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Relationship between two-particle topology and fractional Chern insulator
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Lattice generalizations of fractional quantum Hall (FQH) systems, called fractional Chern insulators (FCIs),
have been extensively investigated in strongly correlated systems. Despite many efforts, previous studies have
not revealed all of the guiding principles for the FCI search. In this paper, we investigate a relationship between
the topological band structure in the two-particle problem and the FCI ground states in the many-body problem.
We first formulate the two-particle problem of a bosonic on-site interaction projected onto the lowest band of
a given tight-binding Hamiltonian. We introduce a reduced Hamiltonian whose eigenvalues correspond to the
two-particle bound-state energies. By using the reduced Hamiltonian, we define the two-particle Chern number
and numerically check the bulk-boundary correspondence that is predicted by the two-particle Chern number.
We then propose that a nontrivial two-particle Chern number of dominant bands roughly indicates the presence
of bosonic FCI ground states at filling factor ν = 1/2. We numerically investigate this relationship in several
tight-binding models with Chern bands and find that it holds well in most of the cases, albeit two-band models
being exceptions. Although the two-particle topology is neither a necessary nor a sufficient condition for the
FCI state as other indicators in previous studies, our numerical results indicate that the two-particle topology
characterizes the degree of similarity to the FQH systems.
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I. INTRODUCTION

The physics of topological phases has received much
attention in recent years. Among them, much is known the-
oretically about the topological insulators [1,2] because their
essence can be understood in terms of a one-particle picture.
The integer quantum Hall (IQH) system [3] is one of the first
examples of topological insulators. Although the bulk of this
system is a band insulator in which an integer number of Lan-
dau levels are fully occupied, the gapless edge states that are
protected by bulk topology lead to a quantized Hall conduc-
tance. This topological protection, called the bulk-boundary
correspondence [4–6], is a central property of the topological
insulators.

When the Landau levels are partially filled with the frac-
tional filling factor ν = p/q, the interplay between bulk
topology and strong correlation leads to the fractional quan-
tum Hall (FQH) effect [7–10]. Mathematically, the FQH
system is classified as an intrinsic topological order [11],
which cannot be understood in terms of a one-particle picture.
While the topological insulators do not host bulk degrees of
freedom, the systems in topological order host fractional ex-
citations in the bulk [8], called anyons [12,13]. Depending on
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the filling factor, there exist the Abelian [8] and non-Abelian
anyons [14,15] in the FQH systems. The topological orders
are classified by the types of anyons, and the emergence of
anyons is accompanied by many exotic properties such as
topological long-range entanglement [16,17] and ground-state
degeneracy [18]. These concepts have applications in topolog-
ical quantum computation, which is expected to realize fault
tolerance against quantum errors [15].

In the physics of IQH systems, a lattice construction with-
out a magnetic field was first given by Haldane [19]. In the
Haldane model, a nontrivial Chern number of a dispersive
band mimics a Landau level and topologically protects the
gapless edge states. Nowadays, a lattice system with a non-
trivial Chern band is called the Chern insulator. Similarly,
lattice implementations of FQH ground states, called frac-
tional Chern insulators (FCIs) [20–23], have been extensively
studied for interacting Hamiltonians with a fractional filling
whose noninteracting part is a Chern insulator. However,
it is not easy to determine whether the FCI states become
the ground states of a given model. In the physics of FQH
systems, the flatness of the single-particle energy and ana-
lytical simplicity of the wave function of the Landau levels
greatly simplify the problem, and the ground state is well
described by a simple analytical many-body wave function,
called the Laughlin wave function [8]. Therefore, one guid-
ing principle for the search of the FCI states is to focus
on the one-particle properties and find a Chern band that
mimics the Landau levels. In this context, the flatness of the
Chern band is the simplest criterion because it enhances the
correlation effect within the Chern band. A more nontrivial
task is to find the conditions on the Bloch wave functions.
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By focusing on the properties in FQH systems such as the
Girvin-MacDonald-Platzman algebra [24], previous studies
investigated the importance of momentum-space distributions
of the Berry curvature and quantum metric [22,25–31]. Indi-
cators for the FCI ground states other than the one-particle
properties have also been studied. Like the Cooper prob-
lem in the theory of superconductivity [32], the two-particle
problem gives significant insight in the FCI problem. Refer-
ences [33,34] pointed out a rough correspondence between
Haldane’s pseudopotential [35] in FQH problem and the two-
particle band structure.

Despite many efforts, previous studies have not revealed
all of the guiding principles for the FCI search. In this pa-
per, we investigate a relationship between the two-particle
topology and the FCI phase. We consider a bosonic on-site
interaction Hamiltonian projected onto the lowest band of a
given tight-binding model. In the first half of this paper, we
formulate the two-particle problem, in which the finite-energy
eigenspace consists of the bound states and define the reduced
Hamiltonian that extracts only the bound-state information.
By using the reduced Hamiltonian, we define the two-particle
Chern number for two-particle bands and numerically check
the bulk-boundary correspondence that is predicted by the
two-particle Chern number. In the second half, we propose
that a nontrivial two-particle Chern number (|C| = 1) of
the dominant two-particle bands roughly indicates the pres-
ence of the FCI ground states at the filling factor ν = 1/2.
We numerically check this rough correspondence between the
two-particle topology and the presence or absence of FCI
ground states. Although the two-particle topology is neither a
necessary nor a sufficient condition for the FCI state as other
indicators in previous studies, the numerical results indicate
that the two-particle topology characterizes the degree of sim-
ilarity to the FQH system.

This paper is organized as follows. In Sec. II, we intro-
duce several conventions and define the projected bosonic
Hamiltonian that is of interest. In Sec. III, we give the matrix
representation of the projected Hamiltonian with only two
particles and define the reduced Hamiltonian that is conve-
nient for the topological analysis. In Sec. IV, we propose a
relationship between the two-particle topology in the two-
particle problem and the FCI phase in the many-body problem
at ν = 1/2. In Sec. V, we numerically check the relationship
that is proposed in Sec. IV. In Sec. VI, we summarize the
paper and mention several future works.

