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Abstract  
Rhythmic movements are the building blocks of human behavior. However, given that rhythmic 

movements are achieved through complex interactions between neural modules, it remains diffi-
cult to clarify how the central nervous system controls motor rhythmicity. Here, using a novel 
tempo- precision trade-off paradigm, we first modeled interindividual behavioral differences in 
tempo-dependent rhythmicity for various external tempi. We identified two behavioral extremes: 
conventional and paradoxical tempo-precision trade-off types. We then explored the neural sub-
strates of these behavioral differences using task and resting-state functional magnetic resonance 
imaging. We found that the responsibility of interhemispheric motor network connectivity to tempi 
was a key to the behavioral repertoire. In the paradoxical trade-off type, interhemispheric con-
nectivity was low at baseline, but increased in response to increasing tempo; in the conventional 
trade-off type, strong baseline connectivity was coupled with low responsivity. These findings 
suggest that tunable interhemispheric connectivity underlies tempo-dependent rhythmicity control. 
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Introduction 

Rhythmic movement is a building block of 
human motor behavior, and provides the 
foundation for skilled movements, such as 
those required for typing, playing instruments, 
and sports activities. Rhythmic movements are 
not mere repetitions of discrete movements 
(Schaal et al. 2004; Ikegami et al. 2010) but are 
uniquely hierarchical. The periodic neural activ-
ity necessary for rhythmic movement can be 
automatically generated by the central pattern 
generator (CPG) in the brainstem and spinal 
cord (Eve Marder and Dirk Bucher 2001; Grill-
ner 2006). Supraspinal inputs to the CPG from 

cortical or subcortical motor areas are critical 
for the initiation, maintenance, and termination 
of rhythmic movements (Degallier and Ijspeert 
2010). Furthermore, cortical motor areas regu-
late patterns of rhythmic movement, especially 
for precise regulation of motor timing relative to 
external rhythms (Schaal et al. 2004; Aso et al. 
2010; Uehara et al. 2011; Pflug et al. 2019). 
The fronto-parietal associative regions, espe-
cially the dorsolateral prefrontal cortex (DLPFC) 
and the supramarginal gyrus (SMG), may also 
be required for rhythmic actions (Wiener et al. 
2012; Hayashi et al. 2015). However, the neural 
machinery underlying rhythmic movement is 
not yet fully understood. 
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Rhythmicity is modulated by tempo, which is 
the speed at which rhythmic actions are per-
formed and is typically referred to in the context 
of playing music. Changes in tempo during 
rhythmic movement strongly modulate brain 
activity of motor-related networks (Sadato et al. 
1996, 1997; Toma et al. 2002; Witt et al. 2008; 
Hanakawa et al. 2017). To adapt to a fast 
tempo, the strategy is to sacrifice either accu-
racy or speed (Fitts 1954; Reis et al. 2009; 
Dayan and Cohen 2011; Shmuelof et al. 2012), 
indicating that individuals must adjust the rela-
tionship between accuracy and speed for dif-
ferent tempi. Interestingly, accuracy may also 
be sacrificed to keep a slow tempo (Reep and 
Rebercca 2007). Thus, individuals may show 
substantially different patterns of adjustment to 
cope with different tempi during rhythmic 
movements (Grahn and Schuit 2012). Howev-
er, it remains open to debate as to how indi-
vidual variability in adjusting rhythmic move-
ments at different movement tempi should be 
quantified. In this report, we describe a novel 
function, namely the tempo-rhythmicity function 
(TRF). This function can represent behavioral 
traits of tempo-dependent rhythmicity, which we 
identified using a tempo-precision trade-off 
paradigm.  

Moreover, it remains unclear how the mul-
ti-level central nervous system can adjust 
tempo-dependent rhythmicity, particularly 1) 
which brain regions or networks were correlat-
ed with individual differences in TRF, and 2) 
whether the network properties in different task 
conditions (tapping vs. resting state) were cou-
pled with consonant or dissonant aspects of the 
TRF. Using functional magnetic resonance 
imaging (fMRI), we analyzed task-evoked brain 
activity to define brain regions involved in 
tempo-dependent rhythmicity. We then inves-

tigated whether task-evoked and/or rest-
ing-state connectivity underlie individual differ-
ences in the control of motor rhythmicity.   

The contralateral primary motor cortex (M1) 
is crucial for the control of rhythmic movement 
and movement timing (Toma et al. 2002; 
Schaal et al. 2004; Witt et al. 2008). Notably, 
M1 ipsilateral to the movement side also en-
codes neural information related to motor ac-
tions (Fujiwara et al. 2017; Berlot et al. 2019; 
Yokoi and Diedrichsen 2019; Iwama et al. 
2020). Specifically, the ipsilateral M1 may en-
code information on movement timing when 
performing unilateral repetitive finger move-
ments (Chen et al. 1997), and its excitability is 
modulated by tapping tempo (Uehara et al. 
2011, 2013). Based on these findings, we hy-
pothesized that interhemispheric M1 connec-
tions might play a pivotal role in the control of 
tempo-dependent rhythmicity during unilateral 
movements. However, another line of evidence 
indicates that motor rhythm guided by auditory 
stimuli is represented in the fronto-parietal 
network including SMG (Konoike et al. 2015). 
From the viewpoint of inter-individual variations, 
SMG activity represents inter-individual varia-
tion of pitch and rhythm memory (Schaal et al. 
2017). DLPFC is also essential for timing con-
trol (Jones et al. 2004; Koch et al. 2007; Yin et 
al. 2019).  Based on these empirical findings, 
we developed an alternative hypothesis on the 
involvement of the fronto-parietal network in the 
control of tempo-dependent rhythmicity. Fur-
thermore, we posed an additional hypothesis 
on the individual differences in baseline func-
tional connectivity underlying those of motor 
rhythmicity. The spontaneous fluctuations of 
network activity at a resting state have been 
thought to contain patterns that are also seen in 
task-evoked or sensory-induced brain activity 
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(Kenet et al. 2003; Luczak et al. 2009, 2013; 
Berkes et al. 2011). Given this, resting-state 
connectivity should have a close relationship 
with movement at slow tempi because the 
rhythmicity-relevant network would experience 
a longer idling state (similar to the resting state) 
during slow tempi than during fast tempi.  

 

Methods and Materials  

Participants  

Twenty-nine participants (12 females) par-
ticipated in the main experiment. However, six 
out of 29 participants were excluded from the 
final analyses due to extensive head motion 
during MRI scans (the a priori criterion for ac-
ceptable head displacement was less than 3 
mm in any direction) or the failure of the per-
formance of finger taps for several seconds 
during the tapping blocks. Thus, data from a 
final total of 23 participants were reported. To 
confirm the novel findings of the tem-
po-precision trade-off, data from additional 12 
participants (6 females) who participated in a 
different experiment were analyzed. Thus, data 
from a total of 41 participants with a mean age 
of 26.1 ± 4.2 years (mean ± standard deviation 
(SD), range: 20-36 years) were subjected to the 
TRF analysis. Handedness was assessed by 
the Edinburgh Handedness Inventory (Oldfield 
1971). All participants were naïve to the pur-
pose of this study. None of the participants had 
any history of neurological or psychiatric dis-
orders and they had not received any intensive 
musical training as musicians. The experi-
mental protocol was approved by the ethics 
committee of the National Center of Neurology 
and Psychiatry, Kodaira, Japan. All participants 
gave written informed consent.  

Experimental tasks 

Resting-state and task- fMRI 

All participants underwent resting-state fMRI 
before the task-fMRI. They first underwent 
resting-state fMRI, which required a 10-min 
maintenance of the resting state without think-
ing of anything particular with their eyes open. 
The fixation cross was projected onto the cen-
ter of the screen in the scanner.  

In the following task-fMRI scans, participants 
were given the familiarization exercise before 
starting the first task-fMRI scan. The tapping 
task was arranged in blocks, each lasting for 20 
s, and was interleaved with 20-s rest blocks. 
During the task blocks, participants performed 
a repetitive finger tapping at five different tempi 
(0.25, 1, 2, 3, and 4 Hz) with their right index 
finger. They were asked to tap as precisely as 
possible while synchronizing with the auditory 
cues (100-ms duration each) presented at the 
five different tempi. The fixation cross was al-
ways presented, along with the “Go” cue during 
task blocks and the “Rest” cue during rest 
blocks. During each rest block, we provided the 
same auditory cues that would be given in the 
consecutive task block.  The order of the tempi 
was semi-randomized between blocks, and the 
same tapping tempo was not presented in 
consecutive blocks. Presentation software 
(Neurobehavioral systems, USA) was used to 
control the task paradigm, synchronize events 
with the MRI scanning, and record finger tap-
ping timing. All participants completed three 
task-fMRI runs. Each run consisted of two 
blocks of each tapping tempo (i.e., 10 task 
blocks per run). To acquire behavioral infor-
mation during the tapping tasks, an 
MRI-compatible response button device was 
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used (HHSC-1 × 4-CL, Current designs Inc., 
USA).  

