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extracorporeal cardiopulmonary resuscitation (ECPR) is 
expected to better patient outcomes.1–3 However, these 

O ut-of-hospital cardiac arrest (OHCA) with shock-
able rhythm, such as ventricular fibrillation (VF) 
or pulseless ventricular tachycardia (pVT), is the 

focus of resuscitation strategies because these arrhythmias 
are treatable by defibrillation, and the implementation of 
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Background: The hypothesis of this study is that latent class analysis could identify the subphenotypes of out-of-hospital cardiac 
arrest (OHCA) patients associated with the outcomes and allow us to explore heterogeneity in the effects of extracorporeal cardio-
pulmonary resuscitation (ECPR).

Methods and Results: This study was a retrospective analysis of a multicenter prospective observational study (CRITICAL study) 
of OHCA patients. It included adult OHCA patients with initial shockable rhythm. Patients from 2012 to 2016 (development dataset) 
were included in the latent class analysis, and those from 2017 (validation dataset) were included for evaluation. The association 
between subphenotypes and outcomes was investigated. Further, the heterogeneity of the association between ECPR implementa-
tion and outcomes was explored. In the study results, a total of 920 patients were included for latent class analysis. Three subphe-
notypes (Groups 1, 2, and 3) were identified, mainly characterized by the distribution of partial pressure of O2 (PO2), partial pressure 
of CO2 (PCO2) value of blood gas assessment, cardiac rhythm on hospital arrival, and estimated glomerular filtration rate. The 30-day 
survival outcomes were varied across the groups: 15.7% in Group 1; 30.7% in Group 2; and 85.9% in Group 3. Further, the asso-
ciation between ECPR and 30-day survival outcomes by subphenotype groups in the development dataset was as varied. These 
results were validated using the validation dataset.

Conclusions: The latent class analysis identified 3 subphenotypes with different survival outcomes and potential heterogeneity in 
the effects of ECPR.
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clinical patterns associated with different outcomes using 
the unsupervised clustering technique for OHCA patients 
with initial shockable rhythm.

This study aimed to identify the subphenotypes among 
the OHCA patients with initial shockable rhythm by 
applying a machine learning-based unsupervised clustering 
technique, and investigated the association between the 
subphenotypes and clinical outcomes. Further, this study 
aimed to explore the heterogeneity of the effect of ECPR 
on patient clinical outcomes.

Methods
Study Design, Settings, and Patients
This study was a retrospective analysis of the database of 
the Comprehensive Registry of Intensive Care for OHCA 
Survival (CRITICAL) study. This database was created to 
collect pre-hospital and in-hospital data of OHCA patients 
in Osaka Prefecture, Japan, for a multicenter prospective 
observational study. The details of this registry have been 
described previously.4,14,15 Briefly, the pre-hospital data were 
obtained from the All-Japan Utstein Registry from the Fire 
and Disaster Management Agency (FDMA),14,16 and the 
in-hospital data were collected from 15 tertiary critical care 
medical centers and 1 community hospital with an emergency 

patients are heterogeneous, and several factors such as 
low-flow time duration, cardiac rhythm conversion or some 
biomarkers were reported to be associated with the differ-
ent outcomes.4–6 Among OHCA patients with high clinical 
heterogeneity, these single factors were not suitable for 
differentiating and determining which OHCA patients are 
suitable for this invasive treatment or are expected to have 
favorable neurological outcomes.

