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Abstract—This article describes an efficient training method
for online streaming attention-based encoder-decoder (AED) au-
tomatic speech recognition (ASR) systems. AED models have
achieved competitive performance in offline scenarios by jointly
optimizing all components. They have recently been extended to an
online streaming framework via models such as monotonie chunk-
wise attention (MoChA). However, the elaborate attention calcu-
lation process is not robust against long-form speech utterances.
Moreover, the sequence-level training objective and time-restricted
streaming encoder cause a nonnegligible delay in token emission
during inference. To address these problems, we propose CTC
synchronous training (CTC-ST), in which CTC alignments are
leveraged as a reference for token boundaries to enable a MoChA
model to learn optimal monotonie input-output alignments. We
formulate a purely end-to-end training objective to synchronize the
boundaries of MoChA to those of CTC. The CTC model shares an
encoder with the MoChA model to enhance the encoder represen-
tation. Moreover, the proposed method provides alignment infor-
mation learned in the CTC branch to the attention-based decoder.
Therefore, CTC-ST can be regarded as self-distillation of alignment
knowledge from CTC to MoChA. Experimental evaluations on
a variety of benchmark datasets show that the proposed method
significantly reduces recognition errors and emission latency si-
multaneously. The robustness to long-form and noisy speech is also
demonstrated. We compare CTC-ST with several methods that
distill alignment knowledge from a hybrid ASR system and show
that the CTC-ST can achieve a comparable tradeoff of accuracy
and latency without relying on external alignment information.

Index Terms—Attention-based encoder-decoder, connectionist
temporal classification, knowledge distillation, monotonic
chunkwise attention, streaming automatic speech recognition.

I. INTRODUCTION

ONLINE streaming automatic speech recognition (ASR)
is a core technology for speech applications such as live

captioning, simultaneous translation, voice search, and dialogue
systems. The traditional but still dominant approach in pro-
duction is a hybrid system that modularizes the entire system
into an acoustic model, a pronunciation model, and a language
model (LM). Recently, end-to-end (E2E) systems have achieved
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comparable performance to that of hybrid systems by optimiz-
ing a direct mapping function from the input speech to the
target transcription [1]–[3]. Representative approaches include
the connectionist temporal classification (CTC) [4], recurrent
neural network transducer (RNN-T) [5], recurrent neural aligner
(RNA) [6], hybrid autoregressive transducer (HAT) [7], and
attention-based encoder-decoder (AED) [8], [9] models. With
the simplified architecture, the E2E approaches are advanta-
geous for rapid system development, on-device applications
with a small footprint, and fast inference when a large amount
of training data is available.

The E2E models have been compared in offline scenar-
ios [10]–[12], and AED models are typically the best choice
because of the strong token dependency on the decoder side.
In online streaming scenarios, however, AED models are not
suitable because they require the entire input in order to gen-
erate the initial token. On the other hand, frame-synchronous
models such as CTC and RNN-T can easily be extended to the
streaming setting. RNN-T has been a practical choice because
of its better performance than CTC with the help of token
dependency modeling in the prediction network [3], [13], [14].
However, it is known that RNN-T consumes significant memory
during training [15], [16] and requires a large search space
during inference because of its frame-wise prediction, which
significantly slows down the decoding speed.

To make AED models streamable, various methods have been
proposed: neural transducer (NT) [17], triggered attention [18],
adaptive computation steps (ACS) [19], continuous integrate-
and-fire (CIF) [20], streaming chunk-aware multi-head attention
(SCAMA) [21], local windowing [22]–[25], Gaussian mixture
model (GMM) attention [26], neural autoregressive transducer
(NAT) [27], and monotonic chunkwise attention (MoChA) [28].
The major difference among these variants is the location where
the input speech is segmented: at the encoder [17]–[21] or the
decoder [22]–[28]). Among these methods, we focus on MoChA
because it can generate tokens with linear-time complexity
at test time and can be trained as efficiently as offline AED
models [29]–[33]. Moreover, it can detect token boundaries by
using contextual information captured in the decoder.

The main problem in making streaming AED models for prac-
tical systems is that they are not robust against long-form speech,
which is not as problematic in frame-synchronous models [34].
Moreover, latency in the decision boundaries on token emission
occurs in any E2E model [16], [32], [35]. This is because (1)
the model is typically equipped with a time-restricted streaming
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encoder having limited future contexts, and (2) the model is
optimized with an end-to-end objective, which encourages the
decoder to use as many future observations as possible.

Previous studies on frame-synchronous models tackled this
problem by shifting output frames [36] and leveraging frame-
wise alignment supervision [37]–[40]. As for label-synchronous
models, Inaguma et al. leveraged alignment information ex-
tracted from a hybrid system to reduce the emission latency
of MoChA [32]. However, this approach still depends on a
hybrid model and is not a purely end-to-end solution. While the
delayed token generation problem occurs similarly in frame-
synchronous models, CTC models are better than AED models
in terms of latency, because they are optimized with the forward-
backward algorithm and assume conditional independence on
a per-frame basis. Moreover, the peaky alignments learned in
CTC are expected to be compatible with the token boundaries
in MoChA.

In this article, we propose a novel purely end-to-end training
method to enhance the alignment learning process of streaming
MoChA models without external alignments.1 We regard the
peaks in CTC alignments as a reference for the tokens bound-
aries in MoChA; thus, we train a MoChA model to mimic
a CTC model in order to detect token boundaries at similar
positions. We refer to this method as CTC synchronous training
(CTC-ST) [41]. This boundary supervision greatly eases the
optimization of MoChA, especially with contaminated inputs
as in SpecAugment [42]. This is because the accumulation of
alignment errors in MoChA can be recovered with the help of the
CTC alignments. The CTC model is jointly optimized with the
MoChA model by having them share an encoder to encourage
monotonic alignments in the MoChA decoder, similarly to the
joint CTC/Attention framework [43]. In the proposed method,
however, the CTC alignments are further provided to the MoChA
decoder as supervision of token boundaries to restrict their
positions. Because the alignment knowledge learned in CTC
is transferred to improve MoChA’s alignment in a unified archi-
tecture, we regard this framework as a form of self-distillation.2

Experimental evaluations on four benchmark datasets show
that CTC-ST significantly improves the recognition accuracy,
especially for long-form and noisy speech. We also demonstrate
that CTC-ST can reduce the emission latency without external
alignment information and achieve a tradeoff of the accuracy and
emission latency comparable to that of alignment knowledge dis-
tillation from a hybrid system [32]. Finally, we compare MoChA
with RNN-T in recognition accuracy and emission latency to
demonstrate that CTC-ST can close the performance gap, so
that the best MoChA system achieves recognition accuracy
comparable to that of RNN-T and lower emission latency.3

1Although we focus on MoChA in this work, the proposed method can be
applied to any AED model that calculates attention scores.

2Unlike conventional knowledge distillation [44], we focus on token boundary
positions instead of probability distributions.

3This work is an extension of our previous studies [41]. In this article, we
add more evaluations regarding various datasets, the emission latency, and
the inference speed. Also new are the comparisons with alignment knowledge
distillation from a hybrid system [32] and RNN-T.