 

Data acquisition 

MRI data acquisition  

Images were acquired using a 3-Tesla 
Magnetom Verio Dot MRI scanner (Siemens 
Medical Systems, Germany). The task- and 
resting-state fMRI data were acquired via an 
echo planar imaging (EPI) sequence sensitive 
to blood-oxygen-level-dependent (BOLD) sig-
nals as follows: repetition time (TR) = 2500 ms; 
echo time (TE) = 30 ms; flip angle = 80°; field of 
view = 212×212 mm2; 40 axial slices covering 
the whole brain; slice thickness = 3.2 mm with a 
0.8 mm gap, yielding 3.3×3.3×4.0 mm3 voxel 
size. Two field-map images were acquired in 
the same space as EPIs using the following 
parameters: TR = 488 ms; TE = 4.92/7.38 ms. 
For anatomical registration, T1-weighted 
three-dimensional structural images were also 
acquired using the magnetization-prepared 
rapid gradient-echo sequence (MPRAGE) with 
the following parameters: TR = 1900 ms; 
TE = 2.52 ms; inversion time (TI) = 900 ms; flip 
angle = 9°; field of view = 250×250 mm2; ac-
quisition matrix = 256×256; slice thick-
ness = 1.0 mm without a gap; axial slice num-
ber = 192; voxel dimension = 1.00×0.97×0.97 
mm3.  

fMRI data preprocessing   

Image preprocessing for the task-fMRI data 
was carried out using FMRIB’s Software Library 
(FSL6.00, http://www.fmrib.ox.ac.uk/fsl) and 
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) im-
plemented in Matlab. The first four volumes 
from each experimental run were discarded to 

ensure stable magnetization. Field-map correc-
tion was applied to reduce distortions from 
magnetic field inhomogeneity using FSL’s 
FUGUE. Distortion-corrected EPI images were 
fed into an independent component analysis 
(ICA) with FSL’s Multivariate Exploratory Linear 
Optimized Decomposition into Independent 
Components (MELODIC) (Beckmann et al. 
2005) to decompose single participants’ 
4-dimensional (4D) fMRI data sets into spatial 
and temporal components within each run. 
Subsequently, we applied automatic compo-
nent classification with FMRIB’s ICA-based 
X-noiseifier (FIX) to remove noise components 
automatically from the 4D fMRI data (Griffanti et 
al. 2014; Salimi-Khorshidi et al. 2014). To train 
the FIX’s noise classifier, we used 25 runs 
during the finger tapping task from 29 partici-
pants randomly selected from this study (each 
participant was scanned three times; therefore, 
87 runs were available). Noise ICA components 
for the FIX-training were identified using visual 
inspection, based on previous literature (Kelly 
et al. 2010). The FIX-cleaned fMRI data were 
then fed into SPM12 for further preprocessing, 
including realignment, slice timing correction, 
coregistration with structural images, normali-
zation to the Montreal Neurological Institute 
(MNI) functional template, and smoothing using 
an isotropic Gaussian kernel of 8-mm full-width 
at half-maximum (FWHM).  

For the resting-state fMRI data, field-map 
correction with FUGUE and ICA-based FIX 
were also applied. In this case, FIX was trained 
using resting-state fMRI data from 47 partici-
pants, 10 of whom were randomly selected 
from the present study and 37 of whom were 
taken from a different resting-state fMRI study 
acquired with the same scanner (Togo et al. 
2017). The components identified as noise 
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were selected using visual inspection (Kelly et 
al. 2010). Preprocessing was conducted with 
the CONN functional connectivity toolbox (ver-
sion 18.b.; https://www.nitrc.org/projects/conn) 
implemented in SPM12 (Whitfield-Gabrieli and 
Nieto-Castanon 2012). In particular, realign-
ment, slice time correction, coregistration with 
structural images, normalization to the MNI 
functional template, and smoothing with an 
isotropic Gaussian kernel of 8-mm FWHM were 
performed. After preprocessing, the data were 
band-pass filtered at 0.01–0.09 Hz and motion 
scrubbed and motion regressed to reduce the 
influence of noise (Power et al. 2012). Finally, 
the remaining noise, including white matter, 
cerebrospinal fluid, and physiological noise, 
was taken as confounds using a CompCor 
algorithm based on principal component analy-
sis (Behzadi et al. 2007; Whitfield-Gabrieli and 
Nieto-Castanon 2012).  

 

Data analysis 

Motor behavior  

Motor performance was analyzed using a 
custom-written code implemented in Matlab 
(Mathworks, USA). As an index of motor 
rhythmicity, a coefficient of variation (CV) of 
inter-tap intervals (ITIs) was computed for each 
of the four tempi (1, 2, 3, and 4 Hz) in each 
participant, using the following formula: CV (%) 
= (ITISD/ITIMean) ×100. We used CV because we 
observed that CV of inter-tap (or keystroke) 
intervals reflected a motor skill and its degrada-
tion due to a disease process in our series of 
studies (Furuya et al. 2018; Kita et al. 2018, 
2021). Note that we computed the CVs of each 
movement for the first 20 consecutive finger 
taps in each block. In the 1 Hz condition, some 

participants had less than the necessary num-
ber of finger taps (20 finger taps), because the 
last finger tap went out of the time range for the 
task block. In this case, we calculated the CV 
using the maximum number of finger taps. The 
0.25 Hz condition was not used for this com-
putation because of the small number of taps in 
each block. The CV values were first averaged 
in each tapping tempo at the individual level. 
Subsequently, the averaged CV values for 
each participant were then logarithmically 
transformed in order to meet the assumption of 
normal distribution before a linear fitting was 
performed. To quantify the relationships of the 
CV values to tapping tempi, the 
log-transformed CV values were fitted against 
tempo using a linear regression model within 
each participant, which yielded the TRF. This 
mathematical process was inspired by previous 
evidence for the speed-accuracy tradeoff be-
havior in which a linear relationship existed 
between movement accuracy and speed (Fitts 
1954; Reis et al. 2009; Dayan and Cohen 2011; 
Shmuelof et al. 2012). This linear relation rep-
resents how much a participant sacrifices either 
accuracy or speed for faster movement.  

Detailed model selection procedures are as 
follows: Before fitting the linear regression 
model, we calculated root mean squared error 
(RMSE) for each participant and then averaged 
this across participants to assess which of the 
linear or quadratic (non-linear) model was more 
suitable for modeling the effects of tempo onto 
CVs. This was because it was not clear if CV as 
a function of tempo should monotonically 
change, or it should show a vertex corre-
sponding to the optimal tempo. We treated both 
intercepts and slopes obtained from the TRF as 
the main behavioral features in this study. The 
slope indicates how rhythmicity was maintained 
across different tempi. Positive and negative 
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slopes are indicative of worse and better 
rhythmicity, respectively, with faster tempi. The 
intercept extrapolated the linear relationship 
between tempo and rhythmicity to very slow 
tempi. Thus, this was considered to serve as a 
proxy measure for timing control of discrete 
movement (i.e., discrete timing). A large inter-
cept indicates a less precision rhythmicity in 
discrete movement. The reason why we used 
the intercept as the index of discrete timing was 
that it could serve as a quantitative marker of 
rhythmicity at less than 1Hz more adequately 
than the measured values of CV at 0.25 Hz. As 
mentioned, the 0.25 Hz condition had a small 
number of taps in each block due to the meth-
odological limitation of block-design fMRI, 
making the CV at 0.25 Hz less reliable. The 
intercept of TRF allows for a comprehensive 
assessment of the interplay between rhythmic-
ity and discrete timing control and its neural 
substrates from the same dataset.  

To test a relationship between the slope and 
intercept of the TRF, we computed Pearson’s 
skipped correlations using the Robust Correla-
tion Toolbox (Pernet et al. 2013) implemented 
in Matlab. To minimize the effect of possible 
outliers on the correlation analyses, we adopt-
ed a bootstrap approach. This method deals 
with bivariate outliers and computes statistical 
significance using a bootstrapped CI with 1,000 
permutations that has an appropriate 
false-positive control. Correlations were con-
sidered significant if the 95% CI did not include 
zero.  