The concept of “subphenotypes”, identified by unsuper-
vised machine learning, is a current research focus in med-
icine.7–9 A phenotype is a category of patients with 
common features such as a syndrome (e.g., sepsis or acute 
respiratory distress syndrome), and a subphenotype is a 
subgroup of the phenotype with different risk factors, clin-
ical features, and responses to treatment compared with 
other subphenotypes.10,11 Latent class analysis, which is an 
explanatory modeling technique, has been used to differ-
entiate subphenotypes using continuous and categorical 
variables.12 Our hypothesis is that this data-based cluster-
ing approach could identify the clinical subphenotypes of 
the OHCA patients associated with different outcomes. It 
could allow us to explore heterogeneity in the effect of 
ECPR, which would potentially lead to the clinical use of 
precision treatments that reduce morbidity and mortal-
ity.13 However, no clinical studies have investigated the 
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Figure 1.  Concept of subphenotype and the latent class analysis. Phenotype is a certain type of patient with common features 
such as sepsis or acute respiratory syndrome. The dotted ellipses (Blue, Yellow, Green) represent subphenotypes that are a 
subgroup of patients with different features, risk factors, and response to treatment. Latent class analysis can generate these 
potentially hidden subphenotypes. Each patient has the possibility of belonging to each subphenotype and they are generated 
from the subgroups with the highest probability.10
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model by applying “the Elbow method”.13 The discrimina-
tive power of each variable was calculated as the logarithm 
of the ratio between the probability that the variable is 
relevant for clustering and the probability that the variable 
is irrelevant for clustering.21 The greater the index variable, 
the more important the variable is for clustering. For bet-
ter understanding, the discriminative power was scaled so 
that the sum value was 100%. To identify the optimal 
number of clusters and most relevant discriminatory vari-
ables, clustering using the VarSelLCM package in R 3.5.1 
was conducted with 3–8 clusters.

Once subphenotypes were developed by the model, we 
compared the differences in demographics, pre-hospital 
data, and in-hospital data by using the Pearson’s Chi-
squared test or Kruskal-Wallis rank sum test. Continuous 
variables were summarized by median and interquartile 
range (IQR), whereas categorical variables were summa-
rized by frequencies and percentages.

Subphenotypes and Outcome Association
We evaluated the association between the identified subphe-
notypes and clinical outcomes including the 30-day survival 
as the primary outcome and the 30-day survival with favor-
able neurological outcomes as the secondary outcome, 
which was defined by Cerebral Performance Category 1 or 
2 (Supplementary Appendix 2).22 Logistic regression analysis 
was performed to calculate the crude odds ratio (OR) with 
95% confidence interval (CI) for the outcomes of each 
group. We did not perform the adjustment of other covari-
ates by multivariable analysis, the detailed explanation for 
which is provided in Supplementary Appendix 1.

Heterogeneity Between ECPR and Outcomes
We evaluated the heterogeneity of the association between 
ECPR and outcomes among the subphenotypes. ECPR 
was defined as emergency implementation of veno-arterial 
extracorporeal membrane oxygenation in the resuscitation 
phase. The implementation of ECPR was decided by the 
physician in charge of the patient based on the protocol of 
each institution. Logistic regression analysis, with 95% CI, 
was performed to calculate the crude OR of patients 
treated with ECPR compared to those without ECPR for 
the 30-day survival outcomes by each group. Further, the 
P value for the interaction was evaluated using the interaction 
term. Adjustment of the covariates was not performed, as 
mentioned above. Regarding the 30-day neurological out-
comes, we did not perform this analysis because the num-
ber of outcomes was assumed to be limited.

Validation of the Derived Subphenotypes
To assess the external validity and replicability, the cluster-
ing model was applied to the validation dataset using the 
“predict” function of the VarSelLCM package, and the 
subphenotypes were identified. The characteristics of the 
subphenotypes, association between subphenotypes and 
outcomes, and heterogeneity of the association between 
ECPR and outcomes were assessed in the same manner, as 
described above.

Results
Study Participants
From the 12,594 patients in the CRITICAL database, 
1,169 OHCA patients with initial shockable rhythm were 
included in the analysis; 920 patients were allocated to the 

department, all in Osaka Prefecture in Japan. This study 
was conducted according to the Declaration of Helsinki.

This study included all adult OHCA patients (aged ≥18 
years) with an internal medical cause and initial shockable 
rhythm between 1 July 2012 and 31 December 2017, from 
the CRITICAL database. Initial shockable rhythm was 
defined as VF or pVT confirmed by paramedics at the scene 
because the guideline of advanced life support proposed 
different resuscitation algorithms according to the rhythms.1 
The following patients were excluded: those who did not 
receive any resuscitation or treatment in the hospital; whose 
pre-hospital record was unavailable; whose age was ≤17 
years or unknown; whose mechanism of cardiac arrest was 
caused externally such as trauma; and whose spontaneous 
circulation was obtained by paramedics at contact.