II. MODEL AND CONVENTION

We consider a bosonic, two-dimensional lattice Hamilto-
nian with repulsive on-site Hubbard interaction:

Hfull = H0 + Hint

=
∑

R,R′,i,i′
tRi,R′i′c

†
R,icR′,i′ + U

∑
R,i

nR,i(nR,i − 1)

=
∑

R,R′,i,i′
tRi,R′i′c

†
R,icR′,i′ + U

∑
R,i

c†
R,ic

†
R,icR,icR,i, (1)

where a matrix t represents the hopping term with discrete
translation invariance, U > 0 is the strength of the interaction,

n is the local bosonic number operator, and (c, c†) are bosonic
annihilation and creation operators. In the following, we set
U = 1. R and i label the Bravais lattice and the orbital and/or
sublattice degrees of freedom in a unit cell, respectively.

When we impose the periodic boundary condition (PBC)
both in the x and y directions, it is convenient to introduce the
momentum-space picture. By performing the Fourier trans-
form, one can rewrite the quadratic Hamiltonian as

H0 =
∑
k,i, j

Hi, j (k)c†
k,ick, j, (2)

where the matrix H (k) is the Bloch Hamiltonian at crystal
momentum:

k = (k1, k2)

= n1

L1
G1 + n2

L2
G2, 0 � ni (∈ Z) � Li − 1 (i = 1, 2), (3)

where Gi and Li (i = 1, 2) are the reciprocal lattice vector and
the system size, respectively. When the unit cell has more than
one orbital/sublattice degrees of freedom, there are two typi-
cal conventions for Fourier transform, depending on whether
the relative positions ri inside the unit cell are included in the
Fourier factor. We here adopt the Fourier factor without ri:

c†
k,i = 1√

Nunit

∑
R

eik·Rc†
R,i, (4)

where Nunit := L1L2 is the number of unit cells. Under this
convention, the Bloch Hamiltonian has the periodicity in mo-
mentum space:

H (k) = H (k + Gi ). (5)

By diagonalizing the Bloch Hamiltonian, one can rewrite the
quadratic Hamiltonian H0 as

H0 =
∑
k,a

εk,ac†
k,ack,a, (6)

where εk,a is an eigenvalue of H (k), and

c†
k,a = 1√

Nunit

∑
R,i

uk,a(i)eik·Rc†
R,i, (7)

cR,i = 1√
Nunit

∑
k,a

uk,a(i)eik·Rck,a, (8)

with uk,a being the corresponding unit eigenvector and uk,a(i)
being the ith component of uk,a. By using the expansion (8),
we can rewrite the interaction term as

Hint = U

Nunit

∑
q,k,k′

∑
i

∑
a,b,c,d

u∗
k,a(i)u∗

q−k,b(i)

× uq−k′,c(i)uk′,d (i)c†
k,ac†

q−k,bcq−k′,cck′,d . (9)

In many theoretical studies of the FCIs, instead of the full
Hamiltonian Hfull, the interaction Hamiltonian projected onto
the lowest band α is of interest [21]:

Hproj = U

Nunit

∑
q,k,k′

∑
i

u∗
k,α (i)u∗

q−k,α (i)uq−k′,α (i)uk′,α (i)

× c†
k,α

c†
q−k,α

cq−k′,αck′,α. (10)
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FIG. 1. Two-particle configuration in momentum space [L1 =
L2 = 4, G1 = (2π, 0), G2 = (0, 2π )]. (a) Example of (k, q − k)
that satisfies n(k) � n(q − k). (b) Examples of momentum re-
gion {k | n(k) � n(q − k)} for given q. At the blue dots, k ≡ q −
k (Mod G1,2).

This approximation is valid when the interaction is much
smaller than the band gap and larger than the bandwidth of
the band α. These conditions are satisfied in the FQH system
on the lowest Landau level [9]. In this paper, we consider the
projected Hamiltonian (10) with α being a band with a unit
Chern number, C = ±1.

III. FORMALISM: TWO-PARTICLE HAMILTONIAN
UNDER PROJECTION

In this paper, we focus on the energy spectrum of two-
dimensional lattice systems with only two bosons. Such
a two-particle problem in bosonic/fermionic systems is
widely formulated in various contexts. For example, see
Refs. [36–39]. We here derive the matrix representation of
the two-particle Hamiltonian. The Hilbert space of the two-
particle system is spanned by the following basis vectors with
the total momentum of two particles, q:

|q, k〉 :=
⎧⎨
⎩

c†
q−k,α

c†
k,α

|0〉 for k �≡ q − k (Mod G1,2)

c†
q−k,α

c†
k,α

|0〉/√2 for k ≡ q − k (Mod G1,2)
.

(11)

Here the factor
√

2 comes from the bosonic nature. To avoid
the redundancy of the basis vectors, we have labeled the
two-dimensional momenta k by integer numbers n(k) :=
n1 + L1n2 and consider the cases with n(k) � n(q − k)
[Fig. 1(a)]. By using the discrete translation invari-
ance, 〈q, k|Hproj|q′, k′〉 ∝ δq,q′ , we obtain the two-particle

Hamiltonian:

H2p =
∑

q

∑
k

′∑
k′

′|q, k〉〈q, k|Hproj|q, k′〉〈q, k′|

=:
∑

q

∑
k

′∑
k′

′
Hq

k,k′ |q, k〉〈q, k′|. (12)

The energy spectrum is given by the eigenspectrum of the
q-dependent Hamiltonian matrix Hq. Note that the summation∑

k
′ does not span the whole Brillouin zone, and the momen-

tum region in summation depends on the total momentum q
[Fig. 1(b)].

A key step to understand the nature of Hq is to introduce a
matrix Aq whose elements are given by

[Aq]i,k =

⎧⎪⎨
⎪⎩

√
4U

LxLy
uq−k,α (i)uk,α (i) for k �≡ q − k√

2U
LxLy

uq−k,α (i)uk,α (i) for k ≡ q − k
. (13)

Importantly, the explicit form of Hq is given in terms of Aq:

Hq = A†
qAq. (14)

As indicated from Eq. (14), Hq is a positive semidefinite
matrix, and its eigenvalues are nothing but the square of
singular values of Aq. For a large system size, the number
of the columns of Aq ∼ O(Nunit ) is much larger than that
of the number of rows that is equal to the internal degrees
of freedom, nin. Thus, the number of finite eigenenergies at
each total momentum is at most nin, and the other majority of
eigenstates become exact zero modes. The former and latter
modes are called “bound states” and “scattering (continuum)
states,” respectively [36]. In the scattering states, two particles
are not bounded and move around independently. In the bound
states, the two particles are bounded and feel the on-site Hub-
bard interaction. When the kinetic part H0 is included, exact
zero-energy bands (continuum bands) acquire finite energy.

