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Saturation of the nuclear binding energy is one of the most important properties of atomic nuclei.
We derive the saturation in holographic QCD, by building a shell-model-like mean-field nuclear potential
from the nuclear density profile obtained in a holographic multibaryon effective theory. The numerically
estimated binding energy is close to the experimental value.
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I. INTRODUCTION AND SUMMARY

Holographic QCD provides effective theories via the
AdS=CFT correspondence [1–3] and allows us to calculate
various observables of large Nc QCD-like gauge theories.
Nuclear physics is a challenging target of holographic
QCD. The nuclear matrix model [4] was proposed to be a
unified model of nuclear physics inspired and derived by
the AdS=CFT. Atomic nuclei are bound states of nucleons,
which may allow an effective description in terms of
baryons in holographic QCD. Nucleons are D-branes in
the gravity side of the AdS=CFT, so the holographic theory
of the nucleons is given by matrices, which is the basis of
the nuclear matrix model. By the nuclear matrix model,
several important properties of nuclei, including the nuclear
radii [5], nuclear spectra, and magic numbers [6], have been
reproduced.1 In this paper, we study another important
aspect of nuclei—the nuclear binding energy. We show that
the nuclear matrix model also reproduces the saturation of
the nuclear binding energy: the property that the nuclear
binding energy per nucleon approaches a constant inde-
pendent of the mass number A at large A.
Nuclear states in holographic QCD are obtained as

energy eigenstates of the nuclear matrix model. In the
gravity side of the Sakai-Sugimoto model [34,35], the

baryons correspond to the D4-branes called baryon vertices
which are wrapped on the S4 directions in the Witten
geometry.2 The nuclear matrix model action is the low
energy effective action of the baryon vertices. After the
dimensional reduction for S4 directions, the Hamiltonian of
the nuclear matrix model for A baryons is derived as [4]

Hfull ¼ H − trAtðQUðAÞ − NcÞ; ð1Þ

H ¼ 1

2
trðΠIÞ2 þ 2π̄a_αiπ

_αi
a þ 1

2
M2w̄ _αi

a wa
_αi

− 4iλϵIJKXJ
AX

K
Bf

AB
Cw̄ _αi

a ðτIÞ _α _βðtCÞabwb
_βi

− 2λtr½XI; XJ�2 þ λðw̄ _αiðτIÞ _α _βw _βiÞ2; ð2Þ

where the indices fI; J; K; � � �g, fi; j; k; � � �g, and
f _α; _β; _γ; � � �g label the three-dimensional space, SUðNfÞ
flavors, and SUð2Þ spins, respectively. The other indices
fA; B;C; � � �g and fa; b; c; � � �g stand for the adjoint and
fundamental representations of the baryonUðAÞ symmetry,
and the trace is taken over the baryon UðAÞ matrices. The
fields XI, w, and w̄ are scalar fields which come from the
D4-D4 and D4-D8 open strings, and ΠI, π, and π̄ are their
conjugate momenta, respectively.
The nuclear matrix model (2) gives bound states of

nucleons and reproduces nuclear states [6]. There is a
difficulty in directly evaluating the nuclear binding energy
by the nuclear matrix model. The nuclear binding energy is
the energy difference between the nuclear bound state and
the state at which all the constituent nucleons are infinitely
far apart, while the nuclear matrix model is effective for
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1As for the nuclear matrix model, see [7] for a three-flavor
case, [8,9] for the three-body force, and [10] for the fermionic
nature of nucleon. An earlier proposal of the matrix description
includes [11,12]. Note that the binding of nucleons by nuclear
force [13–17] may be problematic generically in holographic
QCD [18]. For related approaches, see [19–33].