In addition, temporal synchronization be-
tween each cue sound and each finger tap was 
calculated during the tapping task in each 
tempo. To quantify whether each participant 
made proactively or reactively each finger tap, 
the degree of temporal synchronization at each 

frequency was expressed as tapping cycle. A 
value of zero indicates their perfect synchroni-
zation. Less and more than zero indicates 
proactive and reactive tapping, respectively. 
Synchronization was analyzed using a two-way 
repeated measure and mixed design analysis 
of variance (ANOVA) with the “group” as the 
between-subject factor and “tapping tempo” as 
the within-subject factor, adjusted 
by Greenhouse-Geisser correction as the as-
sumption of sphericity was violated. Post-hoc 
explorations using Bonferroni correction for 
multiple comparisons were performed if a sig-
nificant effect was detected from ANOVA. Un-
less otherwise noted, statistical effects were 
tested at a significance level of p < 0.05 through 
the experiment and Pearson’s skipped correla-
tions with a bootstrap approach was used when 
a single correlation analysis was performed. 

To test the replicability of the tempo-precision 
tradeoff behavior, we analyzed data from the 12 
additional participants who participated in an-
other experiment. This experiment was con-
ducted in almost the same setting, but the 
tempo varied only between 1, 2 and 3 Hz. The 
CV values from 1 to 3 Hz were fitted using a 
linear regression model within each participant. 
Subsequently, we confirmed a correlation be-
tween the slope and intercept of the TRF, using 
Pearson’s skipped correlation.  

 

Statistical analysis for task- and rest-
ing-state fMRI scans 

Tempo-modulated brain activity 

The following statistical analyses were car-
ried out using SPM12. We first computed a 
single-subject fixed-effects model for each par-
ticipant. The signal time-course of each partic-
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ipant was modeled with a boxcar function con-
volved with the canonical hemodynamic re-
sponse function (HRF). Low-frequency noise 
was removed using a high-pass filter with a 
cut-off of 128 s, and serial correlations were 
adjusted using an auto-regression model. We 
conducted two GLM analyses. In the first anal-
ysis, we used a parametric design to identify 
brain activity that was correlated with the tap-
ping tempo. A parametric regressor (modeling 
five tapping tempi: 0.25, 1, 2, 3, and 4 Hz) was 
created along with a repetitive state model for 
the tapping blocks. Note that even though the 
0.25 Hz condition was not used to calculate the 
behavioral parameters (i.e., TRF), the 0.25 Hz 
condition was incorporated in this parametric 
regressor because we sought for the relation-
ship between changes in brain activity or func-
tional connectivity from the slow to fast tempi 
and the discrete timing (i.e., temp at less than 1 
Hz). The MRI data at the 0.25 Hz condition may 
be an alternative to that at the discrete tempo. 
In the second analysis, to estimate brain activity 
changes for each tapping tempo, finger tapping 
blocks at the five tapping tempi and rest were 
modeled. For each participant, contrasts of 
each tapping tempo relative to the rest were 
created. Contrast-weighted parameter estimate 
(c*beta) maps derived from each participant 
were fed into the second-level random effects 
model analysis. We performed two-tailed 
one-sample t-tests to identify whole-brain posi-
tive and negative activities that were correlated 
with the tapping tempo during finger tapping. 
The final statistical threshold for significant 
brain activities was set at FWE p < 0.05 cor-
rected for multiple comparisons at the cluster 
level after a height threshold of p < 0.001 (un-
corrected), unless otherwise noted (Friston et 
al. 1995).  

To assess correlations between brain activi-
ties and the TRF, we extracted brain activity 
(i.e., c*beta) at the local peak voxel within the 
significant clusters identified from the contrasts 
of interest in the parametric modulation model, 
using a functional VOI approach. We empiri-
cally defined four spherical VOIs with a 10-mm 
radius centered at the significant local peak 
voxel resulting from our parametric modulation 
analysis and previous evidence (see the Re-
sults section and Table 1). The centers of the 
VOIs were as follows: left M1 (MNI coordinates: 
x = -33, y = -22, z = 64), right cerebellar lobules 
VI–VII (x = 2, y = -66, z = -24), left DLPFC (x = 
-38, y = 30, z = 42), and left anterior cingulate 
cortex (ACC) (x = -10, y = 30, z = 32). Brain 
activity was averaged across the voxels within 
each VOI. To test whether tempo-modulated 
brain activity was associated with the TRF, we 
computed Pearson’s skipped correlations.  

 

Tempo-modulated effective connectivity 

Using a generalized psychophysiological in-
teraction (gPPI) analysis (McLaren et al. 2012), 
we identified task-evoked effective connectivity 
that was correlated with individual differences 
in the TRF. A gPPI model was created and 
estimated using the gPPI toolbox 
(https://www.nitrc.org/projects/gppi). For the 
seed regions for the effective connectivity 
analysis, we chose the following two repre-
sentative VOIs based on the task-fMRI analy-
sis: left M1 (x = -33, y = -22, z = 64) and left 
DLPFC (x = -38, y = 30, z = 42) with a 10-mm 
radius centered at the significant local peak 
voxel. The timeseries of voxels within each 
seed region were first extracted from each par-
ticipant. First-level GLM, including the para-
metric modulator as above, was run. The gPPI 



 Neural substrates underlying motor rhythmicity Uehara et al., 2022 

 8 

interaction term was then created by multiplying 
a physiological term (i.e., a deconvolved BOLD 
time series from the left M1 or left DLPFC) with 
a psychological term (i.e., a vector indicating 
the given tapping tempo). Subsequently, the 
second-level random-effects statistical analysis 
was conducted. We performed a group-level 
t-test to identify task-evoked functional connec-
tivity associated with the tapping tempo. A 
height statistical threshold of p < 0.001 uncor-
rected was first applied to the whole brain. The 
final statistical threshold for significance was 
set at FWE p < 0.05 corrected at the cluster 
level, using small volume correction (svc) within 
each anatomically defined VOI using the Har-
vard-Oxford Cortical and Subcortical Structural 
Atlas according to the a priori hypothesis. For 
the gPPI analysis with the left M1 seed, we 
limited the search volume to the structurally 
defined right precentral gyrus, including the M1, 
for svc. We therefore focused on interhe-
mispheric M1 connectivity. This hypothe-
sis-driven analysis was based on accumulating 
evidence that the bilateral M1s are involved in 
the control of rhythmic movement (Hayashi et 
al. 2008; Uehara et al. 2011, 2015). Note that 
we will henceforth refer to this interhemispheric 
M1 as tempo-modulated interhemispheric M1 
connectivity (IHC) 

Beta estimates indicating the strength of 
tempo-modulated effective connectivity were 
obtained. We then computed Pearson’s 
skipped correlations between the gPPI beta 
estimates and the TRF parameters, including 
slope and intercept, for each gPPI analysis.  

For confirmation of the gPPI results, we veri-
fied whether the timeseries of the BOLD signals 
in both M1s were correlated during the tapping 
tasks since right M1, i.e., ipsilateral M1, activity 
did not reach the significant level. In order to do 

so, we extracted the mean time series of BOLD 
signals in the left and right M1s during the tap-
ping tasks at each tempo, with a 10-mm radius 
centered at the significant local peak voxel (left 
M1: x = -33, y = -22, z = 64, right M1: x = 28, y = 
-18, z = 58). Subsequently, we applied Pear-
son's correlation analysis between each BOLD 
signal in the right and left M1 during the tapping 
tasks at each tempo for each participant and 
then averaged each correlation coefficient val-
ue across participants. Group-averaged corre-
lation coefficient values were compared using a 
one-way repeated measures ANOVA with 
TAPPING TEMPO (0.25-4 Hz) as with-
in-subjects  factors, adjusted 
by Greenhouse-Geisser correction as the as-
sumption of sphericity was violated. We then 
performed post-hoc explorations using Bonfer-
roni correction for multiple comparisons. 

 

Resting-state functional connectivity 

Accumulating evidence has indicated that the 
basic architectures of task-evoked and rest-
ing-state networks are similar. That is, sponta-
neous brain activity (i.e., resting-state net-
works) contains patterns that are also seen in 
task-evoked or sensory-induced brain activity 
(Kenet et al. 2003; Luczak et al. 2009, 2013; 
Berkes et al. 2011). Here, we investigated 
whether task-evoked connectivity and rest-
ing-state connectivity are associated with simi-
lar or distinct aspects of rhythmicity control. 
Specifically, we hypothesized that the influence 
of resting-state connectivity on rhythmicity 
would be stronger for slow tempi, because the 
relevant network should experience a longer 
idling (i.e., resting) state during slow tempi than 
during fast tempi. Thus, the hypothesis was that 
resting-state connectivity would be more 
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strongly correlated with the intercept of the TRF 
than the slope.   