Although the two-particle spectrum itself can be calculated
by the above formalism, Hq is not appropriate for investigat-
ing band topology of the two-particle states. As we noted, the
region in which k runs depends on q and so does the basis set
{|q, k〉}. For the same reason, the dimension of Hq can vary
with respect to q. Moreover, Hq is changed under the U (1)
gauge transformation of the Bloch wave function:

uk,α → eiχ (k)uk,α. (15)

Thus, Hq is essentially discontinuous and not useful in topo-
logical characterization. Then the key idea of the present work
is that, instead of Hq, we focus on the nin × nin reduced
matrix:

hq = AqA†
q. (16)

Since Hq and hq share the finite eigenvalues, the two-particle
Hamiltonian is formally given by

H2p =
∑

q

∑
i, j

hq
i, j |q, i〉〈q, j|. (17)

Remarkably, hq is invariant under the U (1) gauge transfor-
mation (15) and is continuous with respect to q. Roughly
speaking, the index i represents the orbital on which two
bound particles are placed.
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IV. TWO-PARTICLE TOPOLOGY AND FRACTIONAL
CHERN INSULATOR

A. Relationship between two-particle spectrum
and FCI (review)

In addition to the one-particle topological/geometrical
properties, the two-particle band spectrum is also used to pre-
dict the FCI ground states [33,34,40]. We here briefly review
this idea.

We begin with addressing the FQHE, before considering
the FCI. Let us consider the two-particle problem in con-
tinuous space under a uniform magnetic field. In the first
quantization, a typical Hamiltonian is given in the following
form [9]:

H2p =
[

1

2μ

{
p − e

2
A(r)

}2

+ V (|r|)
]

+ 1

2M
{P − 2eA(R)}2,

(18)

where A represents the vector potential for a uniform mag-
netic field, V represents the rotation-symmetric interaction,
r/R is the relative/center-of-mass coordinate, p/P is the
relative/center-of-mass momentum, μ/M is the reduced/total
mass, and e is the elementary charge. As the Hamiltonian is
divided into relative and center-of-mass parts, the eigenstates
are given in the form φ(r)	(R). Remarkably, the center-
of-mass part of the Hamiltonian has the same form as the
Hamiltonian of the one-particle Landau problem, while the
relative part has an additional term that divides the degeneracy
of the Landau level into relative angular-momentum sectors.
When we focus on the lowest Landau level under a strong
magnetic field, the relevant Hamiltonian has the following
diagonal form:

H2p =
∑

m

∑
M

Vm|m,M〉〈m,M|, (19)

where m/M is relative/center-of-mass angular momentum,
and the relevant Hilbert space consists of two-particle states
{|m,M〉}. Thus, each two-particle “band” is flat and char-
acterized by m. For bosonic/fermionic particles, Vm can
take finite value only for even/odd m because of the sym-
metry/antisymmetry. Note that the two-particle energy Vm

plays an important role in the FQH system. Actually,
the bosonic/fermionic Laughlin states at ν = 1/q are the
zero-energy eigenstates of the projected interaction Hamil-
tonian with Vm > 0, m � q − 2 and Vm = 0, m > q − 2 for
even/odd m. In this context, the two-particle energy Vm is
known as Haldane’s pseudopotential [35]. Despite the absence
of rotation symmetry, a similar construction can be performed
for any geometry including the torus.

The idea of the characterization of many-body physics by
the two-particle energy spectrum was imported into the area of
the FCI, while the exact correspondence clearly does not hold.
For example, the two-particle band structure in momentum
space has finite bandwidth in general, unlike the flat “band”
in the two-particle Landau problem. It was pointed out in
Ref. [33] that each pseudopotential Vm corresponds to a pair
of two approximately degenerate two-particle bands in the
Brillouin zone. If there are two approximately degenerate
bands whose energies are much larger than those of the other
bands, it roughly indicates the stability of the ν = 1/2 bosonic

FCI state. Because of the lack of exact correspondence, the
pair of energy eigenvalues are split significantly in general,
while such a split is suppressed in the Kapit-Mueller (KM)
model with a large magnetic cell [34], whose exact ground
state is described by the lattice analog of the Laughlin state.
Note that if there are no internal degrees of freedom (uk = 1),
then the two-particle band structure with finite eigenvalues
consists only of one flat band. In other words, the complicated
multiband nature of the two-particle spectrum is induced by
the interband effect (e.g., topological and geometrical effects)
between the projected band and the other bands in the one-
particle spectrum.

B. Similarity between center-of-mass Landau
level and two-particle Chern band

Although the many-body physics may not be explained
completely only by the one-particle and two-particle proper-
ties, they sometimes provide guidelines for the FCI search.
There should remain other perspectives in this direction. In
this paper, we focus on the topological nature of the two-
particle band structure.

To gain an insight, let us again consider the two-particle
Hamiltonian (19) in the Landau problem. Once we specify the
relative angular momentum m, the only remaining degree of
freedom is the center-of-mass angular momentum. Thus, for
each m, the relevant Hilbert space consists of the wave func-
tions in the lowest Landau level defined for the center-of-mass
coordinate. By focusing on the similarity between the Landau
level and the Chern band, we here propose that a nontrivial
Chern number of the finite-energy two-particle band structure
in center-of-mass (total) momentum space roughly indicates
the presence of the FCI ground states. As we mentioned, the
reduced matrix hq is a useful matrix representation of the two-
particle Hamiltonian for topological characterization. Because
the finite-energy states of hq can be regarded as bound states
of two particles, the two-particle topology is equivalent to
the topology of the band structure of bound states. In the
reduced Hamiltonian, the degree of freedom about the relative
coordinate is traced out. This is similar to the two-particle
Landau problem, in which the relative angular momentum is
frozen for a fixed pseudopotential Vm [see Eq. (19)].