II. RELATED WORK

A. Streaming Attention-Based Encoder-Decoder Model

We categorize streaming AED models into two groups in
terms of how they segment speech frames for token generation.

1) Segmentation on Encoder Side: The first method in
this category is NT [17], [45], [46], which performs label-
synchronous decoding on every fixed-size input block and moves
to the next block if it detects no additional token boundaries.
ACS [19] extends the idea to an adaptive segmentation policy
based on a halting mechanism [47]. CIF [20] further enhances
ACS by applying a fine-grained segmentation within the encoder
output. SCAMA [21] learns to count the number of tokens to
be generated in each fixed input chunk. Sterpu et al. followed
a similar idea [48]. Triggered attention [18], [49], [50] is based
on the joint CTC/Attention framework and truncates encoder
outputs with CTC spikes to perform global attention over the
past encoder outputs from each spike position, but the decod-
ing complexity is quadratic. Our work is different in that we
leverage CTC alignments only during training, and the decoding
complexity is linear. A scout network [51] learns to detect word
boundaries with alignment information from a hybrid system
during training to reduce the emission latency, and it performs
global attention similarly to triggered attention. However, it
introduces a dependency on frame-wise alignment supervision.
These methods can detect token boundaries regardless of the
input length, but they are limited by not using contextual infor-
mation for segmentation.

2) Segmentation on Decoder Side: The methods in this cat-
egory leverage decoder states as a query to segment the input
speech for every token. Local windowing methods were pro-
posed first [22]–[25]. GMM attention [26], [34] forces the center
of attention to move monotonically to the end of the encoder
output. Kong et al. further incorporated source-side informa-
tion [52]. NAT [27] trains stochastic variables with a policy
gradient, and the optimization was further improved in [53].
Hard monotonic attention (HMA) [54] also introduces stochastic
variables to detect token boundaries, but the model can be
trained efficiently with a cross-entropy objective. MoChA [28]
relieves the strong monotonic constraint in HMA by introduc-
ing additional soft attention over a small window. Miao et al.
proposed stable MoChA (sMoChA) by simplifying the attention
calculation in MoChA to ease the optimization [30]. They further
proposed monotonic truncated attention (MTA) [33] by using
soft attention scores in HMA at test time as well to reduce the
gap between training and testing. HMA was further extended
to the Transformer decoder [55], [56], while Li et al. extended
the idea of ACS to the Transformer decoder [57]. Incremental
decoding uses offline models for streaming applications, but the
decoding complexity is quadratic [58]–[61].

B. Emission Latency in E2E ASR Model

Emission latency inevitably occurs in any E2E ASR model
because sequence-level optimization allows the model to use as
much future information as possible. This problem was tackled
in CTC acoustic models for the first time by constraining CTC
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paths during marginalization with frame-level alignments from
a hybrid system [62]. Zhang et al. trained a CTC model jointly
with a frame-level cross-entropy [38]. Similar methods have
also been investigated for RNN-T by pretraining the encoder
with a frame-level cross-entropy [39] and applying joint train-
ing [40]. Inaguma et al. investigated the application of alignment
information from a hybrid system to MoChA and reduced the
recognition errors and emission latency simultaneously [32].
Sainath et al. constrained an attention head of the second-pass
rescorer in a two-pass streaming E2E model by alignment in-
formation from a hybrid system to improve accuracy of word
emission timing [63]. However, such alignment information is
not necessarily available. Recently, FastEmit [64] was proposed
by designing a new training objective for RNN-T to reduce the
emission latency without any frame-level supervision, which
was applied to two-pass E2E architectures in the voice search
task successfully [65], [66]. The idea of FastEmit was extended
to MoChA in [67], referred to as StableEmit. Self-alignment
from RNN-T was also leveraged in [68]. Yu et al. trained a
single RNN-T in both offline and streaming modes (dual-mode
ASR) by sharing parameters [69].

C. Knowledge Distillation for Streaming ASR

Knowledge distillation [44] has also been investigated to
improve the performance of streaming E2E ASR models. Pre-
vious studies focused on distilling knowledge from an offline
or streaming teacher model to a weaker streaming student
model within the same decoder topology [70]–[77]. In frame-
synchronous models, however, there exists a problem that the
timing to emit tokens can differ between the teacher and student
models, depending on the future context size in the encoder.
Through an approach using bidirectional long short-term mem-
ory (BLSTM), Kurata et al. trained BLSTM-CTC to mimic
LSTM-CTC in order to generate posterior spikes at similar
positions and then distill the frame-level posterior probabili-
ties to the LSTM-CTC model [78]. The idea was extended to
RNN-T in [76]. Ding et al. jointly trained multiple teacher CTC
models to synchronize their posterior spikes [79]. Distillation
between different decoder topologies has also been investigated.
Moriya et al. distilled knowledge from a teacher AED model
to a student CTC model [80]. Self-distillation in a single E2E
ASR model has also been proposed as an in-place operation,
from an offline mode to a streaming mode [61], [69], and from a
Transformer decoder to a CTC layer [81]. Unlike those previous
methods, we focus on distilling the positions of token boundaries
learned in a CTC model to an AED model, rather than distilling
the posterior distributions. Moreover, the teacher and student
models share the same encoder and are trained jointly from
scratch.

III. BASICS

In this section, we review HMA and MoChA. Let x =
(x1, . . . , xT ) be an input speech sequence, h = (h1, . . . , hT ′)
be encoder outputs (T ′ ≤ T ), and y = (y1, . . . , yU ) be the
corresponding output token sequence. The encoder performs
downsampling to reduce the input sequence length from T to T ′.

We use i and j as the time indices of the output and input
sequences, respectively.

A. Hard Monotonic Attention (HMA)

Standard offline AED models are based on the global attention
mechanism [8], in which relevant source information is selected
according to the target context via attention scores calculated by
normalizing energy activations over h. However, this prevents
the model from performing online streaming recognition, be-
cause the decoder must see all the encoder outputs to generate
the initial token. Moreover, the decoding complexity at each
generation step is in proportion to the encoder output length T ′.
This results in a total decoding complexityO(T ′U). To start gen-
erating tokens when given partial acoustic observations during
inference, HMA introduces discrete binary decision processes.
As a result, it can perform decoding with linear-time complexity
O(T ′) during inference, but it behaves differently between the
training and test times.

At test time, the decoder scans the encoder outputs
h1, . . . , hT ′ from left to right. At every input frame index j,
the decoder has the option to (1) stop at the current frame
j to generate a token or (2) move forward to the next frame
j + 1 according to a selection probabilitypi,j ∈ [0, 1]. A discrete
decision zi,j ∈ {0, 1} on whether to stop at the j-th frame is
sampled from a Bernoulli random variable parameterized by
pi,j as

ei,j = MonotonicEnergy(hj , si), (1)

pi,j = σ(ei,j),

zi,j ∼ Bernoulli(pi,j), (2)

where ei,j is a monotonic energy activation, si is the i-th decoder
state4, and σ is a logistic sigmoid function. When zi,j = 1, i.e.,
pi,j ≥ 0.5, the decoder stops at an index j = ti (referred to as the
token boundary of the i-th token). Then, only the corresponding
single encoder output hti is used for generating the next token
and updating the decoder state. The next token boundary ti+1

is determined by resuming scanning from the previous token
boundary j = ti.

