
Bound on energy dependence of chaos

Koji Hashimoto ,1,* Keiju Murata,2,† Norihiro Tanahashi ,3,‡ and Ryota Watanabe1,4,§
1Department of Physics, Kyoto University, Kyoto 606-8502, Japan

2Department of Physics, Nihon University, Sakurajosui, Tokyo 156-8550, Japan
3Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

4Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

(Received 25 January 2022; accepted 1 December 2022; published 19 December 2022)

We conjecture a chaos energy bound, an upper bound on the energy dependence of the Lyapunov
exponent for any classical/quantum Hamiltonian mechanics and field theories. The conjecture states that
the Lyapunov exponent λðEÞ grows no faster than linearly in the total energy E in the high energy limit. In
other words, the exponent c in λðEÞ ∝ EcðE → ∞Þ satisfies c ≤ 1. This chaos energy bound stems from
thermodynamic consistency of out-of-time-order correlators and applies to any classical/quantum system
with finite N=large N (N is the number of degrees of freedom) under plausible physical conditions on the
Hamiltonians. To the best of our knowledge the chaos energy bound is satisfied by any classically chaotic
Hamiltonian system known, and is consistent with the cerebrated chaos bound by Maldacena, Shenker, and
Stanford, which is for quantum cases at large N. We provide arguments supporting the conjecture for
generic classically chaotic billiards and multiparticle systems. The existence of the chaos energy bound
may put a fundamental constraint on physical systems and the Universe.
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I. CONJECTURE

The statement of our conjecture is as follows. For any
Hamiltonian system with its Hermitian Hamiltonian made
by finite polynomials in coordinate/field variables,1 the
classical/quantum Lyapunov exponent λðEÞ measured at
energy E in the high energy limit satisfies the following
upper bound on its power in the energy dependence:

c ≤ 1 for λðEÞ ∝ Ec ðE → ∞Þ: ð1Þ

More precisely, for a given system there exist C > 0 such
that jλðEÞj ≤ CE for any sufficiently large E. For quantum
systems, the quantum Lyapunov exponent is measured [1]
by out-of-time order correlators (OTOCs) [2]. We call (1)
chaos energy bound.

This conjecture2 ismotivated by thewell-definedness of the
canonical ensemble for chaotic systems. Suppose a quantum
(classical) Hamiltonian system has a chaos, as the OTOC −
hEj½qðtÞ; pð0Þ�2jEi [Poisson bracket fqðtÞ; pð0Þg2P] grows
as exp½2λðEÞt�.3 Then the thermal Lyapunov exponent λthðTÞ
is defined by [3,4]

λthðTÞ≡ 1

t
log

�
−
Z

dEρðEÞe−βEhEj½qðtÞ; pð0Þ�2jEi
�

ð2Þ

for large t (smaller than the Ehrenfest time), where ρðEÞ is the
density of states and β≡ 1=T where T is the temperature.4

Thewell-definedness of the canonical ensemble requires that
the energy dependence of ρðEÞ should be weaker than that
of the Boltzmann factor e−βE for the finiteness of the partition
function. Thus, it follows that ρðEÞ grows no faster than an
exponential function of E.5 Then, the convergence of the

*koji@scphys.kyoto-u.ac.jp
†murata.keiju@nihon-u.ac.jp
‡tanahashi@phys.chuo-u.ac.jp
§watanabe@gauge.scphys.kyoto-u.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1One can further restrict the domain of the spatial coordinates
to some bounded region. We then assume that all components of
the extrinsic curvature on the boundary surface are finite.

2The conjecture was first mentioned in a footnote in [3].
3In the literature, the expectation value of the squared

commutator is often called OTOC since it contains out-of-
time-ordered terms. We will adopt this definition since the
squared-commutator OTOC translates directly into the classical
Poisson bracket, offering not only quantum but also classical
Lyapunov exponents in the classical limit.

4The definition (2) differs from that in [3,4] by a factor of 1=2
since (2) is what was used in the quantum large N bound (4).