As an example, we investigate the two-particle topology
of the KM model [41]. The KM model is a two-dimensional
tight-binding model that mimics the Landau level, and the
number of bands is equal to the number of sites in a magnetic
unit cell, q, under the Landau gauge. The details of the model
are given in Appendix A. The lowest band of the KM model
is an exactly flat band with Chern number |C| = 1 owing to
the infinite hopping range. In order to reduce the numerical
cost, we truncate the KM model to third neighbor hoppings
and consider the four-band case (q = 4) with 16×16 magnetic
unit cells. The one-particle energy dispersion is shown in
Fig. 2(a). Despite the truncation, the lowest band is almost
flat, which indicates that the essence of the KM model is not
broken by the truncation. The Chern number is calculated by
the integral of the Berry curvature; see Appendix B for the
details of the numerical method [42]. The numerical integra-
tion shows that the Chern number of the lowest band is given
by C = −1. We calculate the two-particle band structure by
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FIG. 2. One-particle and two-particle properties of the KM
model (PBC, Landau gauge, L1 = L2 = 16). [(a) and (c)] One-
particle and two-particle band structures. [(b) and (d)] One-particle
and two-particle Berry curvature in the momentum space.

the diagonalization of the 4×4 matrix hq or the singular value
decomposition of the 4×162 matrix Aq [Fig. 2(c)]. There are
two nonseparable finite-energy bands, and the other bands
are exact zero-energy flat bands. The total Berry curvature
of the finite-energy eigenstates of hq is shown in Fig. 2(d).
As expected, the numerical integration indicates the nontrivial
Chern number (C = −1). In Sec. IV D, we numerically check
that the ground states of the truncated KM model at ν = 1/2
are the FCI states, which supports our proposal about the
correspondence between the two-particle topology and the
FCI ground states.

C. Two-particle topology and bulk-boundary correspondence

In this subsection, we consider the meaning of the
two-particle topology of hq in terms of the bulk-boundary
correspondence. Before proceeding to detailed discussions, it
is worth noting the following fact: In the case of one-particle
Hamiltonian matrix H (k), the internal degree i and momen-
tum k are physically independent of each other, and one can
construct the real-space OBC Hamiltonian by performing the
inverse Fourier transform of H (k). If we use another basis for
a momentum-dependent matrix instead of the internal degree
i, the matrix elements of the real-space OBC Hamiltonian are
not given by the inverse Fourier transform in general. For
example, if we work on the band basis, band topology with
respect to this basis is trivial, and the OBC matrix constructed
from the inverse Fourier transform has no topological edge
states. In this sense, the physical meaning of the basis is im-
portant when we consider band topology and bulk-boundary
correspondence.

The above discussion indicates that one should carefully
interpret the two-particle topology of hq. Strictly speaking, the
inverse Fourier transform of hq does not give the matrix ele-
ments of the OBC Hamiltonian because of the definition of hq,
Eqs. (13) and (16), contains the one-particle wave functions
specific to the PBC. Thus, the index i and momentum q are not
physically independent of each other, unlike the one-particle
case. Nevertheless, one can still find the bulk-boundary cor-
respondence for the two-particle topology. In the following,
we formulate the two-particle problem under the OBC and
discuss the bulk-boundary correspondence numerically.

We impose the OBC in the x direction and the PBC in the
y direction. We repeat almost the same procedure discussed in
Sec. III. Instead of two-dimensional momentum, we introduce
one-dimensional momentum in the y direction k = n2G/L2

with G being the one-dimensional reciprocal lattice vector:

cR,i = 1√
L2

∑
k

∑
a

uk,a(R1, i)eikR2 ck,a. (20)

The interaction Hamiltonian is given by

Hint = U

L2

∑
q,k,k′

∑
R1,i

∑
a,b,a′,b′

u∗
k,a(R1, i)u∗

q−k,b(R1, i)uq−k′,b′

× (R1, i)uk′,a′ (R1, i)c†
k,ac†

q−k,bcq−k′,b′ck′,a′ . (21)

In Eq. (21), for the summation over a, a′, b, and b′ which label
the one-particle eigenstate at each k, we have to set the upper
limit, nproj, to make the correspondence to the PBC problem
where we consider the interaction Hamiltonian projected onto
the lowest band. Specifically, nproj should be O(L1) at each
one-dimensional momentum. The Hilbert space of the two-
particle system is spanned by the following basis vectors with
total one-dimensional momentum of two particles:

|q; k, ab〉

:=
⎧⎨
⎩

c†
q−k,bc†

k,a|0〉 for k �≡ q − k (Mod G) or a �= b

c†
q−k,bc†

k,a|0〉/√2 for k ≡ q − k (Mod G) and a = b
.

(22)

As in the case of full PBC, we label (k, a) by integer number
n(a, k) = a + nprojn2 and consider the cases with n(a, k) �
n(b, q − k). The two-particle Hamiltonian under the present
boundary condition is given by

H2p =
∑

q

∑
kab

′∑
k′a′b′

′
Hq

kab,k′a′b′ |q; k, ab〉〈q; k′, a′b′|

=
∑

q

∑
R1i,R′

1i′
hq

R1i,R′
1i′ |q, R1i〉〈q, R′

1i′|, (23)

where

Hq = A†
qAq, hq = AqA†

q,

[Aq]R1i,kab

=

⎧⎪⎨
⎪⎩

√
4U
Ly

uq−k,b(R1, i)uk,a(R1, i) for k �≡ q − k or a �= b√
2U
Ly

uq−k,b(R1, i)uk,a(R1, i) for k ≡ q − k and a = b
.

(24)
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FIG. 3. (a) One-particle spectrum of the KM model under the
OBC. Gray dots represent the full spectrum. Green, blue, and red
dots represent the nproj lowest states with nproj = L1, L1 − 1, and
L1 − 2, respectively. [(b) and (c)] The two-particle spectrum of the
KM model under the OBC. For (b), the single-particle energy is
neglected [Eq. (24)], whereas it is included for (c) [Eq. (25)]. The
colors of the dots denote the different choices of nproj in the same
way as (a). (d) Real-space particle density of the left (L) and right
(R) edge modes, indicated by the black circles in panel (c). We have
set L1 = L2 = 16.

If we choose the PBC instead of the OBC, then the band index
a is interpreted as crystal momentum in the x direction under
the projection onto the lowest band.

Now we are in a position to investigate the bulk-boundary
correspondence that originates from the two-particle topology.
In the actual construction of the OBC two-particle Hamilto-
nian, however, the choice of nproj is not so obvious because
of the presence of gapless boundary states that connect the
gapped bulk bands in the one-particle spectrum [Fig. 3(a)]. In
addition, as the one-particle energies of the gapless boundary
states are not negligible, we also calculate the two-particle
spectrum by diagonalizing a matrix with the following ele-
ments:

Hq
kab,k′a′b′ = [A†

qAq]kab,k′a′b′ + δk,k′δa,a′δb,b′ (εk,a + εq−k,b),
(25)

where εk,a is the one-particle energy under the OBC. Note
that one can no longer construct the reduced matrix hq in the
presence of the one-particle energy.