Resting-state functional connectivity was 
computed by a VOI-to-VOI analysis, using the 
Conn toolbox. We defined VOIs in the bilateral 
M1s, left DLPFC, and left SMG according to the 
task-fMRI and gPPI results. For each partici-
pant, the preprocessed BOLD time series sig-
nals were extracted from all voxels within each 
VOI and averaged to produce mean BOLD 
timeseries for each VOI. The averaged BOLD 
time courses were used as a regressor in each 
participant’s GLM to assess functional connec-
tivity. To calculate resting-state connectivity 
between the bilateral M1s, we then calculated 
the temporal correlation (Pearson’s r) between 
the averaged BOLD signal timeseries of prede-
fined VOIs, followed by Fisher’s 
z-transformation. The statistical threshold for 
significance was set at p < 0.05 FWE-corrected 
for multiple comparisons. Finally, we conducted 
Pearson’s skipped correlations between the 
strength of the resting-state connectivity of the 
bilateral M1s and the left DLPFC-left SMG and 
the TRF. 

Multiple regression analysis 

The series of correlation analyses identified 
correlations of the slope and intercept of the 
TRF with tempo-modulated brain activity and 
connectivity, as well as resting-state connectiv-
ity in the bilateral M1 and DLPFC-SMG net-
works (See details in Results and Supplemen-
tary Figure 5). To clarify how these sets of var-
iables are related to the control of tem-
po-dependent rhythmicity (i.e., slope) and dis-

crete timing (i.e., intercept) when considered 
together, we applied a multiple regression 
analysis in a nonhierarchical stepwise manner, 
using the dependent variables identified as 
significant in the series of correlation analyses. 
The independent variable was either the slope 
or the intercept of the TRF. The dependent 
variables were tempo-modulated brain activity 
in the left M1 and left DLPFC (2 tem-
po-modulated local brain activity), tem-
po-modulated IHC and left DLPFC-SMG con-
nectivity (2 tempo-modulated connectivity), 
resting-state IHC and left DLPFC-SMG con-
nectivity (2 resting-state connectivity) and their 
interactions. These dependent variables were 
selected because they survived our single cor-
relation analyses. This multiple regression 
analysis was implemented using the R envi-
ronment (R 3.5.3 www.r-project.org).  

 
Results 
Interindividual variability in the effects of 
movement tempo on rhythmicity  

In the behavioral analyses, we concentrated 
on analyzing CVs of ITIs as an index of motor 
rhythmicity. When averaged across partici-
pants, the CV monotonically increased as a 
function of the tempo (Figure 1a). Overall, 
faster tempi reduced rhythmicity precision, and 
this phenomenon is akin to a conventional be-
havior model known as speed-accuracy 
trade-off (Fitts 1954). We however noticed 
substantial inter-individual variability in the ef-
fects of tempo on rhythmicity, which suggests 
that there is complexity to model the tem-
po-precision trade-off relationship between 
tempo and rhythmicity.  
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The individual differences in the tem-
po-rhythmicity relationship were hypothesized 
to reflect those in latent control strategies to fit 
to various tapping tempi. We thus intended to 
model the relationship between the tempo and 
the accuracy, using a simple mathematical 
function (i.e., TRF). First, we compared which 
of the linear function or the quadratic function 
better explained the tempo-rhythmicity rela-
tionship, by referring to the RMSE in each par-
ticipant. This procedure found the linear model 
more adequate than the quadratic model in 
around 80% of the participants. The group-wise 
mean RMSE was significantly smaller for the 
linear model (0.07 ± 0.09) than for the quadratic 
model (0.11 ± 0.09) (t=-3.34, p=0.029 by a 

paired t-test), supporting the linear model over 
the quadratic model. We thus chose the linear 
model as the TRF. With the linear TRF, the 
group-wise mean R2 value was 0.57 ± 0.32 

(standard deviation, SD) suggesting fair good-
ness-of-fit of the model.  

Second, we analyzed the two parameters 
derived from the TRF to characterize individu-
als’ tempo-rhythmicity relationship. We found 
considerable individual variability in both the 
slope and intercept of the TRF, as revealed by 
their broad distribution. The slope and intercept 
of the TRF showed a strong inverse correlation 
(95% confidence interval (CI) [-0.98 to -0.92], r 
= -0.93; Figure 1b). Namely, participants with 
precise motor rhythmicity at lower tempi were 
less precise at higher tempi (see subject A in 
Figure 1c for an example of a conventional 
tempo-precision trade-off). Conversely, partic-

ipants with imprecise motor rhythmicity (a high 
CV) at lower tempi showed improved rhythmic-
ity at faster tempi (see subject B in Figure 1c for 
an example of a paradoxical tempo-precision 
trade-off). The conventional and paradoxical 

Figure 1: Behavioral results 
a, Violin plots showing log-transformed CVs for ITIs in each 

tapping tempo. A higher value indicates more disruption of motor 
rhythmicity during finger tapping. The boxes indicate the inter-
quartile ranges. Diamonds and the error bars indicate the mean 
and SD, respectively. The violin-shaped areas indicate data 
density. The black dots represent outliers. b, A scatterplot 
showing the relationship between the slope and intercept of the 
TRF. Marginal density plots of x-axes (top panel) and y-axes 
(right panel) indicate the distribution of the intercept and slope 
values, respectively. One dot represents data from one partici-
pant. For the y-axis, positive values indicate that rhythmicity was 
disrupted by the increase in tapping tempo, while negative 
values indicate that rhythmicity was improved by the increase in 
tapping tempo. For the x-axis, high values indicate imprecise 
rhythmicity at a slow tempo (i.e., discrete movement). c, Typical 
examples of changes in CVs across the given tapping tempi from 
representative participants are shown (subject A and B). d, Violin 
plots showing the degree of synchronization between each finger 
tap and each cue sound. A dot horizontal line depicts the audi-
tory cue onset. A positive value indicates that finger tapping was 
reactively made after the cue sound. In contrast, a negative 
value indicates that finger tapping was proactively performed 
before the cue sound. The black diamonds depict the mean 
values of synchronization. Conventional (black bar) and para-
doxical (white bar) groups were consisted of 12 and 11 partici-
pants, respectively. N.s. and three asterisks denote a no signif-
icant difference and a significant deference between tapping 
tempo (p < 0.001), respectively. Unless otherwise noted, data 
are plotted in the same format as Figure 1a.  
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tempo-precision trade-off types might not form 
distinct entities and rather be part of a contin-
uous trait (Figure 1b).  

Third, we further analyzed the TRF-derived 
parameters in relation to the cues or other be-
havioral data to help with the interpretations. 
We performed an additional data analysis to 
dispel concerns that the findings about the 
paradoxical tempo-precision trade-off resulted 
from a cheating strategy in some participants. 
That was, it was possible that participants who 
skipped taps to maintain the high tempo (e.g., 
tapped only to every two cues) would appear as 
the paradoxical tempo-precision trade-off type. 
However, we found no correlation between the 
number of actual taps and the CV value, mak-
ing the skipping strategy unlikely (Supplemen-
tary Table 1). A more plausible strategy was 
that some participants might maintain rhyth-
micity by sacrificing synchronization between 
the cues and the taps. To exclude this possibil-
ity, we assessed the maintenance of the tem-
poral synchronization as a function of tempo 
(Figure 1d). The participants in the main ex-
periment were operationally classified into the 
conventional (n=12) and paradoxical (n=11) 
types according to individual median in refer-
ence to group median of the slope to further 
clarify differences in their control strategies 
(Supplementary Figure 1a). Both groups main-
tained the temporal gaps between the cues and 
movement at around 0.1- 0.2 cycles. Hence, 
the participants performed synchronized tap-
ping as requested according to a previous 
study reporting that -0.25 to 0.25 cycles ahead 
or delay to each cue sound was acceptable for 
synchronized tapping (Toma et al. 2002). 
Meanwhile, we noticed that the participants 
appeared to use slightly different synchroniza-
tion strategies across the tempo; they were 

reactive at 1, 2 and 4 Hz while proactive at 3 Hz 
overall. A two-way repeated measure and 
mixed design ANOVA with the ‘group’ (two 
levels: conventional and paradoxical) and the 
‘tempo’ (four levels: 1, 2, 3, and 4Hz) factors 
revealed significant differences in the temporal 
synchronization (i.e., cycle) across the tapping 
tempi (F[2.4, 51.4]=21.0, p=0.001), without the 
main effect of the group (F[1,21]=0.21, p=0.64) or 
the interaction between the group and the 
tempo (F[2.4, 51.4]=2.09, p=0.12). This analysis 
excluded the possibility that inter-individual 
differences in the synchronization strategy re-
sulted in the segregation between the conven-
tional and paradoxical types. Although the lin-
ear mode was better overall as above, a con-
cern is that there might be a difference in the 
appropriate model for the two groups. For ex-
ample, a quadratic model could be better suited 
to the paradoxical type than a linear model, so 
the linear model might not adequately model 
the behavior of the paradoxical type. To rule out 
this possibility, we examined the group-wise 
difference in the proportion of participants who 
showed better fitting to the linear or the quad-
ratic model. The linear model was better than 
the linear model in majority of the participants 
for both the paradoxical group (75%) and the 
conventional group (83.3%) (Supplementary 
Figure 1b), supporting that the linear model was 
better regardless of the paradoxical or the 
conventional group.  