5For the case of string theory, in spite of ρðEÞ being exponen-
tially growing in E, the convergence argument still works as long
as the temperature is lower than the Hagedorn temperature.
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integral (2) requires the chaos energy bound (1), therefore, the
bound allowsone to treat the systemat finite temperature.This
argument for (2) only assumes the finiteness of the partition
function and the integral (2) for chaotic systems, and applies
nomatter whether the system is quantum or classical, at finite
N or largeN, whereN is the number of degrees of freedomof
the system.
In the large N limit one can replace E by the temperature

T.6 Hence the chaos energy bound (1) in the large N limit
leads to the chaos temperature bound

c ≤ 1 for λthðTÞ ∝ Tc ðT → ∞Þ: ð3Þ

Let us remind the readers of the celebrated chaos bound
conjectured by Maldacena, Shenker, and Stanford [1] for
large N quantum systems,

λthðTÞ ≤ 2πT=ℏ; ð4Þ

whose saturation is a discrimination diagnosis for existence
of a black hole description in gravity dual. We find that the
quantum large N bound (4) shows (3), thus the bound (1)
(which can be applied to more generic systems7) is
consistent with (4). Furthermore, since the saturation of
(4) needs the saturation of (1), we can further conjecture
that any holographic quantum system dual to a black hole
should saturate the chaos energy bound (1).

II. EXAMPLES OF SYSTEMS

Any classically chaotic systems studied in literature
satisfy the chaos energy bound (1), as far as we have
checked. Here we list some for the readers’ reference.
First we note that an ordered phase in the high energy

limit is allowed in many chaotic models including double
pendulum and sigma models [3], meaning c < 0 satisfying
the chaos energy bound (1).8

For many-body systems, we are concerned with their
largest Lyapunov exponent. For the Fermi-Pasta-Uram
β-model, an analytic formula for the largest Lyapunov
exponent [9] gives c ∼ 1=4 and the bound (1) is satisfied.
For a large number of coupled rotors, the formula gives
c ¼ −1=6 [9], which satisfies the bound (1).
As a field theoretic example, a chaotic string in anti–de

Sitter soliton geometry [10] shows λðEÞ ∼ logE, consistent
with the bound (1). Thermalized fluids show c ¼ 1=2 [11],
satisfying (1). Homogeneous Yang-Mills mechanics [12]
gives c ¼ 1=4 [13,14], which is determined by the scaling.
In Yang-Mills theories on a lattice [15–17] (see also

[18–20]), the largest Lyapunov exponent λðEÞ ∝ g2E (up
to dimensionless coefficients where g is the coupling
constant) saturates the bound (1).

III. GENERAL PARTICLE MOTION
AND BILLIARDS

We show that billiards and their generalization satisfy the
bound (1). Classical billiards with a standard kinetic
Hamiltonian H ¼ p2=2m allows a particle motion with
the velocity _x ∝

ffiffiffiffi
E

p
, thus any Lyapunov exponent of

billiards, which is proportional to the inverse duration of
hitting the boundary wall, satisfies λðEÞ ∝ _x ∝

ffiffiffiffi
E

p
. This

exponent of the billiard,

c ¼ 1=2; ð5Þ
is subject to the bound (1).
For a generalized billiard with a kinetic Hamiltonian

H ¼ pγ , Hamilton’s equation is _x ¼ γpγ−1 ∝ Eðγ−1Þ=γ, thus
the Lyapunov exponent has a power

c ¼ 1 − 1=γ; ð6Þ
which is less than 1 for any positive and finite γ. Therefore,
the bound (1) is always satisfied.9,10

The argument above is expected to apply to any sparse
many-body system of N particles with a finite-range
interaction, as any potential boils down to a contact
scattering at E → ∞. Then, the typical velocity of the
particle is v ∼

ffiffiffiffiffiffiffiffiffiffi
E=N

p
for γ ¼ 2. The scattering rate is

proportional to v and, thus, λðEÞ ∝ ffiffiffiffi
E

p
.