By using the expressions (24) and (25), we numerically
investigate the two-particle bulk-boundary correspondence
of the KM model with/without one-particle energies for

various nproj. Under the full PBC, the dominant bands
of the two-particle spectrum have a unit Chern number
(C = −1), as calculated in the previous section. First, let
us consider the two-particle spectrum in the absence of
one-particle energies. In this case, there exist gapless edge
states that connect the bulk bands for various nproj, while the
details of the spectra depend on nproj [Fig. 3(b)]. These gapless
edge states can be regarded as a consequence of the nontrivial
Chern number (C = −1) of two-particle bands. In the
presence of one-particle energies, however, the two-particle
spectra have more complicated structures. For nproj = L1, not
only the states in the bulk flat band but also those in the edge
states with dispersion are included in the projected states.
If scattering states contain edge states in the one-particle
spectrum, then they can also have energy dispersion.
Although such states are essentially different from the
edge states of two-particle bound states, they are also found
in the two-particle spectrum [Fig. 3(c)]. Thus, the scattering
states and edge states from two-particle bound states coexist
at the edges for nproj = L1. For smaller nproj, dispersion of the
scattering states is suppressed, and the two-particle spectrum
looks similar to that in the absence of the one-particle
energies [Fig. 3(c)]. Again, the remaining edge states can be
regarded as a consequence of the two-particle topology. The
real-space particle density of such edge states are plotted in
Fig. 3(d) (see Appendix C for details of the calculation). If
the one-particle band gap divided by L2, which approximates
the level distance between the edge states, is much larger than
the interaction U , then the projection only onto the bulk flat
band is physically reasonable. Our numerical calculations
indicate that the bulk-boundary correspondence holds for the
two-particle Chern number. Thus, the matrix elements that are
calculated by the inverse Fourier transform of the hq in the x
direction may well approximate those of the true two-particle
Hamiltonian under the present boundary condition, hq, if the
scattering edge states are negligible.

D. Many-body ground state at ν = 1/2

Reference [41] showed that the ν = 1/2 bosonic Laughlin
wave function [43] is an exact many-body ground state of
the (untruncated) KM model in the presence of local interac-
tions at ν = 1/2. Owing to the topological nature, the ground
states under the PBC have two-fold topological degeneracy at
ν = 1/2 in infinite-volume limit. We here numerically check
that the ground states of the many-body Hamiltonian Hproj

for the truncated KM model (q = 4 and including up to the
third neighbor hoppings) in the previous subsections are in the
FCI phase at ν = 1/2. We perform the numerical calculations
by using the code based on that of Ref. [31]. Thanks to the
discrete translation invariance, the total momentum is a good
quantum number under the PBC. In Fig. 4, the eigenvalues are
plotted from smallest to sixth in each momentum sector. As
expected, the first- and second-lowest energy eigenvalues are
degenerated within numerical accuracy and separated from
the other states with a large gap, while the ground-state de-
generacy is not exact in a usual FCI model at a finite system
size. We regard these almost degenerated states as the ground
states henceforth. The momentum sectors in which the ground
states exist can depend on the system size. In the present
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FIG. 4. Many-body eigenspectrum of projected Hamiltonian for
truncated KM model (PBC, L1 = 5, L2 = 2, q = 4). In each mo-
mentum sector labeled by (n1, n2), the eigenvalues are plotted from
smallest to sixth.

calculation, the two ground states are placed in different
sectors, (n1, n2) = (0, 0), (0, 1). In the FCI phase, the ground
states should not mix with the excited states under magnetic
flux insertion through the handle of the torus [21]. Typically,
the two ground-state energy eigenvalues are reversed after
2π -flux insertion, and it takes 4π flux in total to recover the
original spectrum.

In the present model, the Chern number of the dominant
two two-particle bands is nontrivial (C = −1). At the same
time, the many-body spectrum indicates the presence of topo-
logical degeneracy at ν = 1/2. In this case, the two-particle
topology seems to be related to the stability of the FCI ground
states. Then the following question naturally arises: Does this
correspondence universally hold in FCI models?

V. TWO-PARTICLE TOPOLOGY
OF VARIOUS FCI MODELS

In this section, we numerically investigate the relation-
ship between the two-particle topology and the ν = 1/2 FCI
ground states for various tight-binding models whose lowest
band is the Chern band with |C| = 1. See Appendix D for
details of models. As a many-body Hamiltonian, we analyze
the bosonic projected Hamiltonian (10). Because the projec-
tion disregards the one-particle kinetic energy, we use only
the information of one-particle eigenstates of the given tight-
binding model. Note that the presence of the FCI phase under
the fermionic interaction does not ensure the bosonic FCI
ground states in the present case.

The numerical results are summarized in Table I and Figs. 5
and 6. The ground-state degeneracy of the 4×4 system is
used to determine whether the ground states are the FCI
states. Further numerical justification of the FCI is a remain-
ing task. For nin � 3, the two-particle Chern number of the
dominant upper bands well describes the presence or absence
of the FCI ground states at ν = 1/2 [33,34]. In all of the
examples with FCI ground states (Yes in Table I), the num-
ber of dominant two-particle bands is 2, which is consistent
with previous studies that insist that each pseudopotential
corresponds to two two-particle bands in FCI models. Note
that the degree of topological degeneracy in the Kagome
model, represented by “Yes” in Table I, is not as good as
that of the other FCI models. In this model, although the

TABLE I. Relationship between two-particle topology and
ν = 1/2 bosonic FCI ground states. Ground-state degeneracy of the
4×4 system is used to determine whether the ground states are the
FCI. The degree of degeneracy in the Kagome model, represented by
“Yes,” is not as good as that of the other FCI models, represented by
Yes.

Model nin FCI Two-particle topology

Kagome [44] 3 “Yes” C = 1 (upper two bands)
Square [45] 3 No Trivial (one dominant band)
KM [41] 4 Yes C = −1 (upper two bands)
Hofstadter [46] 4 Yes C = −1 (upper two bands)
Ruby [47,48] 6 Yes C = −1 (upper two bands)

QWZ [49] 2 No Trivial (one dominant band)
Modified QWZ 2 Yes Trivial (small-gap semimetal)
Haldane [19,50] 2 Yes Gapless (Dirac points)
Checkerboard [50] 2 Yes Gapless (nodal line)

two-particle topology of the dominant two bands is nontrivial,
the energy separation between these bands is relaticely large.
For an ideal FCI model, both the two-particle topology and
the degree of degeneracy of two-particle bands seem to be
important.