2Baryon vertices are most stable when they are located at the
tip of the Witten geometry where the flavor D8-branes are placed,
so the baryon vertices are on the flavor D8-branes. For simplicity,
we ignore fluctuations in the directions away from the tip, and the
couplings to the gravity modes (as they are subleading in the large
Nc expansion).
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nucleons close to each other.3 This difficulty is overcome
once the following point is noticed: the saturation of the
binding energy is only for large A. Most of the total binding
energy comes from nucleons in lower energy levels, and
that of the highest energy level which should be compared
to the nucleon separated far away can be treated as zero
approximately. Therefore, we can calculate the binding
energy of the other nucleons and then the total binding
energy by solving the nuclear matrix model.
Nuclear states in the matrix model are calculated in [6]

for small baryon numbers, but the procedure is not useful
for large nucleon numbers. In the large A limit, it is
convenient to use the mean-field approximation. We here
adopt the following strategy. First, starting with the nuclear
density profile obtained by the nuclear matrix model [5],
we derive an effective mean-field potential which re-
produces the density profile. This potential defines a
holographic nuclear shell model, in which positions of
nucleons are identified with diagonal eigenvalues of X of
the nuclear matrix model.4 Assuming that the binding
energy for a nucleon at the Fermi level is negligible, the
total binding energy of the nucleus can be obtained by
summing up all the energy of nucleons below the Fermi
energy in the holographic nuclear shell model. We calculate
this nuclear binding energy and show that it reproduces the
saturation property.
Since the nuclear matrix model can treat flavors, spins,

and orbital motion of baryons in a unified fashion, we can
estimate the magnitude of the nuclear binding energy using
the nucleon mass and the Δmass as inputs. We find that the
resultant numerical value turns out to be close to the
experimental value of the binding energy. The result is
quite nontrivial in view of the crude approximations
employed in the holographic QCD.
The organization of this paper is as follows. In Sec. II, we

construct a holographic nuclear shell model by deriving an
effective potential from the nuclear density profile in the
nuclear matrix model. In Sec. III, we calculate the holo-
graphic nuclear binding energy. Using the holographic
nuclear shell model, we obtain the nuclear binding energy
per nucleon and show that it is independent of A. We find
that the binding energy is numerically close to the exper-
imental value. Appendix A describes the details of the mass
rescaling used in the calculus, and Appendix B adds a novel
observation on the A dependence of nuclear radii.

II. HOLOGRAPHIC NUCLEAR SHELL MODEL

First, we review the nuclear density profile of the nuclear
matrix model [5] and check its consistency by confirming

that the effect of w is subleading. Then in Sec. II B we
inversely obtain the shell-model potential from the density
profile. This serves as a holographic nuclear shell model,
with which in Sec. III we calculate the nuclear binding
energy.

A. Nuclear density in the nuclear matrix model

The nuclear density profile in the nuclear matrix model
was derived in [5] by using the Ramond-Ramond charge
density formula of D-branes [36],

ρðxÞ ¼ 1

ð2πÞ3
Z

d3ke−ikIx
Ihtr exp ½ikJXJ�i: ð3Þ

In the large A and large D limit, the nuclear matrix model
effectively behaves as that with a harmonic potential since
only the ladder diagrams contribute to the expectation value
above. The density profile was calculated in [5] as5

ρðxÞ ¼
8<
:

A
π2r2

0

ffiffiffiffiffiffiffiffiffi
r2
0
−r2

p ðr < r0Þ
0 ðr > r0Þ;

ð4Þ

where r is the radial coordinate in three-dimensional space
and r0 is the surface radius which is related to the effective
frequency m as r20 ¼ 2A=m. In the derivation, the w-sector
was ignored because the number of degrees of freedom ofw
isOðAÞwhile that of X isOðA2Þ. In this section, we employ
the ground state wave function developed in [6] and find
that indeed the effect of the w sector is subleading to make
sure that we can use (4) in the subsequent sections.
Let us evaluate the total energy including the contribu-

tion from the w sector. The potential for XI can be
approximated by a harmonic potential ðm2=2ÞtrðXIÞ2 as
in [6] and the energy of the orbital motion becomes

E ¼ m

�
NX þ 3

2
ðA2 − 1Þ

�
; ð5Þ

where NX is the number of excitations of XI and the second
term comes from the zero-point fluctuations. The effective
frequency of the orbital motion, m, is determined in a
self-consistent fashion (see Appendix B of [6]) and is
approximately given by

3When the eigenvalues of X are far away, flat directions should
appear for which supersymmetry restoration would be important.
The nuclear matrix model ignores fermions on the baryon vertex.