However, this hard assignment of zi,j is not differentiable.
To perform the standard backpropagation training, the expected
alignment scores αi,j are calculated by marginalizing over all
possible alignment paths as follows:

αi,j = pi,j

j∑
k=1

(
αi−1,k

j−1∏
l=k

(1− pi,l)

)

= pi,j

(
(1− pi,j−1)

αi,j−1

pi,j−1
+ αi−1,j

)
. (3)

Becauseαi,j in (3) introduces a recurrence relation, it is difficult
to calculate it in parallel over the input indices. However, by
substituting qi,j = αi,j/pi,j , it can be calculated efficiently with
the cumulative sum and product operations, denoted respectively

4In this formulation, si is updated before calculating ei,j , unlike in [54].
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as cumsum and cumprod, as follows:

αi,:= pi · cumprod(1− pi,:) · cumsum
(

αi−1,:

cumprod(1−pi,:)

)
.

Finally, the monotonic energy activation ei,j in (1) is imple-
mented as

MonotonicEnergy(hj , si) = g
vT

||v||f(Whhj +Wssi + b) + r,

where f is the nonlinear activation, g and v are parameters
for weight normalization, and Wh, Ws, b, and r are trainable
parameters. We use a rectified linear unit (ReLU) activation
function as f . Following [54], the scalar offset parameter r is
initialized as −4 in this work. To ensure the discreteness of
pi,j , a zero-mean, unit-variance Gaussian noise is added to the
pre-sigmoid activation in (2) during training. The subsequent
token generation processes are the same as in the global AED
model.

B. Monotonic Chunkwise Attention (MoChA)

In HMA, source information is restricted to a single en-
coder output, and this strong constraint greatly sacrifices the
accuracy in general. To overcome this problem by leveraging
the surrounding contexts, MoChA introduces an additional soft
attention mechanism over a fixed window of width w on top of
HMA.

At test time, soft attention scores βi,j are calculated over w
encoder outputs from every token boundary ti as follows:

βi,j = exp(ui,j)/

ti∑
l=ti−w+1

exp(ui,l),

ci =

ti∑
j=ti−w+1

βi,jhj , (4)

where ui,j is the chunk energy activation formulated as in (1)
without weight normalization and the offset parameter r, and ci
is a context vector for the i-th token.

During training, βi,j can be calculated on top of the expected
alignment score αi,j as

βi,j =

j+w−1∑
k=j

(
αi,kexp(ui,j)/

k∑
l=k−w+1

exp(ui,l)

)
. (5)

The computation of βi,j is expensive because of the nested
summation. Fortunately, it can be computed more efficiently
with a moving sum operation, denoted as MovSum, as follows:

βi,j = exp(ui,:) · MovSum( αi,:

MovSum(exp(ui,:, w, 1))
, 1, w),

MovSum(x, b, f)n =

n+f−1∑
m=n−(b−1)

xm.

This computation can be implemented by a 1-dimensional con-
volution. ci is calculated as ci =

∑T ′
j=1 βi,jhj . The objective

function is formulated as the negative log-likelihood Lmocha =
− logPmocha(y|x), where Pmocha is the output probability dis-
tribution of MoChA.

To encourage MoChA to learn monotonic alignments,
we train it jointly with an auxiliary CTC objective Lctc =
− logPctc(y|x), wherePctc is the CTC output probability distri-
bution, by sharing the encoder sub-network [43], [82]. Moreover,
to avoid vanishing of αi,j , quantity loss Lqua is introduced by
making the expected total number of token boundaries closer to
the reference output sequence length U as follows [20], [32]:

Lqua = |U −
U∑
i=1

T ′∑
j=1

αi,j |. (6)

We refer to this technique as quantity regularization (QR).5 Note
that any external alignment information is not used here. The
total objective function Ltotal is defined as a linear interpolation
of Lmocha, Lctc, and Lqua as follows:

Ltotal = (1− λctc)Lmocha + λctcLctc + λquaLqua, (7)

where λctc (0 ≤ λctc ≤ 1) and λqua (≥ 0) are tunable weights
for the CTC loss and quantity loss, respectively.

IV. PROBLEMS IN MOCHA

In this section, we review two major problems in MoChA:
vanishing alignment probabilities and delayed token generation.

A. Vanishing Alignment Probabilities

Conventional alignment models such as the hidden Markov
model (HMM) [83] and CTC models use the forward-backward
algorithm to calculate alignment probabilities. However, it is not
straightforward to apply that algorithm to the HMA mechanism.
This is because HMA does not normalize the monotonic energy
ei,j across the entire set of encoder outputs h to obtain the ex-
pected alignment score αi,j , which means that αi,j is not a valid
probability. Moreover, the decoder is an autoregressive model,
and an incremental left-to-right update of the decoder state is
required for each token. Therefore, during the marginalization
process at training time,αi,j depends only on past alignments, as
can be seen in (3), and it can quickly be attenuated as the number
of decoding steps increases [33], [84], because

∑T ′
j=1 αi,j < 1.

This is especially problematic for long-form speech because the
model is more likely to fail to learn the scale of pi,j properly
in the latter steps. Accordingly, the gap in the HMA behaviors
between training and testing is widened. This leads to premature
endpointing, which increases deletion errors [85], [86].

B. Delayed Token Generation

To enable online inference, a streaming ASR model needs to
be equipped with a time-restricted encoder, which does not use
enough future information. However, because E2E models are
optimized with sequence-level criteria, i.e., the cross-entropy,
future encoder outputs are used as much as possible [29], [31],
[32], [37]. As a result, token boundaries are shifted several

5QR was investigated for DeCoT in [32] for the voice search task, and it did
not bring any improvement for a naive MoChA model. However, we found that
it gave large improvements for the naive model in our experiments. We attribute
this to the longer input sequence length distributions and the smaller training
data sizes of the corpora used in this work. Therefore, unless otherwise noted,
we use QR for the baseline MoChA models in this work.
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Fig. 1. Visualization of the token boundaries (yellow dots) of the baseline
UniLSTM - MoChA model (top, T5 in Table II) and the proposed model with
CTC-ST (bottom, T6). Reference: “we might be putting lids and casting shadows
on their power wouldn’t we want to open doors for them instead.”

frames ahead from the actual acoustic boundary positions. More-
over, MoChA allows emission of multiple tokens at the same
input index. These problems inevitably cause a large perceived
latency and make the model unusable in online ASR.

Fig. 1 (top) shows an example of token boundaries emitted
from a baseline MoChA model trained with an auxiliary CTC
loss. The yellow dots and the spikes below represent the token
boundaries from MoChA and the CTC posterior probabilities,
respectively. It is known that the posterior probabilities in a
well-trained CTC model tend to peak in sharp spikes [4]. In
the figure, we can observe that MoChA’s token boundaries are
indeed shifted to the right (future side) from the actual acoustic
boundaries and are poorly aligned to the CTC spikes.