For nin = 2, however, the total Chern number of the two
two-particle bands should be zero. In this sense, the nin = 2
case is essentially different from the other nin’s. In Fig. 6,
we omit the plots of one- and two-particle Berry curvature.
In models with FCI ground states, two two-particle bands
tend to be connected with each other. In these examples, the
two-particle spectra host the gapless or small-gap semimetal-
lic structures. These complicated structures can be obstacles
for the trivial two-band structures that lead to the non-FCI
ground states at ν = 1/2. Indeed, the Qi-Wu-Zhang (QWZ)
model has no FCI-like ground state at ν = 1/2, and its two-
particle spectrum seems to have no specific structures, as in
the case of trivial one-band models. In contrast, the modi-
fied QWZ model (Appendix D) has FCI-like ground states.
The modified QWZ model is obtained by changing the ba-
sis of the original QWZ model. This change preserves the
momentum-space distributions of the Berry curvature and
quantum metric of the one-particle Chern band. Although
these two properties are considered to be related to FCI sta-
bility, they cannot fully describe FCI physics. In the present
case, the projected many-body Hamiltonian and the two-
particle spectrum are not invariant under the change of the
basis. It is worth mentioning that the uniqueness of two-band
models is also found in another indicator of the FCI. Specif-
ically, it was proved in Ref. [31] that the Berry curvature
of the two-band models cannot have a uniform distribution
in the momentum space, while the constant Berry curva-
ture is believed to be a favorable condition for realizing the
FCI.

Although the two-particle topology is neither a necessary
nor a sufficient condition for the FCI ground states at ν =
1/2 as other indicators in previous studies, the numerical
results indicate that the two-particle topology characterizes
the degree of similarity to the FQH system. In any case,
the interband nature of the two-particle band structure may
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FIG. 5. One-, two-, and many-particle properties of nin � 3-band models. Results for Kagome, square, Hofstadter, and ruby lattice
models are shown from top to bottom. See Appendix D for details of models. (a) Momentum-space distribution of one-particle Berry
curvature of the lowest band. (b) Two-particle band structure. (c) Momentum-space distribution of two-particle Berry curvature of the
dominant bands. In (a)–(c), the system size is 16×16. (d) Many-body eigenspectrum of projected Hamiltonian. The system size is 4×4.
Note that the lowest two points at n1 + L1n2 = 0 for the panels (d3) and (d4) are almost degenerate, which we mark by the blue circles for
clarity.

be a key ingredient for the stabilization of the FCI ground
states. In previous studies, there are some discussions that
try to justify one-particle indicators analytically [22,25–31].
Developing a theory that supports the relation between the
two-particle topology and the FCI is an important remaining
task.

In the above examples, the number of pairs of two dom-
inant bands is at most one. In a case with many pairs, each
pair corresponds to one pseudopotential, and Laughlin state
with another filling is expected to be stabilized, according
to the previous work [33] (see Sec. IV A). If our conjecture

can be generalized to such a case, then each pair should
have a unit Chern number. In order to investigate such a
case, it is important to include long-range interactions, which
increase the number of two-particle bands. Further numerical
justification of our conjecture is also an important remaining
task.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have investigated the topology in two-
particle problems. By using the reduced matrix representation,
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FIG. 6. (a) Two-particle band structures and (b) many-body spec-
tra of nin = 2 models. Results for Qi-Wu-Zhang (QWZ), modified
QWZ, Haldane, and checkerboard lattice models are shown from top
to bottom. See Appendix D for details of models. The system size
is 16×16 for (a) and 4×4 for (b). Note that, only for (a3), we set
the system size as 24×24. We again mark the almost-degenerate two
lowest energy states by the blue circles in the panels (b2), (b3), and
(b4).

we have focused on the Hamiltonian of bound states among
the whole states. We have defined the Chern number of
bound-state band structure and numerically investigated the
bulk-boundary correspondence in the two-particle spectrum.
The shape of the two-particle band structure has already been
known as one of the indicators for the stabilization of the FCI
ground states in the many-body problem. As another indicator,
we have noticed the two-particle topology. By focusing on
the similarity between the Landau level and the Chern band,
we have proposed that a nontrivial Chern number of the two-
particle band structure roughly indicates the presence of the
FCI ground states. Although the many-body properties should
never be determined completely by the few-body physics, we
have found several FCI models in which the proposed relation
holds.

Before closing the paper, we point out several future works
we will address. Because the analogy between the two-particle

Landau level and two-particle Chern number is not specific to
the bosonic systems, we can also consider the same physics
under the fermionic interaction. In our paper, the internal
degrees of freedom of the two-particle bound states coincide
with those of the one-particle states owing to the bosonic on-
site interaction. Under the fermionic interactions, however, the
two particles never occupy the same orbital, and the internal
degrees of freedom of two-particle bound states are different
from those of the one-particle problem. Nevertheless, one can
still define the reduced Hamiltonian hq whose internal degrees
of freedom consists of local two-particle orbitals. A typical
candidate for the fermionic FCI is the bilayer graphene. Re-
cent theoretical and experimental studies about the bilayer
graphene with FCI ground states are summarized in a review
paper [23].

Another important issue is the relationship between the
one-particle and two-particle properties. As we mentioned in
the Introduction, previous studies discussed the importance
of momentum-space distributions of the Berry curvature and
quantum metric in one-particle band structures [22,25–31]. In
this direction, the roles of the momentum-space distributions
of the one-particle quantities in the two-particle topology may
be interesting topics. In addition, topological and geometrical
properties of the two-particle Chern band itself should be in-
vestigated. The aim of many previous attempts at one-particle
Chern bands for the FCI is to reproduce the Landau-level
properties. Since our proposal is a generalization of such at-
tempts to the two-particle bands, two-particle band properties
that approximately reproduce a two-particle Landau level are
expected to be good indicators for the FCI search. Moreover,
one-particle bands with the higher Chern number are out of
the scope of the present paper because of the absence of corre-
spondence with the Landau levels. Because of the absence of
the connection with the Landau levels, such bands are also of
interest in the FCI search [51–53]. Typically, the two-particle
band structure for such cases is highly complicated [54]. Thus,
an extension of our theory to the higher Chern number is also
a remaining future work.
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APPENDIX A: KAPIT-MUELLER MODEL

In this Appendix, we explain the KM model. The KM
model was introduced as a lattice implementation of Landau
levels [41]. In contrast to the Hofstadter model, this model
allows infinite-range hopping terms whose strength decays
exponentially with respect to the hopping range. Without trun-
cation of long-range terms, the lowest band of this model is an
exactly flat band. The explicit form is given by

H =
∑
j �=k

J (z j, zk )c†
j ck,

J (z j, zk ) = W (z)e(π/2)(z j z∗−z∗
j z)φ, (A1)

W (z) = (−1)x+y+xye−(π/2)(1−φ)|z|2 ,
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where z j = x j + iy j , z = x + iy = zk − z j , and φ = p/q with
p and q being two relatively prime numbers. This repre-
sentation corresponds to the symmetric gauge. In the actual
calculations, we use the Landau gauge, which is more conve-
nient for the Fourier transform.

