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 (Research Objective): 

In past years, the linear perturbation equations of tearing instability derived 
by Loureiro (Loureiro,PoP2007 named as LSC theory)) has been deeply and 
widely explored by numerically solving as initial value problem (IVP) (Shimizu, 
AAPPS-DPP2018, KDK Research Report2018, Shimizu&Kondoh, arXiv4472111). 
The Loureiro’s equations are based on Non-Viscous case. In this paper, Viscosity 
and Hyper resistivity are introduced to the equations (Shimizu, KDK Research 
Report2020,21&22, Shimizu&Fujimoto, AOGS2021&22). Then, Non-Uniform 
viscosity and improved WKB-approximation are also studied (Shimizu, 
AAPPS-DPP2021&22 and ICNSP2022). This paper summaries those variations 
of the perturbation equations with some highlighted numerical results.  
 
1. Introduction:  
This paper starts from the linear perturbation equations of tearing instability 

shown next, which were derived by Loureiro,et.al. (PoP2007).  

    (1-1) 

                   (1-2) 

                       (1-3) 
Every notation in this paper is based on the Loureiro’s definitions, where and

are respectively perturbed potential functions of flow and magnetic fields. The 
prime is the derivative for the direction normal to the current sheet, where f( ) 
is the equilibrium function of magnetic field Bxo, as shown below.  

                   (1-4, 1-5) 
Eq.(1-4) is based on the equilibrium linear flow field of Eq.(1-5), where y is 
translated to with y=1.307 . In Eqs.(1-1&2), is the linear growth rate and
is the wave number of and  along the current sheet. In the original LSC 
theory (PoP2007) and most of my previous studies, Eqs.(1-4&5) are applied only 

lin◎箇『 『h◎◎『y◎『 『◎箇『 i門菖 Ilnst履biI ity 曹ith
Migc◎slty, HypR『一陳◎slgtiMity，箇刊di圃り『◎M◎d胃尺B一箇PP『O沢i薗匠ti◎刊

齋胄代壼警 （愛媛大学宇宙進化研究センター）

脅胄三的

Jl。 Inも四odncもion:

¢”-K,2E2qJ = -f(＜）（ゅ”―代％％）／入＋f”（く）ゆ／入，

ゅ”-K%％＝ 位屈ー 吋（く）の．

g 

! (~) = foe予／21c,,dzez2 ;2' 

゜

Bxo(~) = VAf （~) , 四o = -I'oy, 



－ 54 －

for <1.307, i.e., inside of the current sheet. However, in this paper, Eqs.(1-4&5) 
are applied also for >1.307 to rigorously keep the equilibrium even in the 
introduction of viscosity. Resistivity and Lundquist number S are defined below, 
with the sheet thickness cs and sheet length Lcs of Sweet-Parker model.  

                                  (1-6) 
Loureiro analytically solved Eqs.(1-1)~(1-6) under the upstream condition of 

= =0 at =+  (PoP2007). To do so, the traditional approximation introduced 
by FKR theory (Fruth,PhysFluids1963) was employed, where the outer region of 
the current sheet was assumed to be ideal-MHD, and hence, the inner region is 
only solved in resistive-MHD. In contrast, Shimizu solved Eqs.(1-1)~(1-6) without 
the assumption of the ideal-MHD, i.e., every region was seamlessly solved in 
resistive-MHD. To do so, Shimizu did not consider the upstream condition of =

=0 at =+ . Instead, = =0 at c<+ , i.e., a finite point c, was studied. 
The condition can be considered to be open boundary condition at finite upstream 
point c. The concept of the open boundary may be close to what is widely 
employed in MHD simulations. Then, Eqs.(1-1)~(1-6) were numerically solved as 
initial value problem (IVP) from =0 to c (Shimizu, AAPPS-DPP2018, KDK 
Research Report2018, Shimizu&Kondoh, arXiv4472111). The LSC theory 
modified by Shimizu was named as modified-LSC theory. The modified-LSC can 
explore the case of =0, which gives the critical (marginal) unstable condition of 
tearing instability, as shown in the =0 line of Figs.1 and 2. 
 
2. Uniform Viscosity:  

When viscosity is added to Eqs(1-1&2), the equations to be solved are as below, 
where is the viscosity coefficient in isotropic viscosity.  