V. ALIGNMENT KNOWLEDGE DISTILLATION FROM HYBRID

ASR SYSTEM

This section describes previous approaches to tackle the
delayed token generation problem in MoChA by leveraging
word alignments extracted from a hybrid ASR system [32].
We review two methods in [32]: Delay Constrained Training
(DeCoT) and Minimum Latency Training (MinLT), which can
reduce both the emission latency and recognition errors. Because
the alignment knowledge bootstrapped in a hybrid system is
transferred to an AED model, we refer to the procedure as
alignment knowledge distillation from the hybrid system.

Let A = (a1, . . . , aT ) (aj : V-dimensional one-hot vector;
V: vocabulary size of the hybrid system) be a frame-level
word alignment corresponding to the input sequence x, and
let bref = (bref1 , . . . ,brefU ) be a sequence of endpoints of token
boundaries for a reference transcription y = (y1, . . . , yU ). To
convert the word alignment to a subword alignment compatible
with MoChA, we divide the total time duration of each word in
A by the ratio of the character length of each subword. Finally,
we select the end timestamp as the token boundary.

A. Delay Constrained Training (DeCoT)

In DeCoT, inappropriate alignment paths that poorly match
the reference alignment are removed by masking out their scores

αi,j during marginalization. Then, αi,j in (3) is reformulated to
αdecot
i,j as follows:

αdecot
i,j =

⎧⎨
⎩
pi,j

(
(1− pi,j−1)

αi,j−1

pi,j−1
+ αi−1,j

)
(j≤brefi +δdecot)

0 (otherwise),

where δdecot is a hyperparameter to control the acceptable delay,
andbrefi is a reference boundary of the i-th token transferred from
the hybrid system.

As explained in Section IV-A, MoChA has a problem of an
exponential decay ofαi,j , and the masking forαdecot

i,j accelerates
it further. To recover the proper scale of αdecot

i,j , Lqua in (6) is
calculated with αdecot

i,j instead of αi,j as

Ldecot
qua = |U −

U∑
i=1

T ′∑
j=1

αdecot
i,j |. (8)

Intuitively, QR in DeCoT emphasizes the valid alignment paths
during marginalization. Moreover, this also leads to better esti-
mation of βi,j in (5). Accordingly, the total objective function
in (7) is modified as follows:

Ltotal = (1− λctc)Lmocha + λctcLctc + λquaLdecot
qua . (9)

Unlike in [32], we also add a CTC loss as an auxiliary objective
for DeCoT.

B. Minimum Latency Training (MinLT)

While DeCoT can effectively reduce the emission latency, a
fixed buffer size δdecot must be predefined for every token. How-
ever, the emission latency can vary depending on the speaking
rate, subwords, and so on. To reduce the latency of each token
more flexibly, MinLT directly minimizes the expected latency so
that the expected token boundaries in MoChA get closer to the
corresponding reference boundaries. A differentiable expected
latency loss Lminlt is specified as

bmocha
i =

T ′∑
j=1

j · αi,j , (10)

Lminlt =
1

U

U∑
i=1

|brefi − bmocha
i |, (11)

where bmocha
i is the expected boundary position in MoChA for

the i-th token during training. The total objective function in (7)
is modified as follows:

Ltotal = (1− λctc)Lmocha + λctcLctc + λminltLminlt, (12)

where λminlt (≥ 0) is a hyperparameter to control the latency.

VI. PROPOSED METHOD: CTC SYNCHRONOUS TRAINING

In this section, we propose a novel training method to alleviate
the problems of vanishing alignment probabilities and delayed
token generation in MoChA by leveraging CTC alignments as
a reference for token boundaries.
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Fig. 2. Overview of CTC synchronous training (CTC-ST).

A. Overview

As observed in Fig. 1, there exists a gap in the timing to emit
tokens between the CTC and MoChA models even when they
share the same encoder. However, we can see that the CTC spikes
are closer to the actual acoustic boundaries. The reason is that
CTC does not suffer from alignment error propagation because
of the optimization with the forward-backward algorithm and
the assumption of conditional independence on a per-frame
basis. Therefore, we expect that CTC can generate more reliable
alignments than MoChA and serve as an effective guide for
MoChA to learn to detect token boundaries more accurately.

Motivated by this reasoning, we propose CTC synchronous
training (CTC-ST), in which a MoChA model is trained to
mimic a CTC model in order to generate token boundaries at
similar positions. Fig. 2 shows a system overview. Both the
MoChA and CTC branches are jointly optimized by sharing
the encoder, and reference token boundaries are obtained from
the CTC alignments generated from the CTC branch. Therefore,
the CTC model serves not only as a regularizer to enhance the
encoder representations but also as a teacher alignment model
to estimate accurate token boundary positions. In this sense,
we regard CTC-ST as a form of self-distillation from CTC
to MoChA. Specifically, the synchronization of token bound-
aries in CTC-ST can be viewed as explicit interaction between
MoChA and CTC models on the decoder side, unlike in the
conventional joint CTC/Attention framework [43]. However, we
only leverage the discrete token boundary positions rather than
the probability distributions as in the conventional knowledge
distillation method [44].

Because CTC is not allowed to emit multiple symbols at the
same input index, the reference token boundaries from the CTC
alignments can also enforce the monotonicity ofαi,j in MoChA,
which leads to the emission latency reduction as well. Moreover,
unlike the methods described in Section V, the entire model can
be trained in an end-to-end manner without relying on external
alignments extracted from a hybrid system or manual annotation.

B. Extraction of CTC Alignments

We use the most plausible CTC path π̄ = argmaxπ p(π|x)
(|π̄| = T ′), given by Viterbi alignment, via forced alignment
with the forward-backward algorithm in a manner similar to
triggered attention [18]. The time indices of non-blank to-
kens in π̄ are used as the reference token boundaries bctc =
(bctc1 , . . . ,bctcU ). When repeated non-blank labels exist, the
leftmost index corresponding to the same non-blank token is
used as a reference token boundary. The last time index T ′ is
used for the end-of-sentence (EOS) mark, 〈eos 〉. For instance,

given a CTC path π̄ =[φ,c,c,φ, φ,a,a,a,φ,t,t,φ] (φ:
blank) corresponding to a reference transcription “c a t 〈
eos〉,” we convert it to[φ,c,φ, φ, φ,a,φ, φ, φ,t,φ, 〈eos〉]
and then extract the time indices of the non-blank tokens
bctc =(2,5,9,11) (1-indexed). Unless otherwise specified,
bctc is generated with the model parameters at each training
step on the fly and is expected to get more accurate as the
training continues. We can also pre-compute bctc and use the
fixed boundaries throughout training when adopting curriculum
learning; this approach is discussed in Section XI-A.

C. Optimization

We define the objective function of CTC-ST Lsync (hereafter,
the CTC-ST loss) as

Lsync =
1

U

U∑
i=1

|bctci − bmocha
i |. (13)

The total objective function in (7) is reformulated as

Ltotal = (1− λctc)Lmocha + λctcLctc + λsyncLsync, (14)

where λsync (≥ 0) is a tunable hyperparameter. When using
CTC-ST, we do not use the quantity loss and CTC-ST loss simul-
taneously. This is because we found that the combination was
not effective in our experiments, as described in Section VIII.
Instead, we propose an effective curriculum learning strategy.