Development Cohort and Validation Dataset
The data were split into a development dataset for cluster-
ing subphenotypes and a validation dataset for assessing 
the validity of the subphenotypes. The development data-
set contained data from 2012 to 2016, and the validation 
dataset contained data from 2017.

Latent Class Analysis/Variable Section
We performed latent class analysis with variable selection 
for clustering subphenotypes according to the suggested 
key steps in the literature.13 The details of variables and 
methodology are described in the Supplementary Appendix 1; 
the concept of latent class analysis is presented in Figure 1.

We selected clinically important variables that are mea-
surable or available in the emergency departments at hos-
pital admission and were registered in the database; 22 
variables were considered as candidates for analysis in this 
study (Supplementary Appendix 2). Covariates encompassed 
a range of domains including demographic information 
(age and sex), pre-hospital data (e.g., presence of witness, 
bystander CPR, bystander defibrillation, and time from 
the emergency call to arrival at the hospital), and in-hospital 
data (e.g., initial cardiac rhythm, blood gas analysis, and 
the laboratory data at hospital arrival).

Data Setup
Implausible data and unreasonable outliers were double-
checked and treated as missing data, as in previous studies.14 
Missing data were imputed by random forest imputation 
as a multiple imputation technique using the “missForest” 
package in R 3.5.1 prior to variable selection and cluster-
ing.9,17,18 The details of missing data are available in 
Supplementary Table 1. Variables with a correlation coef-
ficient >0.5 or <−0.5 were filtered; the most clinically mean-
ingful one was selected, and others were excluded from the 
clustering (Supplementary Table 2).9,13 The estimated glo-
merular filtration rate (eGFR) value was calculated by 
using creatinine level, age, and sex and using the equation 
widely accepted in Japan.19 The adequate sample size 
depends on the data; for sample sizes >500, models and fit 
statistics have been shown to perform consistently with 
high accuracy from simulation-based studies.13,20

Model Fitting and Evaluation
We fitted the model using the development dataset and 
calculated the Bayesian information criterion (BIC) value 
to determine the optimal number of clusters. To identify 
the optimal number of subphenotypes that have potential 
clinical implications, we evaluated the BIC value of the 
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Table. Characteristics of Patients in the Development Dataset

Characteristics Overall  
(N=920)

Subphenotypes
P value*Group 1  

(N=453)
Group 2  
(N=212)

Group 3  
(N=255)

Sex (men) 749 (81) 372 (82) 173 (82) 204 (80) 0.8　　
Age (years) 65.0 (53.0, 75.0) 66.0 (54.0, 76.0)　　 64.0 (53.0, 73.2)　　 64.0 (51.5, 73.0)　　   0.015

Witness 718 (78) 344 (76) 166 (78) 208 (82) 0.2　　
Bystander CPR 410 (45) 196 (43)   82 (39) 132 (52)   0.013

Bystander shock    36 (3.9)    19 (4.2)      5 (2.4)    12 (4.7) 0.4　　
Cardiac rhythm at hospital arrival <0.001

  VF/VT 287 (31) 137 (30) 111 (52)   39 (15)

  PEA/Asystole 394 (43) 290 (64)   79 (37)    25 (9.8)

  ROSC 239 (26)    26 (5.7)   22 (10) 191 (75)

Time from call to hospital (min) 30 (24, 39)　　　 31 (26, 40)　　　　　 30 (24, 36)　　　　　 29 (23, 39)　　　　　 <0.001

BT (°C) 35.5 (34.8, 36.0) 35.6 (34.9, 36.0)　　 34.9 (33.9, 35.8)　　 35.7 (35.2, 36.3)　　 <0.001

PCO2 (mmHg) 63 (42, 83)　　　 80 (66, 97)　　　　　 54 (40, 72)　　　　　 38 (32, 47)　　　　　 <0.001

PO2 (mmHg) 78 (37, 226)　 42 (21, 64)　　　　　 240 (104, 400)　　　 211 (106, 333)　　　 <0.001

BE (mEq/L) −14.5 (−19.4, −9.9) −15.6 (−19.6, −12.2) −18.2 (−23.8, −14.8) −9.4 (−12.5, −6.2) <0.001

Glu (mg/dL) 277 (219, 345)　 287 (227, 353)　　　 314 (235, 387)　　　 241 (199, 287)　　　 <0.001