  (2-1) 

                                          (2-2) 

These equations can be also numerically solved as IVP from =0 with initial 
values of ’(0) and ’’’(0), where (0)= ’’(0)= ’(0)=0 and (0)=1 are fixed for 
the symmetric current sheet. In addition to ’(0) and ’’’(0), changing , ,  
and , and  can be solved as IVP so that = ’= =0 are satisfied at c. Let 
us call it Zero-Contact solution, where “Zero-Contact” means = ’=0. Hence, 
once a set of , , and  is specified, c is determined. It means that the 
linear growth rate depends on the location c of upstream boundary. Then, 
Zero-Converging solution which satisfies (+ )= (+ )=0 may be deduced by 
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examining larger c (see Fig.1). Then, if =0 is set, the critical unstable 
condition is found, as shown in >0 in Fig.2.  
 

3. Non-Uniform Viscosity:  
 In traditional studies such as FKR(1963) and LSC(2007) theory, the outer 

region ( >1.307) is assumed to be ideal-MHD which means = =0. It seems 
that they expect that the assumption is also applicable for when the outer region 
is solved in resistive-MHD. In other words, they expect that whether the outer 
region is ideal-MHD or resistive-MHD is not essential to study the linear growth 
of tearing instability. However, such an expectation fails at some points.  

In this section, Eqs.(2-1&2) are solved only in the inner region of the current 
sheet ( <1.307). Meanwhile, =0 is assumed in the outer region (1.307< ), 
where  Eqs.(1-1&2) is solved. Hence, viscosity works only in the current sheet. 
Note that resistivity (>0) is uniformly kept even in the outer region. In this case, 
to compensate the discontinuity of at =1.307, there are two strategies for the 
combination of the differential continuity of  at =1.307 and the upstream 
boundary condition at c.  
 
Strategy 1:  

To keep the continuity of ’’ at =1.307, the next equation must be satisfied 
at =1.307-0, where is close to =1.307 from <1.307.  

                               (3-1) 
Then, find and  which satisfies = =0 at c. In this strategy, ’=0 is not 

required at c. Hence, that is not Zero-Contact solution. Rather, that is called as 
Zero-Crossing solution. This will be the most rigorous solution. Mathematically, 
this may be a kind of “strong” solution. To study the case of =0, Eq.(1-1&2) for 

>1.307 is replaced by below. Fig.1 includes this numerical result, and Fig.3 
shows the highlighted summary of =0.  

                       (3-2) 

        (3-3) 
Strategy 2: 

In this strategy, Eq.(3-1) is ignored. Hence, the continuity of ’’ at =1.307 is 
not satisfied but ’ is still continuous. Then, find and  which satisfies =

’= =0 at c. Hence, this is Zero-Contact solution. Mathematically, this may be 
a kind of “weak” solution.  
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 Physically, Non-Uniform viscosity may be considered to be “anomalous” 
viscosity. That is physics. On the other hand, most numerical simulations show 
not only strong solutions but often also weak solutions, depending on the 
employed numerical scheme. That is not physics but numerical error. In actual, 
when Non-Uniform viscosity is steadily included in numerical dissipation to 
numerically stabilize MHD simulations. For example, in the shock-capturing 
schemes such as TVD and HLLD, higher-order differential continuity of the 
solutions may not necessarily be kept around the extremely thin current sheet. 
Strategy 2 may be able to examine how tearing instability is disturbed by such 
numerical Non-Uniform viscosity. Fig.1 includes this numerical result.  
 

4. Hyper Resistivity (electron viscosity):  
Hyper resistivity means the fourth-order differential magnetic diffusion, while 

usual resistivity is the second-order magnetic diffusion. Some kinematic 
full-particle simulations of the magnetic reconnection process predict that such 
higher-order magnetic diffusion is dominant rather than the second-order. That 
is physics. In another viewpoint, every finite-differential  MHD simulations 
have numerical dissipations of such higher-order diffusion to stably simulate 
extremely thin current sheets. That is not physics. Such numerical diffusive error 
must be examined for how tearing instability is affected or not. For these reasons,  
hyper resistivity is worth to be studied in comparison with usual resistivity.  

For simplicity, the viscosity examined in the preceding section is ignored in 
this section. First, equilibriums f( ) are studied in the mixture of hyper and 
usual resistivities. Second, the perturbed solutions are studied on the basis of the 
equilibrium.  
 

Equilibrium 1:  
Note that Eq.(1-3) is applicable only for usual resistivity. When hyper 

resistivity effect is added to the usual resistivity effect, f( ) must satisfy the 
following equation.  