4Eigenvalue were shown to behave as fermions when Nc is
odd [10].

5The evaluation of (3) in the large A limit and in the large D
limit (where D refers to the index I of XI as I ¼ 1; 2;…; D and
will be set toD ¼ 3 after the evaluation) is described in [5]. At the
leading order, the nonperturbative vacuum is found to give a
nonzero expectation value for htrA½XIXI �i, around which the
fluctuation XI behaves as a massive free scalar. Then the
evaluation of (3) results in htrA expðik · XÞi ∝ J1ðr0jkjÞ=ðr0jkjÞ
where J1 is a Bessel function, whose inverse Fourier transform at
D ¼ 3 provides (4).
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m2 ¼ 16Aλ
3ðA2 − 1Þ hX

I
AX

I
Ai: ð6Þ

Here the expectation value in (6) is with the wave
function given in [6], and we have some remarks. The
gauge field At behaves as a Lagrange multiplier and gives
constraints that physical states must be in singlet of SUðAÞ
and have Uð1Þ charge of QUð1Þ ¼ NcA. Thus, the physical
ground states must have NcA excitations of w. The energy
of these excitations gives a correction to the nucleon mass
and also modifies the kinetic term of XI (see Appendix A
for the details). Using an appropriate redefinition of XI, the
coupling constant λ for XI in the Hamiltonian is replaced by

λr ¼ λ
M3

0

M3
N
; ð7Þ

whereM0 is the bare tension of the baryon vertex andMN is
the nucleon mass which includes the energy of w and w̄.
As described in [6], for A > 2Nf, because it is impos-

sible to form a totally antisymmetric combination solely of
w, excitations of XI should also be introduced in the wave
function.6 A straightforward counting shows that NX is
approximately given by ð3=2Þ7=3A4=3 for large A. Thus,
using the virial theorem ð1=2Þm2htrX2i ¼ hVi ¼ E=2, an
estimation of htrX2i leads to

htrX2i ¼ 1

m

��
3

2

�
7=3

A4=3 þ 3

2
ðA2 − 1Þ

�
: ð8Þ

We find that, for large A, the first term which is the effect of
the excitations due to the w-sector wave function is
negligible (see Appendix B for the comparison of the
subleading terms found here with the experimental data of
the nuclear radius).7 Thus, the effective frequency for large
A is evaluated as

m3 ¼ 8λrA: ð9Þ

The density profile is given by (4) with r0 ¼ λ−1=6r A1=3.

B. Derivation of mean-field potential

In this subsection, we derive a mean-field effective
potential for nucleons from the density distribution (4).
The wave function of a nonrelativistic fermion in an
arbitrary spherically symmetric potential VðrÞ is given
by using the WKB approximation as

ψ ¼ C
r
p−1=2ðrÞei

R
drpðrÞYlm; ð10Þ

where

pðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − VðrÞ − lðlþ 1Þ

r2

r
ð11Þ

and Ylm is the spherical harmonics. The wave function is
suppressed very fast outside the classical turning point and
approximately zero for

E < VðrÞ þ lðlþ 1Þ
r2

: ð12Þ

The wave function must satisfy the quantization condition

Z
drpðrÞ ≃ πn; ð13Þ

with a positive integer n.
The constant C is fixed by the normalization condition as

C−2 ¼ 4π

Z
dr
pðrÞ : ð14Þ

When the fermions occupy all the states below the Fermi
level at E ¼ Ef, the density is obtained by the sum of the
probabilities for those states as

ρðrÞ ¼ 4
X
n;l;m

jψðrÞj2

≃
Z

Ef

VðrÞ
dE

Z
r2ðE−VðrÞÞ

0

ð2lþ 1Þdl dn
dE

4C2

r2pðrÞ ; ð15Þ

where the sum is approximated by an integral when the
number of states is sufficiently large. The factor 4 in the
first line comes from the sum over spins and flavors
(proton and neutron). From the quantization condition,
we obtain

dn
dE

¼ 1

π

d
dE

Z
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − VðrÞ − lðlþ 1Þ

r2

r
¼ 1

8π2C2
; ð16Þ

and then the density is calculated as

ρðrÞ ¼ 2

3π2
ðEf − VðrÞÞ3=2: ð17Þ

Thus, for the nucleon density (4), the effective potential is
inversely given by

VðrÞ ¼ Ef −
32=3A2=3

22=3r4=30 ðr20 − r2Þ1=3
ð18Þ

6Because of this fact, it was argued in [6] that the energy
eigenstates of the nuclear matrix model have a structure similar to
those in the nuclear shell model.