APPENDIX B: NUMERICAL CALCULATION
OF BERRY CURVATURE AND CHERN NUMBER

In this Appendix, we review the outline of the numerical
calculation of Berry curvature and Chern number, based on
Ref. [42].

Let |uk,α〉 be the eigenstate of the band α at momentum k,
which is nondegenerate in the entire Brillouin zone. Numer-
ically, we obtain |uk,α〉 at discretized points of the Brillouin
zone as in Eq. (3). Then, we introduce the following variable,
defined on a link between neighboring discretized momenta,
Uμ(k) (μ = 1, 2):

Uμ(k) :=
〈
uk,α

∣∣uk+ 1
Lμ

Gμ,α

〉
∣∣〈uk,α

∣∣uk+ 1
Lμ

Gμ,α

〉∣∣ , (B1)

Using Uμ(k), approximate Berry flux at a small plaquette
whose left-bottom corner is at k is given as −iF12(k), where

F12(k) = ln

[
U1(k)U2

(
k + 1

L1
G1

)
U∗

1

(
k + 1

L2
G2

)
U∗

2 (k)

]
.

(B2)

Consequently, the Chern number is approximated by the sum
of the Berry flux of the plaquettes:

C = 1

2π i

∑
k

F12(k). (B3)

When several bands degenerate at certain points or regions
in the Brillouin zone, one can calculate the total Chern number
for a set of such bands, α1, . . . , αn, by changing the link
variables as

Uμ(k) :=
det

[

†(k)


(
k + 1

Lμ
Gμ

)]
∣∣det

[

†(k)


(
k + 1

Lμ
Gμ

)]∣∣ , (B4)

where


(k) = (∣∣uk,α1

〉 · · · ∣∣uk,αn

〉)
. (B5)

APPENDIX C: PARTICLE DENSITY IN REAL SPACE

In this Appendix, we elucidate how to calculate the particle
density in real space shown in Fig. 3(d).

The particle density operator as a function of R1 and i is
given as

ρR1,i =
∑
R2

c†
(R1,R2,i)

c(R1,R2,i). (C1)

Substituting Eq. (20) into Eq. (C1), we have

ρR1,i =
∑

k

∑
a,b

Nk,ab(R1, i)c†
k,ack,b, (C2)

where we have defined Nk,ab(R1, i) := u∗
k,a(R1, i)uk,b(R1, i).

Equation (C2) indicates that the operating ρR1,i does not
change the total momentum. Hence, when acing ρR1,i on the
state with the total momentum q, the resulting state has the
same momentum.

We now consider the expectation value of ρR1,i. Let |
q〉
be a normalized eigenstate of Hq of Eq. (25), which can be
expanded by basis of Eq. (22):

|
q〉 =
∑
k,a,b

ψq;k,ab|q; k, ab〉. (C3)

Then, the particle density at (R1, i) is given as

〈ρR1,i〉 = 〈
q|ρR1,i|
q〉
=

∑
kab

∑
k′a′b′

ψq;k,abψ
∗
q;k′,a′b′ 〈q; k′, a′b′|ρR1,i|q; k, ab〉

=
∑
kab

ψq;k,abξq;k,ab(R1, i), (C4)

where we have defined

ξq;kab(R1, i) =
∑

k′,a′,b′
ψ∗

q;k′,a′b′ 〈q; k′, a′b′|ρR1,i|q; k, ab〉. (C5)

The remaining task is to calculate ξq;kab(R1, i). After some
algebras with paying attention to the factor of 1/

√
2 for the

doubly occupied states, we obtain

ξq;k,ab =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
a′[Nk,a′aψ

∗
q;k,a′b + Nq−k,a′bψ

∗
q;k,aa′ ] for k �≡ q − k (Mod G)∑

a′ �=b[Nk,a′aψ
∗
q;k,((a′b))] + ∑

a′ �=a[Nk,a′bψ
∗
q;k,((aa′ ))]

+√
2[Nk,baψ

∗
q;k,bb + Nk,abψ

∗
q;k,aa] for k ≡ q − k (Mod G) and a �= b

√
2

∑
a′ �=a[Nk,a′aψ

∗
q;k((a′a))] + 2Nk,aaψ

∗
q;k,aa for k ≡ q − k (Mod G) and a = b,

(C6)

where we have abbreviated (R1, i) for simplicity of writing,
and the symbol ((ab)) denotes the ascending ordering of a
and b.

We note that in Fig. 3(d) we plot the particle density per
the unit cell at R1 by taking the summation over the sublattice
index i for 〈ρR1,i〉. It is also worth noting that

∑
R1,i

〈ρR1,i〉 = 2
holds, since we consider the two-particle systems.

APPENDIX D: EXPLICIT FORMS OF
TIGHT-BINDING MODELS

In this Appendix, we provide the explicit forms of the tight-
binding Hamiltonians studied in Sec. V. Note that we set the
system size as L1 = L2 = 16 for all the models except for the
Haldane model; for the Haldane model, we set L1 = L2 = 24
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so that the Dirac points of the two-particle band [Fig. 6(a3)]
become manifest.

1. 2-band models

a. QWZ model

This model was proposed in Ref. [49] and is also referred
to as the Wilson-Dirac model. The Bloch Hamiltonian reads

H (k) = sin k1σx + sin k2σy + (m − cos k1 − cos k2)σz,

(D1)

where σx,y,z are the Pauli matrices. The reciprocal lattice vec-
tors are given as

G1 = 2π (1, 0), G2 = 2π (0, 1). (D2)

In numerical calculations, we set m = 1.

b. Modified QWZ model

This model is given by simply swapping σx for σz in
Eq. (D1). Specifically, the Bloch Hamiltonian reads

H (k) = sin k1σz + sin k2σy + (m − cos k1 − cos k2)σx.