Another question was if motor learning in-
fluenced CV through multiple blocks and ses-
sions. The analysis indicated that the motor 
learning effect unlikely affected CV in response 
to the tapping tempo. Detailed information is 
shown in Supplementary Figure 2. 

We confirmed the replicability of the 
tempo-precision tradeoff behavior, using data 
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obtained from additional 12 participants (Sup-
plementary Figure 3). The CV values from 1 to 
3 Hz were fitted using a linear regression model 
for each participant. The analytic procedures 
for the behavioral data were the same as that 
for the main dataset. The two types of rhyth-
micity control schemes, i.e., the conventional 
and paradoxical tempo-precision trade-off, 
were replicated in this cohort (Supplementary 
Figure 3c). As in our main experiment (Figure 
1), a significantly negative correlation between 
the intercept and slope of the TRF was ob-
served (95% CI [-0.96 to -0.14], r=-0.88) (Sup-
plementary Figure 3b).  

 

The relationship between tempo-modulated 
brain activity and rhythmicity 

We analyzed: 1) how the whole brain re-
sponded to each tapping tempo (tem-
po-modulated brain activity), and 2) how the 
tempo-modulated brain activity related to the 
tempo-precision trade-off behavior as captured 
by TRF.  

First, our parametric design, including a re-
gressor (modeling five tapping tempi) along 
with a state model for the task blocks showed 
that tempo was positively correlated with activ-
ity in the left precentral gyrus, including the M1, 
right operculum, and right cerebellar lobules 
VI–VII, at a family-wise error (FWE)-corrected 
p-value < 0.05 (Figure 2a and b, Table 1). 
These findings were supported by the param-
eter estimates (c*beta) of task-related activity 
that were analyzed separately for each tempo 
(Figure 2c). Additionally, tempo was negatively 

correlated with activity in frontal regions that are 
related to cognition, including the left DLPFC, 
left ACC, and left middle frontal gyrus. The 
DLPFC and ACC have been reported to under-
lie the adaptive control of behavior with varying 
movement and cognitive speed (Bogacz et al. 
2010; Wenzlaff et al. 2011; Vallesi et al. 2012; 
Weigard et al. 2019). 

Second, to assess the correlations between 
task-induced brain activities and the slope and 
intercept of the TRF, we extracted brain activity 
(c*beta) using the following four spherical func-
tional volumes of interest (VOIs): the left M1 (x 
= -33, y = -22, z = 64), right cerebellar lobules 
VI–VII (x = 2, y = -66, z = -24), left DLPFC (x = 
-38, y = 30, z = 42), and ACC (x = -10, y = 30, z 
= 32). The slope of the TRF was correlated with 
brain activity in the left M1 (95% CI [-0.05 to 
-0.76], r = -0.45) and left DLPFC (95% CI [0.05 
to 0.76], r = 0.46) (Figure 3a). The intercept of 
the TRF was also correlated with brain activity 
in the left M1 (95% CI [0.08 to 0.62], r = 0.38) 
and left DLPFC (95% CI [-0.73 to -0.01], r = 
-0.41) (Figure 3b). There were no significant 
correlations between activity in the cerebellum 
or ACC with either the slope or the intercept 
(Supplementary Figure 4). To summarize, 
paradoxical tempo-precision trade-off behavior 
was accompanied by M1 activity that was re-
sponsive to the tapping tempo, whereas the 
conventional tempo-precision trade-off behav-
ior was associated with less responsive M1 
activity. Conversely, responsive activity in the 
left DLPFC was also associated with paradox-
ical tempo-precision trade-off behavior (precise 
rhythmicity at fast tempi and imprecise rhyth-
micity at slow tempi).  
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The relationship between rhythmicity and tem-
po-modulated functional connectivity 

We analyzed: 1) how brain functional con-
nectivity was modified in response to tapping 
tempo (tempo-modulated functional connectiv-
ity) and 2) how tempo-modulated functional 
connectivity was related to the tempo-precision 
trade-off behavior (correlation with TRF pa-
rameters).  

For the gPPI analysis with the left M1 seed, 
we found that tapping tempo was correlated 
with the interhemispheric connectivity between 

the left and the right M1 (x = 28, y = -18, z = 58; 
t = 4.79; svc-corrected p = 0.009; Figure 4a). 
The PPI values (beta value) obtained from each 
tapping tempo showed that the effective con-
nectivity between both M1s was increased as a 
function of the tapping tempo (Figure 4b). This 
result indicated that, although the right M1 did 
not show correlated activity with the tapping 
tempo in the whole-brain correlation analysis 
(Figure 2a), both M1s showed synchronized 
fluctuation of activity during rhythmic move-
ment. For confirmation, we performed a corre-
lation analysis of the timeseries of BOLD sig-
nals sampled from both M1s and verified that 
the change of activity was correlated between 
bilateral M1s in a tempo-dependent manner. 
The details of this confirmation analysis are 
described in Supplementary information 1. This 
analysis indicates that contralateral M1 activity 
was positively correlated with ipsilateral M1 
activity during rhythmic movement even though 
there was no significant task-related activity in 

Figure 2: Brain activity that was positively (a) and 
negatively (b) correlated with tapping tempo  

a, Positively correlated tempo-modulated brain activity 
was found in the left M1, and right cerebellar lobules VI–VII. 
b, Negatively correlated tempo-modulated brain activity was 
found in the left DLPFC and left ACC. The activity was 
thresholded at FWE p < 0.05 corrected for multiple com-
parisons at the cluster level. The color scales indicate the 
t-values. c, The violin plots represent the data density of 
brain activity at each tempo (c*beta) sampled from the VOIs 
in the left M1, left cerebellar lobules VI–VII, left DLPFC, and 
left ACC (SPM anatomy toolbox, see Table 1). The boxes 
indicate the interquartile range. The red diamonds and the 
error bars indicate the mean and SD, respectively. The 
black dots represent outliers. The dashed lines superim-
posed onto the violin plots represent the baseline (i.e., brain 
activity during the rest block). 

 
 

Figure 3: Correlations between tempo-modulated 
brain activity and TRF parameters 

Relationships between tempo-modulated brain activity 
and the two TRF parameters, slope (a) and intercept (b). a, 
A positive TRF slope (abscissa) indicates that rhythmicity 
was disrupted by the increase in tapping tempo, and that of 
the ordinate indicates that brain activity was increased as a 
function of tapping tempi. b, A higher value of the intercept 
indicates imprecise rhythmicity at a slow tempo (i.e., 
near-discrete movement). Correlations were considered 
significant if the 95% CI did not include zero. *: significant 
correlation. One dot represents data from one participant. 
An outlier is displayed as a gray dot. 
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the ipsilateral M1. In sum, we assume that ip-
silateral M1 activity can show task-correlated 
fluctuation in a limited range of an inhibi-
tion-excitation cycle. A correlation analysis 
revealed that the tempo-modulated IHC was 
negatively correlated with the TRF slope (95% 
CI [-0.75 to -0.21], r = -0.53; Figure 4c), but not 
with the TRF intercept (95% CI [-0.02 to 0.46], r 
= 0.23) (Figure 4d). Other than M1s, the whole 
brain gPPI analysis found a trend in the right 
superior temporal gyrus (STG) (MNI coordi-
nates x = 56, y = -28, z = 2) at the uncorrected 
level (p<0.001). However, because we did not 
have an a priori hypothesis on the role of STG 
in the control of motor rhythmicity, we did not 
apply svc in accordance with the guidelines for 
reporting an fMRI study (Poldrack 2007; 
Poldrack et al. 2008). The alternative hypothe-
sis to the IHC hypothesis was that tem-
po-modulated left DLPFC-left SMG connectivity 
might be related to a cognitive aspect of motor 
rhythmicity adjustment. For the gPPI analysis 
with the left DLPFC seed, we limited the search 
volume to the structurally defined left SMG for 
svc. However, we failed to find tem-
po-modulation of the left DLPFC-left SMG 
connectivity (x = -56, y = -48, z = 40; t = 3.77; 
svc-corrected p = 0.10). Neither the slope nor 
the intercept was correlated with left 

DLPFC-left SMG connectivity (slope: 95% CI 
[-0.39 to 0.35], r = -0.004; intercept: 95% CI 
[-0.25 to 0.48], r = 0.11). The tempo-modulated 
effective connectivity analyses showed that 
IHC, but not fronto-parietal connectivity, was 
modulated by the tapping tempo. Furthermore, 
we found a relationship between tem-
po-modulated IHC and the slope of the TRF, 
which indicates that individuals with responsive 
tempo-modulated IHC exhibited precise rhyth-
micity at fast tempi.  