7Note that in this paper we employNc ¼ 3. If we took the large
Nc limit first, the first term in (8) would be dominant, as it is
OðN1

cÞ while the second term in OðN0
cÞ.
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for r < r0. Since the density is approximately zero for
r > r0, this effective potential must be accompanied by a
steep potential barrier at r ¼ r0.
The mean-field potential (18) defines our holographic

nuclear shell model. In the next section, we use this
potential to evaluate the nuclear binding energy.

III. HOLOGRAPHIC NUCLEAR
BINDING ENERGY

A. Saturation

The shell-model effective potential (18) has the depth
measured from the Fermi level typically of

−VðrÞ ∼ A2=3

r20
∝ A0: ð19Þ

This roughly implies that the nuclear binding energy per
nucleon is independent of A. In this section, we evaluate the
nuclear binding energy by the effective potential (18) more
precisely.
It is expected that the binding energy of nucleons at the

Fermi level is very small. Hence, we take Ef ¼ 0, and then,
the binding energy per nucleon is approximately given by
the average of the energy of each state. The total binding
energy B of a nucleus is a sum of the potential energy BðpÞ

and the kinetic energy BðkÞ, B ¼ BðpÞ þ BðkÞ. Below we
calculate them separately.
The total potential energy BðpÞ is given in terms of the

density as

BðpÞ ≡ hVi ¼ 4π

Z
r2ρðxÞVðrÞdr: ð20Þ

Then, the total potential energy for the effective potential
(18) is evaluated as

BðpÞ ¼ −
Z

24=3 · 32=3A5=3r2dr

πr10=30 ðr20 − r2Þ5=6

¼ −
38=3Γð7

6
Þλ1=3r A

22=3
ffiffiffi
π

p
Γð2

3
Þ : ð21Þ

By using the virial theorem, the total kinetic energy BðkÞ
is given by

BðkÞ ≡ 1

2
hrV0ðrÞi ¼ 2π

Z
r3ρðxÞV 0ðrÞdr: ð22Þ

Since the potential has very high potential barrier at r ¼ r0,
V 0ðrÞ diverges there. In order to avoid this divergence, we
introduce a regularization by modifying the potential as

VðrÞ ¼ −
32=3A2=3

2r5=30

ðr0 − rÞn
ϵnþ1

3

ð23Þ

for r > r0 − ϵ, and take the ϵ → 0 limit. Here, n is the
artifact of the regularization. It should be noted that the
density should be modified simultaneously as

ρðxÞ ¼ A

21=2π2r5=20

ðr0 − rÞ32n
ϵ
3
2
nþ1

2

ð24Þ

for consistency with (4). Then, the total kinetic energy is
calculated as

BðkÞ ¼ −
Z

r0−ϵ

0

24=3A5=3r4dr

31=3π2r10=30 ðr20 − r2Þ11=6

−
Z

r0

r0−ϵ

32=3A5=3nðr0 − rÞ52n−1dr
21=2πr7=60 ϵ

5
2
nþ5

6

¼ 38=3
ffiffiffi
π

p
λ1=3r A

22=35Γð2
3
ÞΓð5

6
Þ : ð25Þ

The final expression is, in fact, independent of the artifact
of the regularization.
Thus, all together, the holographic nuclear binding

energy B in the large A limit is obtained as

B
A
¼

�
38=3Γð7

6
Þ

22=3
ffiffiffi
π

p
Γð2

3
Þ −

38=3
ffiffiffi
π

p
22=35Γð2

3
ÞΓð5

6
Þ
�
λ1=3r : ð26Þ

The important point is that this is independent of A, which
shows the saturation of the nuclear binding energy—the
property that the nuclear binding energy per nucleon
approaches a constant for a large number of nucleons.