We can also show that billiards with softened walls,
which are particles in generic potentials, may obey
the bound (1). Consider a two-dimensional system approxi-
mated by H¼p2

1=2þp2
2=2þxm1 x

n
2¼ _x21=2þ _x22=2þxm1 x

n
2,

where the last term is a dominant term in a generic potential
VðxÞ at E → ∞. Here m and n are positive because the
orbits for defining the chaos need to be bounded.11 Then the
following scaling symmetry12 t → αt, xi → α2=ð2−m−nÞxi
and H → α2ðmþnÞ=ð2−m−nÞH leads to an equation
λðEÞt ¼ λðα2ðmþnÞ=ð2−m−nÞEÞ · αt, which is solved to give
the exponent as

6See Sec. I of the Supplemental Material [5] for the large N
saddle point approximation.

7Note that the classical limit ℏ → 0 of (4) does not lead to any
bound.

8The Hénon-Heiles system and particle/string motion around
black holes [6–8] may not allow the high energy limit.

9Note that any negative γ does not allow chaos to be defined,
because the motion stops asymptotically.

10An example H ∼ ep
2

can violate the bound but does not
satisfy our polynomial assumption for H. In fact, in quantum
mechanics, H ∼ ep; ep

2

are nonlocal and thus physically de-
serted. See Sec. II of the Supplemental Material [5] for details
about our assumptions on the physicality of the Hamiltonians.

11A class of hard-wall billiards is described by a limit
m; n → ∞.

12This scaling is a generalization of what is described in
[13,21,22]. A general argument for the determination of the
energy dependence of the Lyapunov exponent by the scaling
symmetry is given in Sec. III of the Supplemental Material [5].
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c ¼ 1=2 − 1=ðmþ nÞ: ð7Þ

Thus the general two-dimensional classical mechanics
satisfies the chaos energy bound (1).13

IV. SPECULATIONS

The chaos energy bound (1) in quantum field theories
(QFTs) is naturally understood as follows. First, notice that,
although there can bemany coupling constants in the theory,
the onewith the smallestmass dimensionwill be dominant at
high energy. Let g be such a coupling,14 and denote its mass
dimension as dg. In other words, at high energy, the only
dimensionful parameters at hand are E and g. Then, using
some dimensionless constants a, b, and c, the Lyapunov
exponent should be written as λ ¼ bEcga with a > 0 since
the chaos should vanish when the nonlinearity goes away at
g ¼ 0. Since the Lyapunov exponent has mass dimension 1,
the dimensional analysis determines c as

c ¼ 1 − adg: ð8Þ

Assuming that the QFT is consistent at high energy, the
perturbative renormalizability requiresdg ≥ 0, whichmeans
the chaos energy bound (1). The renormalizability makes
sure that no new structure emerges at higher energy scales,
which is in accord with the spirit of our polynomial
assumption made for Hamiltonians.
Conversely, as we can see from the above argument,

if a given field theory allows a particle picture (i.e., the
perturbation theory applies), the chaos energy bound
ensures the perturbative renormalizability.15 Thus, requir-

ing the perturbative renormalizability is equivalent to
requiring the chaos energy bound. Moreover, perturbatively
renormalizable theories have been found only when the
spacetime dimensions are less than or equal to four.
Therefore, we can even argue that the chaos energy bound
implies a restriction of the spacetime dimensions.
Finally, recall that the chaos energy bound follows just

from the well-definedness of the canonical ensemble,
namely, the finiteness of the canonical partition function
and the integral (2) for chaotic systems. In particular, no
matter whether the system is quantum or classical, at finite
N or large N, the chaos energy bound (1) applies. This
universality may put a novel constraint on physical
theories and even the chaos of the universe. For example,
remember that the sum of the positive Lyapunov
exponents is the Kolmogolov-Sinai entropy growth rate.
Since naively a subsystem with the dominant entropy
production may dominate the whole system, the
fundamental theory of the Universe may need to saturate
the chaos energy bound, which could be a selection
principle of a QFT dictating the Universe. According to
(8), the bound is saturated by QFTs with dg ¼ 0, which
are classically conformal theories. Interestingly, the
standard model of elementary particles is almost classi-
cally conformal [23]. Thus, the classical conformality as a
principle of particle phenomenology [24,25] can be
motivated also from the saturation of the chaos energy
bound (1).
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