D. Curriculum Learning Strategy

To calculate the effective gradient via (13) in CTC-ST, it
is necessary to estimate reasonable expected token boundary
positions in MoChA during training. However, αi,j tends to
diffuse over several frames in the early training stage. Again,
we note that αi,j is not explicitly normalized to sum up to
one. Moreover, CTC alignments would not be very accurate
in the early training stage either. Therefore, applying CTC-ST
from a random parameter initialization leads to unstable, slower
convergence. To tackle this problem, we propose a simple but ef-
fective curriculum learning strategy composed of the following
two stages.

1) Stage 1: We first train a MoChA model equipped with
a bidirectional encoder (e.g., BLSTM) together with QR by
applying (7) from scratch until convergence. As the bidirectional
encoder can see the entire context, we refer to this model as
“offline.” In this stage, we expect the model to learn a proper
scale of αi,j .

2) Stage 2: Next, we optimize a MoChA model equipped
with a latency-controlled bidirectional encoder (e.g., LC-
BLSTM [87]) with CTC-ST by applying CTC-ST with (14).
We initialize the parameters with values optimized in stage 1.
Because the BLSTM and LC-BLSTM encoders have the same
model structure, we can reuse all of the parameters; the only
difference between them is the lookahead context size. The
optimizer’s parameters and the learning rate are reset at the
beginning of stage 2. In this stage, we expect the model to learn
accurate token boundary location. When using a unidirectional
LSTM encoder, the same encoder is used in both stages. We also
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TABLE I
CORPUS STATISTICS

apply this curriculum learning strategy to DeCoT and MinLT to
stabilize the training [32].

E. Combination With SpecAugment

Recently, SpecAugment [42] has shown the capability to
improve the performance of E2E ASR models greatly. SpecAug-
ment is an on-the-fly data augmentation method that introduces
stochastic time and frequency masks into input speech. MT

time masks, whose size is sampled from a uniform distribution
U(0, T ) are applied to the input log-mel spectrogram. Similarly,
frequency masks are also applied with mask parametersMF and
F . However, such input masks easily collapse the recurrence
of αi,j in (3) right after the masked region. Although such
a problem does not exist in offline global AED models or
frame-synchronous models, it is a severe problem in MoChA. In
our experiments, in fact, the performance of the baseline MoChA
model was degraded by applying SpecAugment.

In contrast, CTC-ST can help MoChA recover the collapsed
αi,j in the masked region by leveraging the CTC spikes because
CTC assumes conditional independence on a per-frame basis.
Therefore, we expect that CTC-ST is beneficial for MoChA to
learn monotonic alignments that are robust against noisy inputs.

VII. EXPERIMENTAL EVALUATION

A. Datasets

We used the TEDLIUM release 2 (TEDLIUM2) [88] and Lib-
rispeech [89], the Corpus of Spontaneous Japanese (CSJ) [90],
and the single distant microphone (SDM) portion of the AMI
Meeting Corpus [91] for our experimental evaluations. The cor-
pus statistics and the utterance length distributions are presented
in Table I and Fig. 3, respectively. We used 10 k vocabularies
based on the byte pair encoding (BPE) algorithm [92] except for
the AMI corpus, for which a vocabulary of 500 BPE units was
used.

B. Experimental Configuration

Using the Kaldi toolkit [93], we extracted 80-channel log-
mel filterbank coefficients computed with a 25-ms window that
was shifted every 10 ms. Input features were normalized by the
global mean and variance calculated on each training set. We
removed utterances longer than 16 seconds from the training data
to conserve the GPU memory capacity. The training utterances
were sorted by their input lengths in ascending order during the
entire training stage. We applied 3-fold speed perturbation [94]
to the TEDLIUM2 and AMI corpora with factors of 0.9, 1.0,
and 1.1.

Fig. 3. Utterance length distributions in TEDLIUM2, Librispeech, CSJ, and
AMI (SDM) corpora.

The encoders consisted of two CNN blocks followed by five
layers of (LC-)BLSTM or unidirectional LSTM. Each CNN
block consisted of two CNN layers, each of which had a 3× 3
filter followed by a max-pooling layer with a stride of 2× 2.
This resulted in a 4-fold frame rate reduction in total and
introduced a 60 ms lookahead latency for every output of the
CNN blocks. We set the number of units in each (LC-)BLSTM
layer to 512 per direction. To reduce the input dimension of the
subsequent (LC-)BLSTM layer, we summed the LSTM outputs
in both directions at every layer [95]. For a unidirectional LSTM
encoder, the unit size was increased to 1024. In this article, we
denote an LC-BLSTM encoder with a hop size of Nc frames
and a future context of Nr frames as “LC-BLSTM-Nc+Nr.”
The decoder was a single layer of unidirectional LSTM with
1024-dimensional units. We set the window sizew of chunkwise
attention in MoChA to 4. Offline global AED models used the
location-based attention [8].

We also trained RNN-T models with the same encoder for
comparison. The RNN-T models had a two-layer LSTM pre-
diction network with 1024 memory units and a joint network
with 512 units. The 1 k BPE was used for the vocabulary
except for 500 units on the AMI corpus. These vocabulary
sizes were selected to achieve the best performance for RNN-T.
We also used an auxiliary CTC loss for RNN-T as Ltotal =
(1− λctc)Lrnnt + λctcLctc, where Lrnnt is a RNN-T loss. λctc

was set to 0.3.
The Adam optimizer [96] was used with an initial learning

rate of 1e− 3, which was then decayed exponentially. For the
TEDLIUM2 and AMI corpora, 4 k warmup steps were used.
We applied dropout and label smoothing [97] with probabilities
of 0.4 and 0.1, respectively. The weight of the quantity loss
λqua in (7) was set to 2.0, 0.1, 1.0, and 1.0 for the TEDLIUM2,
Librispeech, CSJ, and AMI corpora, respectively. For DeCoT,
λqua in (9) was set to 2.0. The CTC-ST weight λsync in (14) was
set to 1.0 for all corpora, unless otherwise noted. λctc was set
to 0.3 in all models. All training was performed with a single
GPU.
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TABLE II
RESULTS WITHOUT SPECAUGMENT ON TEDLIUM2

QR: Quantity Regularization. CTC-ST: CTC-Synchronous Training.

For inference, we used a 4-layer LSTM LM with 1024 units
per layer. For AED models, we used a beam width of 10 and
scores normalized by the output sequence length at every output
timestep, except for global AED models on the AMI corpus.6

Joint CTC decoding was performed for global AED models [82].
For RNN-T models, we used the breadth-first time-synchronous
decoding (TSD) algorithm with a monotonic constraint (here-
after, mono-TSD) [98] to speed up decoding,7 and we merged
paths corresponding to the same label history, except for the
AMI corpus.8 We also reduced the beam width of streaming
RNN-T models to 5 because of the inference speed constraint.
Our implementation is publicly available.9

VIII. RESULTS

A. TEDLIUM2

1) Effectiveness of CTC-ST: Table II summarizes the results
on the TEDLIUM2 corpus. In the offline scenario, the naive
implementation of MoChA showed very poor performance.
Quantity regularization (QR) drastically improved the perfor-
mance (T3). Although CTC-ST also improved the performance,
it was less effective than QR when it was applied from scratch.
The BLSTM RNN-T outperformed the global AED model.

