of the effective bond dimension for a = 0.05,mlat = 1.00, θ/(2π) = 1.50 with q = 3. The
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Figure 11. The system size (N) dependence of the effective bond dimension with a = 0.05,mlat. =
0.00, θ/(2π) = 0.00 for the charge q = 3 case at the 10th sweep.
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Figure 12. The system size dependence of the effective bond dimension with a = 0.05 (red, +) and
a = 0.10 (blue, ∗) for the charge q = 3 case with mlat. = 1.00, θ/(2π) = 1.50 at the 10th sweep. The
green solid line shows a fitting curve by the function c1N

1/6 + c2 with some constants c1,2.

result of the N dependence is shown in figure 12, and it already shows the tendency for
the growth of the bond dimension. We can see that the behavior of Deff approximately
obeys the N1/6-law that is consistent with the above expectation with the Ising central
charge c = 1/2.

In the main text, the parameter regions are sufficiently far away from this critical point,
and the maximal bond dimension is chosen to be sufficiently large values ∈ [200, 300]. We
set the number of sweeps as 20 and the truncation error cutoff as 10−10 as the basic DMRG
parameters of ITensor.

B The discrete ’t Hooft anomaly on the lattice

In a recent paper [60], it has been found that a part of the discrete ’t Hooft anomaly can
be preserved under the lattice regularized Hamiltonian formulation when we take a suitable
choice of the lattice mass parameter. As in the case of the Lieb-Schultz-Mattis theorem [74–
77], we can prove rigorously that the ground states should be doubly degenerate when we
take the periodic lattice with the even number of sites for the case of even charge q, and the
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one-unit lattice translation plays the essential role there. Here, we give a quick review about
the lattice realization of the discrete ’t Hooft anomaly for the charge-q Schwinger model.

B.1 Discrete Z2 chiral symmetry

Let us remind the case of the free fermion. We consider the periodic lattice with the even
number of sites N ∈ 2Z>0, then the one-flavor naive fermion,

iw
N−1∑
n=0

(
χ†nχn+1 − χ†n+1χn

)
, (B.1)

has the dispersion, ε(k) = 2w sin 2πk
N , and the zero modes locate at the lattice momenta

2πk
N = 0, π. Moreover, they have the opposite chirality and can be regarded as the

(1 + 1)d Dirac fermion ψ(x) as we have identified in (3.5). This clarifies that the one-unit
lattice translation,

χn 7→ χn+1, χ†n 7→ χ†n+1, (B.2)

acts as the discrete chiral transformation,

ψ(x)→ e
πi
2 (−1+γ)ψ = γψ(x). (B.3)

In the continuum formulation, the massless Dirac fermion has the U(1)L × U(1)R chiral
symmetry, and the lattice regularization explicitly breaks it down to U(1)V × (Z2)L.

The discrete chiral symmetry (Z2)L has a mixed ’t Hooft anomaly with U(1)V classified
by Z2 and it also has the ’t Hooft anomaly Ωspin

3 (BZ2) ' Z8. Although the on-site chiral
symmetry is prohibited due to the presence of ’t Hooft anomaly, a part of it can be realized
as the local but non-ultralocal symmetry that is related to the lattice symmetry.

To obtain the Schwinger model, we gauge the U(1)V symmetry by introducing the
dynamical gauge field. Due to the ABJ anomaly, the continuous axial symmetry is explicitly
broken even in the continuum theory. As we have seen in section 2, however, the charge-q
Schwinger model still enjoys the discrete chiral symmetry, given by (Zq)L. When q is even,

(Z2)L ⊂ (Zq)L, (B.4)

and thus it is a reasonable question to ask if the lattice translation generates the Z2 subgroup
of the discrete chiral symmetry even with the charge-q gauge interaction. Ref. [60] gives
the positive answer to this problem.

Although the Hamiltonian (3.8) with mlat = 0 may look to have the one-unit translation
invariance, we should note that the symmetry operation should be also consistent with the
canonical commutation relations (3.7) and with the Gauss law constraint (3.11):

Ln − Ln−1 = q

[
χ†nχn −

1− (−1)n

2

]
.