             (4-1) 

where 1/Si and 1/SHi are respectively the intensity of usual resistivity and hyper 
resistivity. Si and SHi are “each” Lundquist number for inflow speed to neutral 
sheet (Shimizu&Fujimoto, AOGS2022). At this point, defined in Eq.(1-6) 
remains as “total” Lundquist number on the basis of Sweet-Parker model. In 
other words, Lundquist number referred in this section consists of (1st step) and 
either of Si and SHi (2nd step).  
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  To appropriately normalize Eq.(4-1), let us fix the inflow speed uyo=-1.307 at 
=1.307 in Eq.(1-5). In addition, let us fix f(1.307)=1.0 and f ’(1.307)=0. With 

these setups, the second term of the rhs of Eq.(4-1), i.e., the convection electric 
field (V B) is fixed at -1.307f(1.307)=-1.307, where =1.307 is the boundary 
point of the inner and outer region of the current sheet. This normalization is an 
extension of the concept employed in the original LSC (PoP2007).  
 Eq.(4-1) can be numerically solved as IVP from =0 with initial values 

f(0)=f ’’’(0)=0 and f ’(0). Note that f(0)=f ’’’(0)=0 is fixed for the symmetric current 
sheet. Eventually, Si, SHi, f ’(0) and c are the control parameters to numerically 
find the solution of f( ) which satisfies f(1.307)=1, f ’(1.307)=0 and f( =+ )=0.  
  As for the case of 1/SHi=0, f ’(0) is not needed to solve Eq.(4-1). At this time, 
f( ) obtained for 1/Si=1.0 and c=-1.307 coincides with Eq.(1-3). Then, as 1/Si 
decreases from 1.0 to 0.0, f( ) gradually changes, where 1/SHi increases from 0.0 
to 0.43, which is shown as the line of white square boxes of Fig.4a and 4b.  
 
Equilibrium 2: 

Note that Eq.(1-3) is derived for Eq.(1-5). If Eq.(1-5) is changed, Eq.(1-3) is 
changed. If Eq.(1-5) is replaced by uyo=g tanh(a ), Eq.(4-1) is replaced by below.  

         (4-2) 

where g and a are free parameters to adjust the scaling of the equilibrium flow 
field. In the same manner as Equilibrium 1, let us fix the convection electric field 
(V B)=-1.307. At the time, g and a are mutually related. For example, a=1.0 
results in g=-1.307/0.8635. Otherwise, a=0.5 results in g=-1.307/0.5740, where   
g tanh(1.307a)=1.307 is always kept. It may be noted that, if a=1 and SHi=0 are 
set, Eq.(4-2) analytically results in f( )=tanh( ) which is the well-known Harris 
sheet. On the other hand, in the a=0 limit, f( ) in Eq.(4-2) becomes that of 
Eq.(4-1), resulting in Eq.(1-3). Meanwhile, if a 1, such analytical solutions are 
not found but Eq.(4-2) is numerically solved as IVP, so that f( ) satisfies 
f(1.307)=1, f ’(1.307)=0 and f( =+ )=0. The numerical result is shown in Fig.4a.  
 

Perturbation equations : 
The perturbed equations to be solved for Equilibrium1 are shown below. For 

simplicity, Equilibrium 2 is not studied in this paper.  

  (4-3) 

                  (4-4) 

(1 / SHi )J'"(~) = (1 / Si)J'(~) + gtanh(a~)f(~) + C 

(1/ SHi )心””=—入ん心 十 K,J(e) ¢+ (1/ Si ) （ゅ”—氏2€2ゆ））一 (1 /SHi)氏4E4ゅ

¢" -K,2召¢= -J(e)（心”― K,2E2ゅ）／入＋ J"(e)ゆ／入



－ 58 －

Also, these equations can be numerically solved as IVP, where Si, SHi, , , , 
’(0), and ’’(0) are the control parameters to find Zero-Contact solutions which 

satisfy = =0 and ’=0 at c. The numerical results of IVP are shown in =0.1 
and 0.5 of Fig.4b.  
 
5. Improvement of WKB Approximation: 

Rigorously, Eqs.(1-1)-(4-4) are inapplicable for ~0 range because the WKB 
approximation is the zero-order. In other words,  is assumed to be constant in 
time. To explore the ~0 range, Eqs.(6)-(7) shown in Loureiro,PoP2007 must be 
solved, which has the first-order, and hence, the time variation of  is 
considered. However, Eqs.(6)-(7) cannot be directly solved as IVP because some 
terms (e.g., - ’’’/ term in Eq.(5-1)) for WKB become zero at =0. However, 
the IVP can be solved with viscosity terms. Eventually, Eqs.(2-1&2) is replaced by 
the next equations.  