B. Numerical estimates

Let us numerically estimate the nuclear binding energy.
We fix the parameters of the model λ and M by using the
mass of a nucleon and that of Δ as inputs.
Together with the zero-point fluctuation, the energy of

the state with the isospin I and the baryon number A ¼ 1 (a
single baryon) in the nuclear matrix model [6] is given by

Ew ¼ ðNc þ 2NfÞM þ 4λ

M2
IðI þ 1Þ; ð27Þ

where the first term is the zero-point energy coming from
all Nf flavors, two spins, and both w and w̄. In order to
distinguish the mass of nucleons and Δ, we took first order
perturbative correction which is the last term of (2). By
using Nc ¼ 3 and Nf ¼ 2, the nucleon massMN and the Δ
mass MΔ are expressed as

MN ¼ M0 þ 7M þ 3λ

M2
; ð28Þ

MΔ ¼ M0 þ 7M þ 15λ

M2
; ð29Þ
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where M0 is the bare tension of the baryon vertex,

M0 ¼
λQCDNcMKK

33π
¼ λN2

c

3M2
: ð30Þ

By using the experimental data, MN ¼ 939 ½MeV�
and MΔ ¼ 1232 ½MeV�, the parameters of the nuclear
matrix model are fixed as8

λ ¼ 3.13 × 105 ½MeV3�; M ¼ 113 ½MeV�: ð31Þ

Our holographic nuclear binding energy per nucleon (26)
is evaluated as9

B
A
≃ 9.66 ½MeV�: ð32Þ

In experimental data, the naive average of the nuclear
binding energy per nucleon measured is known to be
roughly B=A ≃ 8 ½MeV�. In another fitting of the exper-
imental binding energy data by the empirical Bethe-
Weizsäcker mass formula, the coefficient of the volume
term (the large-A leading term) shows B=A ≃ 16 ½MeV�.
Our numerical estimate (32) is close to the values of the
experiments, which is sufficiently a good agreement as a
nuclear model of holographic QCD.

ACKNOWLEDGMENTS

We would like to thank Takeshi Morita for his collabo-
ration at the early stage of this work. We also like to thank
Hiroshi Suzuki and Hiroshi Toki for their suggestions
on the methods. This work was supported in part by
MEXT/JSPS KAKENHI Grants No. JP17H06462 and
No. JP20K03930.

APPENDIX A: MASS RESCALING

In this Appendix, we study how the mass coefficient in
the kinetic term of a generic nonrelativistic action is scaled
by quantum corrections to the total energy. This results in
the scaling of the coupling (7).
A nonrelativistic action of a free particle is obtained by

the nonrelativistic limit of a relativistic worldline action as

S ¼ −m
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð_xμÞ2

q

≃
Z

dt

�
−mþ 1

2
mð_xIÞ2 þ � � �

�
; ðA1Þ

where μ is the spacetime index. To see the effect of the
quantum corrections, it is convenient to introduce an
einbein e on the worldline,

S ¼
Z

dt

�
m
2e

ð_xμÞ2 − 1

2
me

�

¼
Z

dt

�
m
2e

ð_xIÞ2 − 1

2
mðeþ e−1Þ

�
: ðA2Þ

Suppose we have a correction to the total energy from some
other sector (such as w sector in the nuclear matrix model).
It would effectively introduce an additional cosmological
constant term δm on the worldline as

S ¼
Z

dt

�
m
2e

ð_xIÞ2 − 1

2
mðeþ e−1Þ − eδm

�
: ðA3Þ

With this correction, the equation of motion for the einbein
e is solved as

e2 ¼ 1 − ð_xIÞ2
1þ ð2δmÞ=m ; ðA4Þ

in which ð_xIÞ2 is negligible in the nonrelativistic limit.
Substituting this solution for the einbein, the corrected
action (A3) again takes the same form as (A1), but now the
mass m is replaced by M ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2δmÞ=mp