In the streaming scenario, however, our proposed CTC-ST
significantly improved the baseline performance as compared
to QR regardless of the encoder type. We obtained relative
word error rate (WER) improvements of 12.0, 13.9, and 12.3%
for the UniLSTM, LC-BLSTM-40+20, and LC-BLSTM-40+40
MoChA models, respectively, on the test set. Although using a
larger number of future lookahead frames improved the WER

6This was because the utterance lengths in the AMI corpus are relatively short.
7Although we did not explicitly use a monotonic RNN-T loss, the joint CTC

training enforced a similar effect.
8Again, this was because the utterance lengths are relatively short.
9[Online]. Available: https://github.com/hirofumi0810/neural_sp

Fig. 4. WER bucketed by different input length on TEDLIUM2 test set.

TABLE III
RESULTS OF REGULARIZATION METHODS AND CURRICULUM LEARNING

STRATEGY ON TEDLIUM2 WITH LC-BLSTM-40+40 ENCODER

CONFIGURATION

as expected, the effectiveness of CTC-ST was consistent. The
token boundaries from the MoChA and CTC branches in T5
and T6 are visualized in Fig. 1. We can see that the MoChA
boundaries moved to the left, and that the gap in the timing to
emit tokens in both branches was reduced. This is desirable for
reducing the perceived latency [32], which will be evaluated in
Section X-B. Moreover, we found that the CTC spikes slightly
shifted to the left. Although RNN-T was more robust against
long-form utterances on the dev set, MoChA optimized with
CTC-ST matched the performance of RNN-T on the test set.

2) Bucketing by Input Length: Fig. 4 shows a plot of the
WER bucketed by the input length on the test set. The plot
confirms that the largest gains by CTC-ST were for utterances
longer than 20 seconds. The offline global AED model with joint
CTC decoding (T1) did not have difficulty in recognizing long
utterances, whereas the baseline streaming MoChA models did,
regardless of the encoder type (T5, T7). As we had expected,
the proposed CTC-ST successfully mitigated this problem (T6,
T8).

3) Effectiveness of Curriculum Learning: Next, we inves-
tigate the effectiveness of the regularization methods (CTC-
ST and QR) and the curriculum learning strategy by using
LC-BLSTM-40+40 MoChA. Table III summarizes the results.
Initialization with the offline model T3 was very helpful for
both regularization methods, which is consistent with a previous
study [31]. However, regularization with the CTC-ST loss or
quantity loss in stage 2 was essential for achieving a performance
gain even with curriculum learning. When using the LC-BLSTM
encoder, CTC-ST was more effective than QR regardless of the
use of curriculum learning, unlike the results listed in Table II
for the BLSTM encoder. Combining both losses did not lead to
any further improvement, although it was more effective than
applying the quantity loss alone. Therefore, CTC-ST has an
overlapping effect of encouraging MoChA to learn the scale
of αi,j properly.

https://github.com/hirofumi0810/neural_sp
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TABLE IV
RESULTS WITH SPECAUGMENT ON TEDLIUM2

4) Combination With SpecAugment: We next investigate the
combination of CTC-ST and SpecAugment, whose results are
summarized in Table IV. We set (Fsp, Tsp) to (13, 50) for
UniLSTM MoChA, (27, 50) for LC-BLSTM MoChA, and (27,
100) for the other models. We used the same configurations
on other corpora as well. Because of the convergence issue,
we applied SpecAugment only in stage 2 only. Moreover, we
increased λsync to 4.0 for the UniLSTM MoChA model.10 The
naive streaming MoChA models only with QR did not obtain any
improvement with SpecAugment, whereas the performance of
the RNN-T models improved. Therefore, this was a problem on
the decoder side, rather than the encoder side. However, CTC-ST
mitigated this problem and showed additional 12.8% and 13.1%
relative improvements for the UniSLTM and LC-BLSTM mod-
els, respectively, on the test set. Finally, MoChA optimized with
CTC-ST matched the performance of RNN-T on the test set
when SpecAugment was applied as well.

B. Librispeech

Table V summarizes the results on the LibriSpeech corpus.
For the UniLSTM MoChA model, CTC-ST achieved relative
improvements of 14.8% and 5.8% on the test-clean and test-
other sets, respectively. For the LC-BLSTM MoChA model,
we obtained gains of 27.0% and 2.1% with CTC-ST on the
test-clean and test-other sets, respectively. Therefore, we con-
clude that CTC-ST is effective for large-scale data as well. Fur-
thermore, the best MoChA models outperformed their RNN-T
counterparts except for the dev-clean set.

We also compared our models with streaming RNN-based
E2E systems reported in the literature. Our enhanced MoChA
models optimized with CTC-ST showed the best performance.
To compare our model with sMoChA [30] and MTA [33], we
deactivated SpecAugment in the LC-BLSTM MoChA model.
The results were 3.9% and 11.2% on the test-clean and test-other
sets, and we still confirmed that our method outperformed them.
The average lookahead latency of our LC-BLSTM MoChA was

10We found that this was beneficial when using SpecAugment for a weak
encoder like UniLSTM. The effect of λsync will be discussed in Section X-B.

TABLE V
RESULTS ON LIBRISPEECH

SpecAugment was Used for All Models. QR: Quantity Regularization. CTC-ST: CTC-
Synchronous Training.

TABLE VI
RESULTS ON CSJ

SpecAugment was Used for All Models.

660 ms (= 400 ms (Nc)/2 + 400 ms (Nr) + 60 ms (CNN) while
that was 640 ms (= 640 ms/2 + 320 ms) in [30], [33]. Therefore,
we consider that the difference in the lookahead latency is negli-
gible. Because CTC-ST is a method to enhance attention-based
decoders, any type of encoder can be used. Further improvement
is expected by adapting Transformer [102] and Conformer [103]
encoders, which we leave for a future work.

C. Csj

Table VI summarizes the results on the CSJ. For both UniL-
STM and LC-BLSTM MoChA models, we observed clear im-
provements with CTC-ST, which was consistent with the pre-
vious experiments. However, the relative gains for LC-BLSTM
MoChA were smaller than those in other corpora. We reason that
this was because the utterance lengths in the CSJ are relatively
shorter, as shown in Fig. 3. We will analyze this behavior by
simulating long-form speech utterances in Section IX.
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TABLE VII
RESULTS ON AMI (SDM)

SpecAugment was Used for All Models.

Fig. 5. WER of simulated long-form speech on CSJ eval1 set, with different
maximum input length threshold Tcat. LC-BLSTM-40+40 encoder was used.