Alb (g/dL) 3.3 (3.0, 3.7)　　 3.3 (3.1, 3.6)　　　　 2.9 (2.5, 3.2)　　　　 3.7 (3.5, 4.0)　　　　 <0.001

Na+ (mEq/L) 140 (138, 142)　 141 (139, 143)　　　 140 (137, 143)　　　 139 (137, 140)　　　 <0.001

K+ (mEq/L) 4.2 (3.7, 4.9)　　 4.6 (3.9, 5.2)　　　　 4.3 (3.6, 5.3)　　　　 3.8 (3.4, 4.1)　　　　 <0.001

eGFR (mL/min/1.73 m2) 47 (38, 59)　　　 43 (37, 53)　　　　　 47 (33, 62)　　　　　 56 (47, 65)　　　　　 <0.001

Continuous variables are summarized as median and interquartile range (IQR), whereas categorical variables are summarized as frequencies 
and percentages (%). *P value: Pearson’s Chi-squared test or Kruskal-Wallis rank sum test. Probability of misclassification is indicated in 
Supplementary Figure 3. Alb, albumin; BE, base excess; BT, body temperature (°C); CPR, cardiopulmonary resuscitation; eGFR, estimated 
glomerular filtration rate; Glu, glucose; K+, serum potassium (mEq/L); Na+, serum sodium (mEq/L); PCO2, partial pressure of CO2 (mmHg); 
PEA, pulseless electrical activity; PO2, partial pressure of O2 (mmHg); ROSC, return of spontaneous circulation; VF, ventricular fibrillation; VT, 
pulseless ventricular tachycardia.

Figure 2.  Distributions of variables with the 4 highest discriminative power values in the development dataset. The box plot rep-
resents the median and interquartile range.
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highest PCO2 values. Group 2 had higher PO2 values and 
lower PCO2 values than Group 1. Group 3 had high PO2 
values as per Group 2, the lowest PCO2 values, the highest 
pH value, proportion of return of spontaneous circulation 
(ROSC) at hospital arrival, and eGFR value.

Association Between Subphenotypes and Outcomes in the 
Development Dataset
As the primary outcome, 30-day survival was 15.7% 
(71/453) in Group 1, 30.7% (65/212) in Group 2, and 85.9% 
(219/255) in Group 3 (Figure 4). The crude OR [95% CI] 
for the primary outcome was 0.031 [0.02–0.047] for Group 
1 and 0.073 [0.045–0.114] for Group 2 compared with 
Group 3.

As the secondary outcome, 30-day survival with favor-
able neurological outcome was 7.3% (33/453) in Group 1, 
18.9% (40/212) in Group 2, and 75.3% (192/255) in Group 
3 (Figure 4). The crude OR [95% CI] for the secondary 
outcome was 0.026 [0.016–0.04] for Group 1 and 0.076 
[0.048–0.118] for Group 2 compared with Group 3.

Association Between Subphenotypes and Outcomes in the 
Validation Dataset
In the validation dataset, the characteristics of Groups 1 

development dataset (median [IQR] age: 65 [53–75] years, 
men: 749 [81.4%]), and 249 patients were allocated to the 
validation dataset (median [IQR] age: 66 [56–73] years, 
men: 744 [80.7%]). The flowchart of the study and the 
details of exclusion are indicated in Supplementary Figure 1. 
Patient characteristics and in-hospital data are described 
in Table and Supplementary Tables 3 and 4. The 30-day 
survival with favorable neurological outcome in the devel-
opment and validation datasets was 265 (28.8%) and 63 
(25.3%), respectively.

Clustering Subphenotypes in the Development Dataset
In the development dataset, 16 variables were used in the 
subphenotype clustering (Supplementary Appendix 2). The 
optimal clustering number was 3, based on the BIC values 
(Supplementary Figure 2). For identifying these 3 groups, 
the variable with the highest discriminative power was 
partial pressure of O2 (PO2), followed by partial pressure 
of CO2 (PCO2), cardiac rhythm on arrival, eGFR and 
albumin (Alb) (Figure 2, Supplementary Figure 4).