In the case of the Schwinger model, the naive one-unit lattice translation is inconsistent with
the Gauss law due to the presence of the staggering constant, 1−(−1)n

2 , on the right-hand-side

– 25 –



J
H
E
P
1
1
(
2
0
2
2
)
1
4
1

of (3.11). To keep the Gauss law (3.11) intact, we define the one-unit lattice translation
of Ln as

Ln 7→ Ln+1 + q
1− (−1)n+1

2 . (B.5)

Then, the left-hand-side of (3.11) transforms as Ln − Ln−1 7→ Ln+1 − Ln + q(−1)n, while
the right-hand-side becomes q[χ†nχn −

1−(−1)n
2 ] 7→ q[χ†n+1χn+1 − 1−(−1)n+1

2 ] + q(−1)n. We
note that the additive constant q 1−(−1)n+1

2 is an integer, so it does not change the spectrum
of Ln and thus this is a well-defined operation. We can also readily confirm that it does not
change the canonical commutation relation.

Thus, the remaining task is to establish the invariance of the Hamiltonian. The gauge
kientic term transforms as

J
∑
n

(
Ln + θ0

2π

)2
7→ J

∑
n

(
Ln+1 + q

1− (−1)n+1

2 + θ0
2π

)

= J
∑
n

(
Ln + θ0 + qπ

2π − (−1)nq
2

)2

= J
∑
n

(
Ln + θ0 + qπ

2π

)2

− qJ

2
∑
n

(−1)n
{

(Ln − Ln−1) + q
1− (−1)n

2

}
. (B.6)

Using the Gauss law (3.11), the last term takes the same form as the mass term on the
physical Hilbert space. Therefore, we have

J
∑
n

(
Ln + θ0

2π

)2
+mlat

∑
n

(−1)nχ†nχn

7→ J
∑
n

(
Ln + θ0 + qπ

2π

)2
−
(
mlat + q2J

2

)∑
n

(−1)nχ†nχn. (B.7)

In particular, when we choose the lattice mass parameter as [60]

mlat = −q
2J

4 = −q
2g2a

8 , (B.8)

the one-unit lattice translation relates the Hamiltonian at θ0 and θ0 + qπ:

Hθ0 7→ Hθ0+qπ = T Hθ0T −1, (B.9)

where T is the one-unit lattice translation defined above. When q is even, we can use the
unitary operator, W q/2(S1) = (

∏
n Un)q/2, to obtain the original Hamiltonian,

Hθ0 = W q/2
(
S1
)
Hθ0+qπ

(
W q/2

(
S1
))−1

=
(
W q/2

(
S1
)
T
)
Hθ0

(
W q/2(S1)T

)−1
, (B.10)

and thus the one-unit lattice translation T becomes the good symmetry operation by
associating it with the above unitary transformation.
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B.2 Exact 2-fold degeneracy on the periodic even lattice with even q

For the even-charge lattice Schwinger model on the periodic even lattice, we have the
(Z2)L chiral symmetry with the suitable choice of the mass parameter, m = − q2g2a

8 . In the
continuum theory, there is the mixed anomaly between Z[1]

q and (Zq)L, and it still exists
even if we break the chiral symmetry to (Z2)L ⊂ (Zq)L when q is even. As a result of the
anomaly matching, the chiral symmetry should be spontaneously broken.

Let us prove the lattice counterpart of this statement to conclude the double degeneracy
of the ground states. For this purpose, we note that the Z[1]

q symmetry is generated by

e
2πi
q
Ln . (B.11)

Due to the Gauss law, this operator does not depend on the spatial sites n, and we can
easily check that it commutes with the Hamiltonian. Moreover, (e

2πi
q
Ln)q = e2πiLn gives the

large gauge transformation, and thus it should be the identity, 1, on the physical Hilbert
space H. As a result, the physical Hilbert space decomposes into the q distinct sectors,

H =
q⊕

k=1
Hk, (B.12)

where

Hk =
{
ψ ∈ H | e

2πi
q
Lnψ = e

2πik
q ψ

}
. (B.13)

As the discrete chiral symmetry is generated by W q/2(S1)T , let us compute its commutation
relation with the 1-form symmetry generator:

e
2πi
q
Ln
(
W q/2

(
S1
)
T
)

= −
(
W q/2

(
S1
)
T
)

e
2πi
q
Ln−1

= −
(
W q/2

(
S1
)
T
)

e
2πi
q
Ln . (B.14)

Therefore, the Hamiltonian has the same energy spectrum on Hk and Hk+q/2. This shows
that the whole energy spectrum must be two-fold degenerate, and, in particular, so is the
ground state. Assuming the presence of the mass gap, we can conclude the spontaneous
breaking of (Z2)L chiral symmetry in the thermodynamic limit.
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