D. AMI

Table VII summarizes the results on the AMI corpus. We did
not use any external LMs on this corpus because we did not ob-
serve any improvement. We observed significant improvement
with CTC-ST in the far-field ASR task as well. CTC-ST gave
12.6% and 13.4% relative improvements over the baseline LC-
BLSTM MoChA model on the dev and eval sets, respectively.
LC-BLSTM MoChA also achieved better performance than that
of LC-BLSTM RNN-T. Note that our baseline was very strong,
as demonstrated by its superior performance compared to the
TDNN+LF-MMI system [105]. As shown in Fig. 3, utterance
lengths in the AMI corpus are relatively short compared to other
corpora. Therefore, we can conclude that CTC-ST is also very
effective for noisy speech, for which AED models have trouble
learning alignments.

IX. EVALUATION OF ROBUSTNESS TO LONG-FORM SPEECH

In Section VIII-A, we have observed that CTC-ST was effec-
tive for reducing WER of long-form utterances on TEDLIUM2.
In this section, we further analyzed this behavior by simulating
long-form evaluation sets on other domains. We used CSJ and
Librispeech for this purpose because input lengths of the original
utterances in the evaluation sets were seen during training, as
shown in Fig. 3. We simulated long-form utterances by merging
adjacent utterances according to timestamps. Specifically, given
a maximum input length threshold Tcat [sec.], we concatenated
adjacent utterances from the first utterance to the last utterance of
the same speaker in a greedy way until the accumulated utterance
length surpassed Tcat.

Figs. 5 and 6 show the results on CSJ and Librispeech,
respectively. On CSJ, the baseline MoChA model without
SpecAugment (blue bars) performed well with manual audio
segmentation. However, as Tcat increased, the performance was

Fig. 6. WER of simulated long-form speech on Librispeech test-other set, with
different maximum input length threshold Tcat. LC-BLSTM-40+40 encoder
was used.

gradually degraded, whereas MoChA models trained with CTC-
ST only (red bars) were robust in recognizing the long-form
utterances. On the other hand, the WER of the naive MoChA
trained with SpecAugment (green bars) was increased quickly
for longer utterances. This indicates that SpecAugment affected
the training of the naive MoChA model, which could not be
observed with the original test sets because they did not include
unseen input lengths. However, we confirmed that CTC-ST
mitigated this problem, showing the lowest WER on all lengths
(purple bars). We also confirmed the effectiveness of CTC-ST
on Librispeech in all length bins as well although SpecAugment
without CTC-ST did not degrade WER as severely as on CSJ.
Still, the absolute gains by CTC-ST were larger in long-form
speech. Therefore, we can conclude that CTC-ST is effective for
recognizing long-form speech, which is generally challenging
for AED models [34], [85].

X. EVALUATION OF EMISSION LATENCY

In this section, we evaluate the emission latency and compare
CTC-ST with alignment knowledge distillation from a hybrid
system [32]. Moreover, we also compare MoChA with RNN-T.

A. Emission Latency Metric

1) Token Emission Latency (TEL): Unlike the algorithmic
latency introduced by lookahead frames in the encoder, the token
emission latency (TEL) represents the user-perceived latency
in a real application [106]. Although some previous works
investigated the endpoint latency corresponding the last token
in voice search and assistance tasks [3], [106], [107], we mainly
focus here on the per-token emission latency because we are
interested in long-form speech applications, as in lectures and
meetings.

Following [32], we define the TEL as the difference in tim-
ing between the reference and predicted boundaries. To obtain
the reference token boundaries, we perform forced alignment
with Kaldi. The predicted boundaries in an utterance are ob-
tained from the input timesteps at which monotonic attention in
MoChA is activated, i.e., {j|zi,j = 1}i=1,...,U . The TEL of the
i-th token in the n-th utterance, Δn,i, is calculated as

Δn,i[ms] = b̂ni − bni , (15)

where b̂ni and bni are the i-th predicted and reference boundaries,
respectively, in then-th utterance. We do not include the 〈eos〉 to-
ken for TEL calculation. A negative latency can be observed for
some tokens because of premature boundary detection. To match
the lengths of a hypothesis and the corresponding reference when
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calculating the TEL, we apply teacher forcing by conditioning
the decoder on the ground-truth transcript. However, the WER
is reported with beam search decoding using the same model.
Therefore, the TEL is a corpus-level latency metric. In the
following, we report the median (PT@50) and 90th (PT@90)
percentile values of the corpus-level TEL distributions.

We also evaluate the TEL of CTC. In this case, we perform
forced alignment and use the most plausible alignment path to
calculate the TEL.

2) Word Emission Latency (WEL): To enable a comparison
of the emission latency between MoChA and RNN-T, which
have different output units in our experiments, we also evaluate
the word emission latency (WEL). The WEL only considers
the time differences of the last subword in each word. When
calculating the WEL of RNN-T, we conduct forced alignment
similarly to CTC and use the most plausible alignment path.
Moreover, we also evaluate the three kinds of WEL; (1) per-word
WEL (average WEL), (2) WEL corresponding to the first word
in an utterance (first WEL) [106], and (3) WEL corresponding
to the last word (last WEL) [64], [69].

B. Latency Evaluation of CTC-ST

As shown in Fig. 1, the naive MoChA tended to emit tokens
later than the corresponding CTC spikes, and CTC-ST reduced
the gap in the example. To evaluate this quantitatively, we
calculated the TEL. We used UniLSTM encoders for this pur-
pose, because LC-BLSTM encoders introduce the algorithmic
latency on the encoder side, whereas we are interested in the
emission latency on the decoder side. Tables VIII and IX sum-
marize the results on the TEDLIUM2 and Librispeech corpora,
respectively. The TEL on Librispeech was averaged over the
test-clean and test-other sets. We first observed that SpecAug-
ment significantly increased the TEL of the baseline MoChA
model. We also evaluated the TEL from the CTC branch,11 and
it also increased slightly by applying SpecAugment. On the
other hand, we confirmed that CTC-ST significantly reduced
both TEL and WER on both corpora. Increasing λsync up to
4.0 showed improvements of both metrics on TEDLIUM2. On
the other hand, on Librispeech, WER was best at λsync = 1.0
while the TEL was continuously reduced by increasing λsync up
to 3.0. PT@50 of the baseline MoChA with SpecAugment was
reduced by 240 ms and 240 ms on TEDLIUM2 and Librispeech,
respectively. PT@90 was reduced by 600 ms and 280 ms on
TEDLIUM2 and Librispeech, respectively. The TEL of MoChA
matched that of CTC in most conditions, confirming the function
of CTC-ST. CTC-ST traded WER and TEL effectively by chang-
ing λsync. Interestingly, we found that CTC-ST also reduced the
TEL of the CTC branch by increasing λsync. This indicates that
joint training reduced the TEL of the other branch interactively
via the shared encoder. Although CTC itself had a delay from
the reference acoustic boundaries, it provided better timing to
emit tokens for MoChA.

11The corresponding WER was calculated with a beam width of 10 and
shallow fusion.

TABLE VIII
TOKEN EMISSION LATENCY (TEL) ON TEDLIUM2, WITH COLUMNS A

INDICATING ALIGNMENT

UniLSTM Encoder Was Used for All Models. TEL Was Calculated on Test Set.
PT@X Represents X-Th Percentile. δdecot Corresponds to Number of Encoder
Outputs [40ms]. ♦SpecAugment Was NOT Used.