The characteristics and distribution of variables with 
high discriminative power among the patients in the devel-
opment dataset are shown by groups in Table and Figure 3. 
The patients in Group 1 had the lowest PO2 values and the 

Figure 3.  Primary and secondary outcomes by dataset. (Upper) 30-day survival outcome (%) by each subphenotype group. 
(Lower) 30-day favorable neurological outcome (%) by each subphenotype group.
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highest discriminative power to differentiate the clusters 
associated with the outcomes were parameters of circula-
tion (PO2, PCO2, and ROSC). This is because we assume 
that the most important hidden comprehensive factors that 
decide the prognosis among OHCA patients may be the 
hemodynamic state, which consists of the quality of the 
CPR and ROSC, and we believe that the blood test param-
eters (PO2 and PCO2) are the surrogate markers of the 
quality of CPR. Generally, arterial oxygen tension indi-
cates alveolar oxygenation and delivery of the oxygen in 
systemic circulation. During resuscitation, arterial oxygen 
tension may be considered as indicative of the quality of 
CPR, and it was reported to be associated with ROSC and 
survival outcome.23–25 Moreover, arterial carbon dioxide 
tension is representative of inadequate carbon dioxide 
discharge and is mostly caused by low venous return by 
chest compressions and deficient alveolar ventilation during 
resuscitation.26,27 Thus, it is reasonable that PCO2 can 
distinguish the subphenotypes between Groups 2 and 3, 
which were patients who had a high PO2 value. Further, 
cardiac rhythm (ROSC) on hospital arrival, which has the 
third highest discriminative power, is normally associated 
with adequate perfusion and venous return.

Surprisingly, the fourth highest discriminative power 
was eGFR value. This may largely reflect the condition of 
chronic kidney disease (CKD) rather than acute kidney 
injury, because time from call to hospital arrival is within 
45 min in most cases; however, acute kidney injury physi-
ologically progresses in several hours.28 In general, CKD is 
a well-known major risk factor for cardiovascular events 
or sudden death.29,30 Previous studies have shown that low 
eGFR value is associated with death and unfavorable neu-

to 3 were similar to those of the development dataset 
(Supplementary Table 4, Supplementary Figure 5). The 
association between groups and outcomes in the validation 
dataset were also similar to those in the development data-
set (Supplementary Figure 6, Supplementary Appendix 3).

Heterogeneity of the Association Between ECPR and 
Outcomes Among Subphenotypes
In the development dataset, ECPR was performed for 
24.5% (111/453) of Group 1, 59.9% (127/212) of Group 2, 
and 11.8% (30/255) of Group 3. The association between 
ECPR and 30-day survival outcome by subphenotype 
group in the development dataset was as follows: Group 1: 
1.87 (1.08–3.2); Group 2: 1.01 (0.56–1.84); and Group 3: 
0.1 (0.04–0.24) (P value for interaction <0.001; Figure 4).  
In the validation dataset, the association between ECPR 
and 30-day survival outcome by subphenotype groups was 
also similar to those in the development dataset (Figure 4, 
Supplementary Appendix 3).

Discussion
This study, using a multi-institutional prospective OHCA 
registry and an unsupervised machine learning-based clus-
tering approach, revealed 3 types of subphenotypes among 
OHCA patients with shockable rhythm. These subpheno-
types were associated with 30-day survival and favorable 
neurological outcomes. Further, the subphenotypes had 
heterogeneity of association between ECPR implementa-
tion and survival outcome. The replicability of these sub-
phenotypes was confirmed with the validation dataset.

We believe it is reasonable that the 3 variables with the 

Figure 4.  Heterogeneity of the association between ECPR and 30-day survival outcome. Association between ECPR and survival 
outcome is heterogenous among the subphenotype groups. It is reproduceable for the validation dataset. ECPR, extracorporeal 
cardiopulmonary resuscitation.
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clearly defined. Further, some RCTs or most observational 
studies that investigate the efficacy of ECPR focus on the 
following patients: aged <70 or 75 years who experience 
OHCA with initial shockable rhythm but do not obtain 
ROSC with or without witnesses or bystanders CPR.2,50–52 
In these criteria, excluding patients with ROSC is consistent 
with our result for Group 3 who mostly obtained ROSC 
and were not suitable as the target population for ECPR. 
Meanwhile, these criteria for ECPR do not consist of the 
physiological state and could not appropriately differentiate 
Groups 1 and 2. We believe that excluding the physiological 
state from these inclusion criteria is one of the reasons that 
the results in previous observational studies were hetero-
geneous. Hence, we suggest that when considering the 
indication of ECPR or planning the studies investigating 
the effects of ECPR, the concept of subphenotypes based 
on the physiological biomarkers may be valuable.