 

The relationship between resting-state func-
tional connectivity and rhythmicity 

In the present study, we wanted to identify 
how the resting-state functional connectivity 
was involved in the parameter captured by TRF 
because the resting-state networks likely con-
tain patterns encompassed by task-evoked 
brain activity (Kenet et al. 2003; Luczak et al. 
2009, 2013; Berkes et al. 2011). 

Using a VOI-to-VOI approach, we found sig-
nificant resting-state functional connectivity 
between the bilateral M1s (i.e., resting-state 
IHC) (FWE-corrected p = 0.002) and between 
the left DLPFC and left SMG (FWE-corrected p 

Figure 4: Correlations between tempo-modulated M1 
IHC and TRF parameters 

a, The left M1 activity (seed) was correlated with right M1 
activity in a tempo-dependent manner (svc within an 
anatomical mask). For display purposes, activated regions 
were thresholded at p < 0.001 uncorrected. b, The violin 
plots represent the data density of the PPI values (beta 
value) sampled from the VOIs in the right M1. The boxes 
indicate the interquartile range. The orange-diamonds and 
the error bars indicate the mean and SD, respectively. The 
black dots represent outliers.  c, The scatterplot depicts 
the correlation between tempo-modulated IHC and the 
slope of the TRF. d, As shown in the scatterplot, there was 
no correlation between tempo-modulated IHC and the TRF 
intercept. Correlations were considered significant if the 
95% CI did not include zero. n.s.: no significant correlation. 
*: significant correlation. Each dot represents data from one 
participant. Outliers are displayed as a gray dot.  
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= 0.002) based on the a priori hypothesis. The 
bootstrapped correlation analyses revealed that 
resting-state IHC was positively correlated with 
the slope (95% CI [0.008 to 0.72], r = 0.41), and 
negatively correlated with the intercept of the 
TRF (95% CI [-0.74 to -0.12], r = -0.46) (Figure 
5a, b, and c). The almost identical strength of 
correlation with slope and with intercept may 
seem inconsistent with our hypothesis that 
resting-state connectivity would be more in-
volved in slow tempi, predicting a higher corre-
lation between IHC and the intercept of the TRF 
than the slope of the TRF. Conversely, rest-
ing-state left DLPFC-SMG connectivity was 
positively correlated with the slope (95% CI 
[0.03 to 0.73], r = 0.43), but not with the inter-
cept (95% CI [-0.59 to 0.13], r = 0.29) (Figure 
5d, e, and f). 

We found that resting-state functional con-
nectivity contained information on the control of 
motor rhythmicity, even though resting-state 
fMRI data were acquired before the task-fMRI 
data. We also found that resting-state IHC was 
associated with both TRF parameters, whereas 
the tempo-modulated IHC was correlated only 

with the slope of the TRF. Individuals who had 
a stronger resting-state IHC had better rhyth-
micity at slow tempi close to the discrete 
movement. Conversely, individuals who had 
weaker resting-state IHC had better rhythmicity 
at faster tapping tempi. Resting-state left 
DLPFC-SMG connectivity was also associated 
with tempo-dependent rhythmicity. Individuals 

Figure 6: Summary of multiple regression analyses 
The standardized β-values obtained from the multiple re-

gression analyses for the predictions of the slope and the 
intercept models are plotted. Asterisks indicate a significant 
dependent variable (*p < 0.05, ***p < 0.001). n.s.: no signif-
icant difference; IHC: interhemispheric connectivity between 
motor cortices; TM: tempo-modulated; Resting: resting-state 
connectivity. 

 
 

Figure 5: Correlations between resting-state connectivity and 
TRF parameters 

a, The left M1 was significantly interconnected with the right M1 at 
rest. b, Strength of the resting-state interhemispheric M1 connec-
tivity was significantly positively correlated with the slope of the TRF. 
c, The strength of the resting-state interhemispheric M1 connectivity 
was significantly negatively correlated with the intercept of the TRF. 
d, The left DLPFC was significantly interconnected with the left SMG 
at rest. e, The resting-state connectivity between the left DLPFC and 
left SMG was significantly positively correlated with the slope of the 
TRF. f, The strength of the resting-state connectivity of the left 
DLPFC-left SMG was not correlated with the intercept of the TRF. 
Pearson’s correlation was applied using a bootstrapped method. 
Correlations were considered significant if the 95% CI did not 
include zero. An asterisk indicates a significant correlation. One dot 
represents data from one participant. Outliers are displayed as a 
gray dot.  
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who had weaker resting-state left DLPFC-SMG 
connectivity showed a higher precision of 
tempo-dependent rhythmicity at faster tapping 
tempi. 

 

Multiple regression analysis 

Finally, we aimed at clarifying how the tem-
po-precision trade-off behavior (TRF) was 
coded within the interplay of these neural fea-
tures. To address this issue, we performed 
multiple regression analyses.   

The variance inflation value (VIF) for the 
dependent variables was less than 1.5 (ac-
cepted VIF < 5.0), which is suggestive of no 
multicollinearity between the tempo-modulated 
activity, tempo-modulated connectivity, and 
resting-state connectivity.  Figure 6 shows the 
summary of the multiple regression analyses. 
The best fit model for the slope of the TRF (F4,18 

= 5.42, p = 0.004, adjusted R2 = 0.44 for the 
model) included the tempo-modulated IHC 
(standardized β = -1.58, p = 0.02) and the 
resting-state IHC (standardized β = 0.57, p = 
0.02). The best fit model for the intercept of the 
TRF (F3,19 = 6.55, p = 0.003, adjusted R2 = 
0.43) included the tempo-modulated IHC 
(standardized β = 4.22, p = 0.03), resting-state 
IHC (standardized β = -2.18, p = 0.001), and 
tempo-modulated left M1 activity (standardized 
β = 1.11, p = 0.03). Tempo-modulated and 
resting-state functional connectivity of the left 
DLPFC-left SMG and brain activity in the left 
DLPFC were not included in the best fit model.  

The results were not completely consistent 
between the single correlation analyses and the 
multiple regression analyses, especially in 
terms of prefrontal activity and DLPFC-SMG 
connectivity. Moreover, while the correlation 

analyses did not detect a relationship between 
the tempo-modulated IHC and TRF intercept, 
the multiple regression analysis found that 
tempo-modulated IHC had a meaningful impact 
on the TRF intercept. It is possible that tem-
po-modulated IHC may act as a suppressor 
variable when treated together with other vari-
ables; such a suppressor variable may not yield 
strong correlations in single correlation analy-
sis, but can serve as a meaningful independent 
variable with the addition of other dependent 
variables (Meyers et al. 2017). Indeed, the 
multiple regression analysis showed that tem-
po-modulated M1 activity and tem-
po-modulated and resting-state IHC were the 
most influential explanatory factors of individual 
differences in tempo-dependent rhythmicity. 

 

Discussion 

We propose tempo-dependent rhythmicity as 
a new type of tempo-precision trade-off phe-
nomenon and provide novel evidence for the 
two types of neural-behavioral coupling for 
rhythmicity control. Although rhythmicity be-
came imprecise with fast tempi overall, indi-
viduals substantially differed in their adjustment 
strategy of rhythmicity from slower to faster 
tempi. We characterized these interindividual 
differences according to the control mecha-
nisms of tempo-dependent rhythmic movement 
using two parameters of the TRF, namely, the 
slope and the intercept. The slope reflected 
tempo-dependent rhythmicity, and the intercept 
is closely related to the timing control of dis-
crete movement, i.e., discrete timing. To un-
cover the neural correlates of these two be-
havioral repertoires, we examined task-related 
brain activity, task-related effective connectivi-
ty, and resting-state functional connectivity, 
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especially of the bilateral M1 and the left fron-
to-parietal network. We found that the tem-
po-modulated and resting-state IHC of the bi-
lateral M1, rather than fronto-parietal connec-
tivity, played a pivotal role in the control 
mechanisms underlying tempo-dependent 
rhythmicity.  