TABLE IX
TOKEN EMISSION LATENCY (TEL) ON LIBRISPEECH

UniLSTM Encoder Was Used for All Models. TEL Was Averaged Over Test-Clean
and Test-Other Sets. ♦SpecAugment Was NOT Used.
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TABLE X
WORD EMISSION LATENCY (WEL) OF MOCHA AND RNN-T ON TEDLIUM2,

WITH ALL MODELS USING SPECAUGMENT

TABLE XI
WORD EMISSION LATENCY (WEL) OF MOCHA AND RNN-T ON LIBRISPEECH,

WITH ALL MODELS USING SPECAUGMENT

C. Comparison With Alignment Distillation From Hybrid
System

Next, we compared CTC-ST with methods of alignment
knowledge distillation methods from a hybrid system. We
trained MoChA models with MinLT and DeCoT on the same
model configuration. Tables VIII and IX summarize the results
on the TEDLIUM2 and Librispeech corpora, respectively. We
observed that both DeCoT and MinLT also reduced the WER
and TEL from those of the baseline model.12 DeCoT with the
optimal δdecot outperformed MinLT in both metrics on both
corpora. CTC-ST also outperformed MinLT in both metrics. On
Librispeech, increasing λsync brought a large TEL reduction
without hurting the WER so much while MinLT sacrificed the
WER a lot with a small TEL reduction. Compared to DeCoT,
CTC-ST achieved a lower TEL, especially for PT@50, with a
comparable WER. This was because DeCoT focused on tokens
whose emission latency surpassed δdecot, and thus the TEL
reduction was large in tail parts (PT@90). On the other hand,
CTC-ST reduced the emission latency of all tokens. Therefore,
we conclude that CTC-ST can achieve a similar or better tradeoff
compared to alignment knowledge distillation from a hybrid
system without relying on external alignment information.

D. Comparison With RNN-T

Finally, we compared the emission latency between MoChA
and RNN-T. In addition to the average per-word statistics, we
also calculated the WEL corresponding to the first and last
tokens. The results in Tables X and XI present the WEL on
TEDLIUM2 and Librispeech, respectively. We confirmed that
MoChA trained with CTC-ST achieved lower WELs than those
of RNN-T in all the conditions on both corpora. Note that RNN-T
was also jointly trained with the CTC objective, and thus can be
regarded as a strong baseline. Comparing the first WEL and the
last WEL, we found that the latter had a lower latency. We reason
that more acoustic contexts were necessary to emit the first word
because there was no linguistic context on the decoder side. On

12Unlike in [32], we applied SpecAugment to DeCoT and MinLT. We found
that those methods can also tolerate noisy inputs to some extent.

TABLE XII
COMPARISON OF CTC ALIGNMENT GENERATION IN CTC-ST ON TEDLIUM2,

WITH ALL MODELS USING SPECAUGMENT

TABLE XIII
COMPARISON OF CTC ALIGNMENT GENERATION IN CTC-ST ON LIBRISPEECH,

WITH ALL MODELS USING SPECAUGMENT

the other hand, the last WEL of MoChA with CTC-ST was close
to zero.

XI. ANALYSIS

In this section, we perform an ablation study of alignment
generation in CTC-ST. Finally, we compare MoChA and RNN-T
in terms of the inference speed.

A. Effect of Incremental Alignment Update

In the above experiments, we generated the reference bound-
aries from CTC alignments with the model parameters at each
training step on the fly. Here, we investigated the effect of
using fixed reference boundaries throughout stage 2 by using
parameters optimized in stage 1. We refer to this strategy
as precomputing. When generating the CTC alignments for
precomputing, we deactivated SpecAugment and other regu-
larization methods such as dropout. We used λsync = 1.0 in
this experiment. Tables XII and XIII summarize the results
on the TEDLIUM2 and Librispeech corpora, respectively. For
TEDLIUM2, the on-the-fly CTC alignment generation consis-
tently outperformed the precomputing strategy, regardless of the
encoder type. Note, however, that the precomputing strategy
also significantly outperformed the baseline listed in Table IV.
For Librispeech, precomputing showed similar performances to
those of on-the-fly computing. This was because the parameters
learned in stage 1 had already provided good CTC alignments by
leveraging more training data. This also confirms the observation
that CTC-ST achieved similar WERs to those of DeCoT on
Librispeech in Section X-C.
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Fig. 7. Inference speed as measured by real time factor (RTF). TSD: time-
synchronous decoding.

B. Inference Speed

While we have shown that MoChA can match RNN-T in terms
of accuracy, we also evaluated its efficiency as compared to
RNN-T in terms of the inference speed. For both models, we
precomputed token embeddings before decoding. For RNN-T,
we cached prediction network states corresponding to the same
hypothesis [13] and batched all hypotheses in the beam for
updating the prediction network and joint network [108]. We
applied both TSD and mono-TSD as the search algorithm [98].
The maximum expansion number was set to 3 per frame in
the TSD algorithm. We used the best MoChA (optimized with
CTC-ST) and RNN-T models trained with SpecAugment, with
the beam width set to 10 and {5, 10}, respectively. The inference
speed was measured with a 6-core Intel(R) Xeon(R) Gold 6128
CPU @ 3.4 GHz. We investigated {1, 2, 4} threads, and we
report the real-time factor (RTF) obtained by averaging five
trials. Fig. 7 shows the results on the TEDLIUM2 test set. We
observed that all MoChA models achieved an RTF of less than
1.0 with a single thread in a Python implementation. Using
more threads led to faster decoding. The UniLSTM encoder was
slower than the LC-BLSTM encoder because of the incremental
state update on a per-frame basis. On the other hand, RNN-T
required using the mono-TSD algorithm with the half beam
width to achieve a similar inference speed. Moreover, RNN-T
with the TSD algorithm was much slower because of the multiple
symbol expansions per frame.

XII. CONCLUSION

In this article, we have proposed CTC synchronous training
(CTC-ST), a self-distillation method for knowledge in input-
output alignment to improve the performance of streaming AED
models. Specifically, we distill knowledge of token boundary
positions from a CTC model to a MoChA model, both of
which share an encoder and are trained jointly. The proposed
method forces MoChA to generate tokens in positions similar
to those predicted by CTC, by synchronizing both sets of token
boundaries during training. Experimental evaluations on four
benchmark datasets demonstrated that the proposed method
significantly improved MoChA in terms of both the recognition
accuracy and the emission latency, especially for long-form and
noisy utterances. We also compared the proposed method with
methods of alignment knowledge distillation from an external
hybrid ASR system and achieved a similar tradeoff of the
accuracy and latency without any external alignments. Finally,

we showed that MoChA can achieve comparable recognition
accuracy, lower emission latency, and faster inference speed
compared to RNN-T.

In future work, we would like to further reduce the gap
in recognition accuracy between RNN-T and MoChA in very
long utterances. Reducing flicker of MoChA by selecting stable
partial hypotheses that do not change in the subsequent prefix ex-
pansion, which were studied for incremental systems [59], [60],
[109]–[113] and RNN-T [114], is also an interesting research
direction.
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