. Thus, the
correction to the total energy rescales the mass coefficient
of the kinetic term as well as the cosmological constant on
the worldline. This effect can also be interpreted as the
rescaling of the einbein e ≃m=M.
With this rescaling of the mass in mind, we consider

the correction to the mass in the X sector in the nuclear
matrix model. Introducing the einbein, the action for XI is
naturally written as

S ¼
Z

dt tr

�
1

2e
ðDtXIÞ2 þ 2eλ½XI; XJ�2 þ � � �

�
: ðA5Þ

The natural kinetic term can be given by a rescaling of XI to
that in the physical length scale XI

phys as

S ¼
Z

dt tr

�
M0

2e
ðDtXI

physÞ2

þ2eM2
0λ½XI

phys; X
J
phys�2 þ � � �

�
; ðA6Þ

where the tension of the baryon vertexM0 is given by (30).
In this frame, we understand that the energy of w gives the

8By using these inputs, we obtain λQCD ¼ 7.47 and MKK ¼
277 ½MeV�. They are slightly different from those in other works
but still of the same order.

9As described in [6], the numerical coefficient in (9) can vary
in the range from 8λrA to 48λrA, depending on the harmonic
approximation methods of the commutator square potential in the
nuclear matrix model (and in generic matrix models). Using the
range, our result (32) ranges from B=A ≃ 9.66 ½MeV� to
B=A ≃ 17.5 ½MeV�. In addition, note that in the nuclear matrix
model the electromagnetic force is not taken into account.
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correction to the tension as (28) and modifies the einbein
such that

e ¼ M0

MN
: ðA7Þ

Using this corrected e and redefining the coordinate as

XI ¼ M1=2
N XI

phys; ðA8Þ

we find that the action takes the same form as (A5),

S ¼
Z

dt tr

�
1

2
ðDtXIÞ2 þ 2λr½XI; XJ�2 þ � � �

�
; ðA9Þ

but with the rescaled coupling λr ≡ e3λ, which is our (7).

APPENDIX B: A DEPENDENCE
OF NUCLEAR RADIUS

With m determined in (9), our evaluation (8) shows that
for the nuclear radii growing asA1=3 there exists a subleading
correction in the large A expansion. Expanding (8) for large
A, we find that the subleading correction starts atA−2=3. This
peculiar power is the result of holographic QCD.
It is surprising that the nuclear experimental data indeed

follow this A−2=3 power law. In Fig. 1, we plot the
experimental data [37] of the charge radius R of all known
mononuclidic elements.10 We fit the data with a function

R

A1=3 ¼ c1ð1þ c2A−2=3Þ ðB1Þ

and find a consistent fit with c1 ¼ 0.89 ½fm� and c2 ¼ 1.5
(the solid line in Fig. 1). As this fitting curve reproduces the
data very well, we conclude that the subleading correction
is given relatively by A−2=3—the prediction of the holo-
graphic QCD is confirmed in experiments.

We may even quantitatively compare the coefficients c1
and c2 with the nuclear matrixmodel. Although in themodel
there could be some other subleading effect, here we simply
assume the validity of (8) and look at how the nuclear radius
changes in A. Using (8) itself, the mean-square radius of the
atomic nucleus in the nuclear matrix model is

Rholo ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

A
htrðXI

physÞ2i
r

; ðB2Þ

where XI
phys is related to X

I in (8) by (A8). Correcting (9) to
the next-to-leading order, we have

m3 ¼ 8λrAþ 25=334=3λrA1=3: ðB3Þ

Then, the coefficients c1 and c2 in the charge radius (B2) are
calculated as

c1 ¼
31=2A1=3

2λ1=6r M1=2
N

¼ M

2λ2=3
; c2 ¼

31=3

24=3
: ðB4Þ

Using the numerical parameters (31) of the nuclear matrix
model, we find c1 ≃ 2.4 ½fm� and c2 ≃ 0.57. These values are
of the same order as those of the experiments, which is quite a
good agreement in view of the crude approximations in the
holographic QCD.
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