(D3)

In numerical calculations, we again set m = 1.

c. Haldane model

The Haldane model was proposed as a lattice construction
of the IQH system without an external magnetic field [19].
We here write down the Haldane model with a slight modifi-
cation that was introduced for the FCI study [50]. Because
this change only modifies the flatness of the lowest-band
dispersion, it does not affect the calculations with projection.
The Bloch Hamiltonian and the reciprocal lattice vectors are
given as

H (k) = b01 + b · σ, (D4)

G1 = 2π (1/
√

3, 1/3), G2 = 2π (0, 2/3), (D5)

where

b0 = 2t2 cos φ[cos K1 + cos K2 + cos(K1 + K2)],

bx = t1[1 + cos(K1 + K2) + cos K2],

by = t1[sin(K1 + K2) + sin K2],

bz = −2t2 sin φ[sin K1 + sin K2 − sin(K1 + K2)] (D6)

with

K1 =
√

3k1, K2 = −
√

3

2
k1 + 3

2
k2. (D7)

We adopt the parameters,

t1 = t2 = 1/p0, φ = cos−1 p0, (D8)

where p0 = 3
√

3/43.

d. Checkerboard model

This model was studied in terms of the fermionic FCI [50].
The Bloch Hamiltonian and the reciprocal lattice vectors are
given as

H (k) =
[

2t2(cos k1 − cos k2) t1 f ∗(k)

t1 f (k) −2t2(cos k1 − cos k2)

]
,

(D9)

G1 = 2π (1, 0), G2 = 2π (0, 1), (D10)

where

f (k) = e−iπ/4[1 + ei(k2−k1 )] + eiπ/4[e−ik1 + eik2 ],

t1 = 1, t2 =
√

2/2. (D11)

2. nin � 3-band models

a. Kagome model

This model was studied in terms of the fermionic FCI [44].
There are three orbitals on different sublattices with position
vectors:

r1 = (0, 0), r2 =
(

1

2
, 0

)
, r3 =

(
1

4
,

√
3

4

)
. (D12)

As mentioned in the main text, there are two typical conven-
tions for Fourier transform, depending on whether the relative
positions ri inside the unit cell are included in the Fourier
factor. The model in Ref. [44] was expressed in the convention
that includes the information of positions:

Hposi−dep(k) = − 2t1

⎡
⎢⎢⎣

0 cos K1 cos K2

cos K1 0 cos K3

cos K2 cos K3 0

⎤
⎥⎥⎦ + 2iλ1

⎡
⎢⎢⎣

0 cos K1 − cos K2

− cos K1 0 cos K3

cos K2 − cos K3 0

⎤
⎥⎥⎦

− 2t2

⎡
⎢⎢⎣

0 cos(K2 + K3) cos(K3 − K1)

cos(K2 + K3) 0 cos(K1 + K2)

cos(K3 − K1) cos(K1 + K2) 0

⎤
⎥⎥⎦

+ 2iλ2

⎡
⎢⎢⎣

0 − cos(K2 + K3) cos(K3 − K1)

cos(K2 + K3) 0 − cos(K1 + K2)

− cos(K3 − K1) cos(K1 + K2) 0

⎤
⎥⎥⎦. (D13)
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with

K1 = k · (r2 − r1), K2 = k · (r3 − r1), K3 = k · (r3 − r2). (D14)

The two conventions are related via the following unitary transformation:

H (k) = D†
kHposi−dep(k)Dk, (D15)

where Dk = diag(e−ik·r1 , e−ik·r2 , e−ik·r3 ). The reciprocal lattice vectors are given as

G1 = (2π,−2π/
√

3), G2 = (0, 4π/
√

3). (D16)

We adopt the parameters (t1, t2, λ1, λ2) = (1,−0.3, 0.28, 0.2).

b. Square-lattice model

This model was studied in terms of the fermionic FCI [45]. This model is a three-orbital model on a square lattice. The Bloch
Hamiltonian and reciprocal vectors are given as

H (k) =

⎡
⎢⎢⎣

−2tdd(cos k1 + cos k2) + δ 2itpd sin k1 2itpd sin k2

2tpp cos k1 − 2t ′
pp cos k2 i�

(H.c.) 2tpp cos k2 − 2t ′
pp cos k1

⎤
⎥⎥⎦, G1 = (2π, 0), G2 = (0, 2π ).

(D17)

We adopt the parameters tdd = tpd = tpp = 1, � = 2.8, δ = −4tdd + 2tpp + � − 2tpp�/(4tpp + �), and t ′
pp = tpp�/

(4tpp + �).

c. Hofstadter (1/4-flux)

The Hofstadter model was investigated as a lattice implementation of the Landau levels [46]. For the number of sites per
unit cell, q, the Hofstadter model is a q-band model. In this paper, we consider the four-band Hofstadter model. The Bloch
Hamiltonian and reciprocal vectors are given as

H (k) =

⎡
⎢⎢⎢⎢⎣

2 cos k2 1 0 e−ik1

1 2 cos(k2 + π/2) 1 0

0 1 2 cos(k2 + π ) 1

eik1 0 1 2 cos(k2 + 3π/2)

⎤
⎥⎥⎥⎥⎦, G1 = 2π (1, 0), G2 = 2π (0, 1). (D18)

d. Ruby-lattice model

This model was studied in terms of the fermionic FCI [47,48]. The Bloch Hamiltonian and reciprocal vectors are given as

H (k) = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

t̃∗
1 0

t̃ t̃∗
1 e−i(K1+K2 ) 0

t4(1 + eiK1 ) t̃ t̃∗
1 eiK1 0

t̃∗ t4[1 + e−i(K1+K2 )] t̃ t̃∗
1 0

t̃1eiK1 t̃∗ t4[eiK1 + ei(K1+K2 )] t̃ t̃∗
1 ei(K1+K2 ) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ (H.c.),

G1 = (2π, 2π/
√

3), G2 = (0, 4π/
√

3), (D19)

where t̃ = tr + iti, t̃1 = t1r + it1i, K1 = k1, K2 = −k1/2 + √
3k2/2. We adopt the parameters (tr, ti, t1r, t1i, t4) =

(1, 1.2,−1.2, 2.6,−1.2).
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