 
 

                                                         (5-1) 

                     (5-2) 

How to solve this IVP is basically the same as Eqs.(2-1)-(2-2). Until last year, the 
Zero-Contact solutions of Eqs.(5-1&2) could not be found but, eventually, have 
been found by improving the IVP technique. The Zero-Contact solutions of 
Uniform viscosity for =0 and =0.1 are summarized in Fig.4.  
 

6. Numerical Results of IVP: 
Fig1 shows how the linear growth rate depends on c which is the location 

of the upstream open boundary. The current sheet is located in 0< <1.307. Every 
solid line shows that  tends to be higher as c is separated from the current 
sheet. However, it seems that  deduced at c=+  (right outside of figure) 
does not exceed unity, i.e. Alfven speed unit time. It suggests that the linear 
growth of tearing instability cannot be fast beyond the Alfven speed measured in 
the upstream magnetic field region.  

The solid line of =0 obtained for Eqs.(1-1&2) (i.e., Non-Viscous case) takes 
the highest growth rate in this figure. Inversely, the solid line of =0.05 labeled 
as “ZeroContactSol-2” takes the lowest rate, which is obtained for Uniform 
viscosity, i.e., Eqs(2-1&2). The other three lines are for Non-Uniform viscosity, 
which are obtained for Strategy1 (ZeroCrossSol.) and 2 (ZeroContactSol.-1). 
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Fig.1: and c relations  Fig.2: Critical unstable condition ( =0). The line of  

=0 is for Eqs.(1-1&2) and the lines of >0 are for Uniform case of Eqs.(2-1&2). 
 

It is remarkable that the line of =+  for Non-Uniform viscosity gives a 
finite growth rate. Similar results have been reported in Fig.1b of Shimizu,KDK 
Research Report2022. In contrast, for Uniform viscosity, Zero-Contact solutions 
in =+  cannot be found. It suggests that Uniform and Non-Uniform cases have 
essentially different characteristic.  
  Fig.2 shows how c obtained for =0 depends on wave number , where 
Non-Viscous and Uniform viscosity cases are studied for (=e)=0.1. Hence, Fig.2 
indicates the foot points ( =0) of the solid lines of Fig.1. Under each solid line is 
stable ( <0). Hence, when c<1.307, tearing instability is completely stabilized 
for all range. Then, as  increases from 0.0, the stable region spreads upward, 
i.e., to larger c. The solid line of =0.0 completely becomes vertical around 
ke=1.15 and higher c. This corresponds to the critical condition of the positive 
prime index ’>0 in FKR (see Appendix C in Shimizu&Kondoh, arXiv4472111 
but it was when Eqs.(1-4&5) is applied only in <1.3), which is observed also in 
Figs.3 and 4. Since the vertical solid lines observed in >0.4 shifts to lower , 
as  increases. It means that the critical condition depends on viscosity.  

 
Fig.3(Non-Uniform) and 4(improved-WKB-Uniform): Critical unstable conditions 
( =0 & (=e)=0.1).  
 

Figs.3 and 4 respectively show the cases of Non-Uniform viscosity (Eqs. (2-1&2) 
&(3-1,2&3)) and improved-WKB-Uniform viscosity (Eqs.(5-1&2)). In comparison 
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with Fig.2, the unstable area in Fig.3 is wider in ~0 range. As shown in Fig.1, it 
is remarkable that unstable region even in =+  appears in c>2.1 and 
<0.6. Inversely, the stable area in Fig.4 is wider. It means that viscosity can 
steadily stabilize tearing instability.  

 
Fig.4a(Equilibriums) and 4b(Perturbed solutions): Hyper Resistivity. 

 
Fig.4a shows the relation of 1/Si and 1/SHi established in the equilibrium 

variations obtained for Eqs.(4-1 or 2). Vyo in this figure is -uyo in Eq.(1-5). For 
Eq.(4-2), the variations of 0.5<a<4 is shown. In the a=0 limit, Eq.(4-2) coincides 
with Eq.(4-1). Since the convection electric field v B at =1.307 is fixed at -1.307, 
the magnetic flux conveyed through =1.307 every unit time is fixed. It means 
that 1/Si and 1/SHi are complimentarily balanced. In other words, the increase 
(decrease) of 1/Si results in decrease (increase) of 1/SHi, as shown in Fig.4a.  

Fig.4b shows how depends on 1/Si. The line of 1/SHi is the same as that of 
Fig.4a. The most right side (i.e., 1/Si=1) of this figure corresponds to Non-Viscous 
case, i.e., Eqs.(1-1&2). As hyper resistivity 1/SHi is strengthen (i.e., 1/Si is 
weakened), becomes higher. It means that the tearing instability caused by 
hyper resistivity grows faster than that of usual resistivity.  
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