This study has several limitations. First, although the 
clinical data were prospectively collected using a pre-spec-
ified datasheet, some of the data were missed, or had mea-
surement errors. Specifically, the blood test was defined as 
a blood sample collected on hospital arrival; however, the 
timing might have been different in each institution, pos-
sibly biasing the results. Second, we lacked other data that 
might have been significant for clustering; for example, 
details of patient characteristics such as comorbidities or 
the situation of the cardiac arrest. If more variables were 
available, more accurate clustering could be developed. 
Third, although there is no standard in considering sample 
size, and we believe that this study had an adequate sample 
size for clustering, small sample sizes have a risk of inac-
curate estimation. Fourth, regarding the association between 
ECPR and outcomes, there might be unmeasured confound-
ing factors that we could not control. Fifth, although we 
confirmed similar results with the split dataset to address 
the concerns of validity in clustering, there is currently no 
gold standard to validate data clustering results. Therefore, 
the validity of the clustering could be limited. Finally, the 
replication and generalizability of the results to other set-
tings is unclear. Therefore, further research is necessary to 
manage these bias risks and applicability concerns.

Conclusions
In summary, using a machine learning-based unsupervised 
clustering technique, this study identified 3 subphenotypes 
which were associated with different outcomes. Further, 
among the subphenotypes, the heterogeneity of the asso-
ciation between ECPR implementation and outcomes was 
observed. This concept of subphenotypes might be valu-
able when considering the appropriate target population 
of ECPR. Further research is necessary to validate these 
results.
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rological outcome among OHCA patients.31,32 Moreover, 
CKD was reported as a risk factor for ventricular arrhythmia 
among patients with myocardial infarction.33,34 Addition-
ally, animal experiments reported that CKD could lead to 
increasing vulnerability to lethal ventricular arrhythmia.35,36 
Similarly, the results for Group 3, who had a higher eGFR 
value than that in other groups, found that the proportion 
of ROSC at hospital arrival was high. Therefore, it might 
be reasoned that the patients in Groups 1 or 2 would have 
a high possibility of reoccurrence or sustaining of the VF, 
even if defibrillation were performed, and that they would 
have poor neurological outcomes.

Thus, these parameters may reasonably be assumed to 
have discriminative power to distinguish between the 
groups of OHCA patients with shockable rhythm.

This study has several strengths compared to previous 
studies. First, to the best of our knowledge, this was the 
first study to investigate the subphenotypes of OHCA 
patients with initial shockable rhythm. Previous studies 
used traditional methods such as logistic analysis to identify 
factors associated with the outcomes such as age, duration 
of low-flow time, cardiac rhythm conversion, metabolic or 
respiratory acidosis, or some biomarkers.4–6,37–44 Generally, 
these single factors are not suitable for detecting and 
classifying heterogeneous patient groups because other 
factors are ignored.12 However, our clustering technique 
considers multidimensional clinical factors for identifying 
the subphenotypes. Second, we used the latent class analysis 
to be able to consider clinically meaningful categorical 
variables, such as cardiac rhythm on hospital arrival or 
the presence of a witness, in addition to continuous vari-
ables. Some previous studies used other clustering methods, 
such as k-means clustering;7,45,46 however, these methods 
are limited because they cannot include categorical variables 
that may be clinically important. Finally, there are general 
concerns about the validation and replicability of clustering 
results.12 In this study, the results with the validation 
dataset supported the validation and replicability of the 
clustering subphenotypes; thus, it may be reasonable to 
conclude that this result is generalizable to other similar 
settings.

We described several clinical and research implications. 
First, developing the subphenotypes may be valuable in 
understanding the conditions and pathogenesis of OHCA 
patients with shockable rhythm. Thus, we assume that the 
subphenotypes may represent the cardiovascular risk and 
quality of CPR. This hypothesis suggests a potential asso-
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