The analysis of individual variabilities in 
rhythmicity control using the TRF concept re-
vealed two behavioral extremes: conventional 
and paradoxical tempo-precision trade-off 
types. The conventional type appears to out-
number the paradoxical type (Figure 1b and 
Supplementary Figure 3b). In general, in-
creasing tapping tempo sacrifices motor 
rhythmicity.  In the conventional type (subject 
A and C in Figure 1c and Supplementary Figure 
3c, respectively), rhythmicity decreased with a 
faster tempo (i.e., positive slope), despite pre-
cise rhythmicity during slower tempi (i.e., low 
intercept). In the paradoxical type (e.g., sub-
jects B and D in Figure 1c and Supplementary 
Figure 3c, respectively), rhythmicity became 
more precise with faster tempi, yielding a high 
intercept and negative slope. In essence, the 
slope and the intercept are independent in the 
linear regression scheme. However, we found a 
strong negative correlation between the slope 
and the intercept of the TRF (Figure 1b and 
Supplementary Figure 3b), which implies that 
there is a link between tempo-dependent 
rhythmicity and discrete timing control. Indi-
viduals with precise control of discrete timing 
were not good at maintaining tempo-dependent 
rhythmicity, whereas individuals with imprecise 
control of discrete timing were good at main-
taining tempo-dependent rhythmicity at faster 
tempi. It remains a matter of debate how 
rhythmic and discrete movements are con-
trolled by the central nervous system 

(Smits-Engelsman et al. 2002; Hogan and 
Sternad 2007; Hira et al. 2015; Wiegel et al. 
2020). It is also unclear which neural entities 
are involved in rhythmic and discrete move-
ments, or how cortical areas interact with the 
CPG during rhythmic movements from slow to 
fast tempi. The present findings contribute in 
part to the settlement of this argument. To our 
knowledge, this is the first study to investigate 
which brain areas, networks, and neural states 
(responsiveness to the tempo) underlie the 
precision of tempo-dependent rhythmicity. The 
multiple regression analysis revealed that the 
tempo-modulated and resting-state IHC con-
tributed to the prediction of both the slope and 
the intercept of the TRF. Furthermore, we pro-
vide new evidence that the responsivity of M1 
activity and IHC are substantially different be-
tween near-discrete timing (i.e., intercept) and 
tempo-dependent rhythmicity (i.e., slope). Alt-
hough we confirmed that DLPFC activity and 
fronto-parietal connectivity were involved in 
rhythmicity control to some extent, their contri-
bution was only minor when we considered the 
contribution of motor activity/connectivity to-
gether. Hence, the motor systems, especially 
the IHC between M1s, could influence motor 
rhythmicity control more than cognitive systems 
assigned to the fronto-parietal regions.  

Accumulating evidence has supported the 
active roles of IHC in the control of motor 
rhythmicity. A virtual lesion study using repeti-
tive transcranial magnetic stimulation revealed 
that ipsilateral M1 stimulation induced timing 
errors while performing repetitive sequential 
finger movements (Chen et al. 1997). This 
finding supports the idea that the ipsilateral M1 
is involved in the processing of motor programs 
controlling rhythmic actions, presumably 
through IHC. Moreover, interhemispheric inhi-
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bition between the contralateral and ipsilateral 
M1s contributes to the evenness of repetitive 
actions (Kuo et al. 2019). Likewise, our results 
support these human neuroimaging studies. 
During a unilateral motor action, the ipsilateral 
M1 showed task-specific activity changes that 
were not simply a copy of the contralateral M1 
activity. The ipsilateral M1 has been reported to 
be involved more in motor planning than in 
motor execution during a unilateral motor action 
(Diedrichsen et al. 2013; Berlot et al. 2019). 
Together, this evidence indicates that coopera-
tive interactions between both M1s, which cor-
respond to IHC in this study, are likely to play 
active roles in the control of rhythmicity.  

The correlation of bilateral M1 activities at 
rest (resting-state connectivity) has been widely 
accepted and reproduced (Biswal et al. 1995; 
van den Heuvel and Pol 2010). Although sig-
nificant task-related activity was observed in 
the contralateral M1 only, our gPPI analysis 
yielded that the bilateral M1s showed concerted 
changes in activity during rhythmic movement 
at all tempi (Figures 4a and b). This observation 
was corroborated by the BOLD time-series 
correlation between both M1s (Supplementary 
information 1).  This analysis indicates that 
contralateral M1 activity was positively corre-
lated with ipsilateral M1 activity during rhythmic 
movement even though there was no signifi-
cant task-related activity in the ipsilateral M1. It 
has been thought that ipsilateral M1 activity is 
suppressed by interhemispheric inhibition from 
the contralateral M1 while performing a unilat-
eral movement (Ferbert et al. 1992; Uehara et 
al. 2014). However, in the present study, ipsi-
lateral M1 activity was not simply suppressed 
by interhemispheric inhibition from the contra-
lateral M1. A plausible explanation comes from 
previous TMS studies in humans, showing that 

interhemispheric connection from the opposite 
M1 inhibited short-interval intracortical inhibition 
(SICI). The inhibition of SICI leads to the disin-
hibition of the ipsilateral M1, which could pro-
duce an inhibition-excitation cycle together with 
interhemispheric inhibition. We therefore as-
sume that ipsilateral M1 activity can show 
task-correlated fluctuation in a limited range 
allowed by the combination of interhemispheric 
inhibition and disinhibition of SICI.  

In the present study, we identified two neu-
ral-behavioral coupling traits for motor rhyth-
micity control: the responsive brain net-
work-paradoxical trade-off type and the indif-
ferent brain network-conventional trade-off 
type. Identification of these types could help 
elucidate the individual differences between 
tempo-dependent rhythmicity and discrete tim-
ing. The responsive network type was defined 
as a strong tempo-modulated IHC accompa-
nied by a weak resting-state IHC. The weak 
resting-state IHC suggested temporarily sparse 
synchronization of networks at the baseline 
level. The strong tempo-modulated IHC implied 
a responsive network to meet the contextual 
demand of a faster tempo. These two proper-
ties are akin to those of tunable sparse network 
coding (Olshausen and Field 2004; Spanne 
and Jörntell 2015). We found that flexible mod-
ulation of brain activity and connectivity allowed 
individuals to maintain rhythmicity in the face of 
contextual demands. This finding is consistent 
with the relatively recent concept of greater 
modularity of brain networks, or sparser con-
nectivity for more flexible behavior (Bassett et 
al. 2011; Bassett and Mattar 2017; Mattar et al. 
2018). Namely, densely interconnected mod-
ules may fail to respond to the increasing de-
mands of incoming stimuli, while sparsely in-
terconnected modules may enable better be-
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havioral adaptation to a changing environment. 
Previous work has shown that flexible brain 
networks can enhance learning, because they 
can generate a new neural activity pattern to 
acquire a new behavior (Bassett et al. 2011). 
Similarly, the responsive network type would 
supposedly allow flexible adjustment of behav-
ior to faster tapping tempi, leading to better 
control of tempo-dependent rhythmicity. Con-
versely, the indifferent network type would not 
be able to increase the network functionality 
well enough to meet the requirements of both 
the number of finger taps and the rhythmicity 
under the larger demands of faster tempi.  

Our results indicated that the responsive 
network type was not always advantageous, 
because it was not accompanied by good tim-
ing control at slow tempi (i.e., discrete timing). 
Conversely, individuals who adopted the indif-
ferent network type were able to produce pre-
cise timing at the slow tempi. The indifferent 
network type was characterized by an IHC that 
was unresponsive to changes in tempo and a 
stronger resting-state IHC (Figures 4d and 5c). 
These observations can be explained in two 
ways. First, stronger resting-state IHC likely 
indicates that the bilateral M1s were well inter-
connected at baseline, and that the degree of 
connectivity may have been close to ceiling 
level. If this is the case, there is less possibility 
for IHC to be enhanced in the face of increased 
tempo demands. Alternatively, the dense con-
nections of the IHC may be unresponsive to 
increasing tempi because dense neural coding 
may suffer from cross-talk (i.e., collisions) 
across neurons (Olshausen and Field 2004; 
Spanne and Jörntell 2015). Thus, the indifferent 
network type might not be able to flexibly mod-
ulate the strength of the IHC to meet the con-
textual demand of the tapping tempo. However, 

the indifferent network type may not be always 
disadvantageous; we also found that this stable 
or consistent connectivity likely helps to 
achieve precise control of discrete timing.  

Notably, even though the indifferent network 
type was able to maintain the necessary num-
ber of finger taps for each given tempo, brain 
activity and the strength of the network were 
almost unchanged, despite the changing tempi 
(Supplementary Table 1). Here, it should be 
noted that 1) the number of finger taps per se 
did not influence changes in M1 activity or IHC, 
and 2) the unchanged activity and connectivity 
across the tempi co-existed with a decline in 
motor rhythmicity for fast tempi. Both points 
further our basic understanding of the relation-
ship between rhythmic movements and the 
hierarchically organized cortical and subcortical 
systems. In the present study, the responsive 
and indifferent types of IHCs at least partly 
explained the individual differences in control 
mechanisms of tempo-dependent rhythmicity 
and discrete timing. An open question is 
whether semi-automatic rhythm generators 
such as the CPG are involved in tempo-related 
rhythmicity control. The CPG is thought to 
generate periodic-rhythmic activity automati-
cally during rhythmic movement (Eve Marder 
and Dirk Bucher 2001; Grillner 2006; Har-
ris-Warrick 2011). We speculate that this 
CPG-based automatic control could serve as 
the generator for basic rhythmicity during finger 
tapping. This would explain why the indifferent 
network type can produce the required number 
of taps at faster tempi without recruiting the M1 
or IHC to such a great extent. Indeed, this was 
achieved at the cost of poor rhythmicity. Our 
results suggest that involvement of the bilateral 
M1 may be more important for precise control 
of externally triggered rhythmicity than for the 
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mere production of rhythmic tapping at faster 
tempi. Recently, Cadena-Valencia and col-
leagues reported rhythmicity in gamma-band 
bursts in the motor area during entrainment to 
external tempi in non-human primates, and 
they used the timing of gamma bursts to predict 
whether responses would be ahead or behind a 
given tempo (Cadena-Valencia et al. 2018).  

The present study has potential limitations. 
The model comparison found a linear function 
between CVs and tapping tempo better ex-
plained each individual's data than the quad-
ratic function. There should be many 
non-linearities in the motor system. Indeed, we 
might have been able to find an optimal fre-
quency for each individual as a vertex of a 
quadratic function if wider ranges of tapping 
tempo had been covered (e.g., less than 0.25 
Hz and higher than 4 Hz). By realizing this 
study limitation, our future study will extend the 
present finding to explore non-linearity of the 
tempo-precision relationship, using different 
experimental designs. In addition, we estimated 
a parameter representing the discrete timing 
control, using the intercept derived from the 
linear regression model. Based on this estima-
tion and novel findings in this study, our future 
study will work out a new experimental design 
and a mathematical model about how to extract 
information of the rhythmicity and the discrete 
timing control comprehensively. 

We employed task-fMRI investigation with 
the block-design paradigm. Hence, the number 
of the finger tapping varied depending on the 
tapping tempi. This is a technical limitation of 
task-fMRI studies using task/stimulus rates 
across blocks. However, it was unlikely that 
brain activity and networks simply reflected the 
differences in the number of taps. The partici-
pants with the indifferent network type showed 

almost unchanged brain activity and connectiv-
ity even though they maintain the necessary 
number of finger taps for all tempi. Together, 
this finding suggests that control strategies of 
rhythmic movement rather than the number of 
movements affect changes in brain activity or 
connectivity.  

 
Conclusion 

We identified two neural-behavioral cou-
pling types for rhythmicity control, namely, a 
combination of the paradoxical tempo-precision 
trade-off and the responsive networks, and that 
of the conventional tempo-precision trade-off 
and the indifferent network. In particular, indi-
vidual differences in the responsiveness of IHC 
may underlie individual variation of control 
strategies of tempo-dependent rhythmicity un-
der fast tempo demands. The fact that the re-
sponsive IHC was coupled with weak rest-
ing-state IHC can be explained by the concept 
of tunable sparsely coded connectivity. The 
present tempo-rhythmicity trade-off paradigm 
opens new avenues for studying the foundation 
of skillful finger movements in humans, some of 
whom are tuned to slow and some to fast tempi.  
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Table 1. Brain activity correlated with tempo-modulated brain activity 

Location Cluster Peak MNI coordinates  

 p-value 

(FWE corrected) 

Cluster size P-value 

(FWE corrected) 

T-value x, y, z Anatomy toolboxa 

Positive association with tapping tempi 

Left M1 <0.001 11916 <0.001 9.82 -33, -22, 64 Left precentral gyrus 

Right 
Cerebellum 

<0.001 3169 <0.001 10.64 2, -66, -24 
Right cerebellar lob-

ules VI-VII 

Negative association with tapping tempi 

Left  

DLPFC 
0.014 478 0.022 6.45 -38, 30, 42 

Left middle frontal 
gyrus 

Left ACC 0.020 436 0.073 5.77 -10, 30, 32 
Left anterior cingulate 

gyrus/superior frontal 
gyrus 

a Brain regions were determined using the SPM anatomy toolbox (Eickhoff et al. 2005)  
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Supplementary information 1: Confirmation analysis for co-fluctuation of BOLD signals be-
tween both M1s during the tapping tasks 

 
For confirmation of the gPPI analysis, we tested whether the timeseries of the BOLD signals be-

tween both M1s were correlated during the tapping tasks. The group-averaged correlation coefficients 

(r) were 0.35 ± 0.18, 0.35 ± 0.18, 0.34 ± 0.13, 0.44 ± 0.21 and 0.52 ± 0.18, (mean ± SD) for 0.25, 1, 2, 3 

and 4 Hz, respectively. A one-way repeated measures analysis of variance (ANOVA) for the compar-

ison of correlation coefficient values found a significant main factor of TAPPING TEMPO (0.25-4 Hz) 

(F2.33, 22 = 8.91, p = 0.0002). Post-hoc explanations showed that the correlation coefficients were sig-

nificantly higher towards 4Hz (0.25 Hz vs 4 Hz, t = 3.73, p = 0.006; 1 Hz vs 4 Hz, t = 3.73, p = 0.006; 2 

Hz vs 4 Hz, t = 4.57, p = 0.001, after Bonferroni correction). The result of this complementary analysis 

indicated that even though the ipsilateral M1 activity did not reach significance, the change of activity 

was correlated between bilateral M1s during rhythmic movement. 
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Supplementary Table 1: Number of finger taps for each condition and correlations between the 
number of finger taps and the CV value 

Condition Number of finger 

taps for each block 

(20s) (mean ± SE) 

correlation between the number of finger taps and the CV value 

 correlation coeffi-

cient 

95% CI significant correla-

tion 

1Hz 19.3 ± 0.13 -0.01 -0.38     0.42 n.s. 

2Hz 38.9 ± 0.25 -0.35 -0.64     0.13 n.s. 

3Hz 58.3 ± 0.19 -0.27 -0.64     0.01 n.s. 

4Hz 79.7 ± 0.76 -0.04 -0.50     0.43 n.s. 

95% CI: 95% confidence interval, n.s.: not significant correlation, SE: standard error 
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Supplementary Figure 1 

Changes in the CV values classified into two groups: a. Changes in the CV values in response to tapping tempi were classified into the 

conventional and paradoxical groups according to the slop of TRF. Violin plots showing log-transformed CVs for ITIs in each tempo. Partici-

pants who were assigned to the conventional type showed that precision motor rhythmicity at lower tempi was less precision at higher tempi. 

Whereas, participants from the paradoxical type showed that imprecise motor rhythmicity (a high CV) at lower tempi improved rhythmicity at 

faster tempi. A higher value indicates more disruption of motor rhythmicity during finger tapping. The boxes indicate the interquartile ranges. 

The black diamonds and the error bars indicate the mean and SD, respectively. The violin-shaped areas indicate data density. b. A breakdown 

of the behavioral models. The linear model was superior to the quadratic model for about 80% of participants, regardless of group. 



 Neural substrates underlying motor rhythmicity Uehara et al., 2022 

 27 

Supplementary Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 3 

 

Changes in CV for each tapping tempo throughout the data collection: The density plots depict the distribution of CV values 

obtained from the 23 participants. To clarify any motor learning effects, we performed a two-way repeated measures ANOVA with 

BLOCK (1-6 blocks) and TAPPING TEMPO (1-4Hz) as within-subjects factors. This analysis yielded a significant main effect of BLOCK 

(F3.7, 82.9 =3.73, p=0.04) and no significant main effect of TAPPING TEMPO (F2.2, 50.1 =2.83, p=0.06), adjusted by Green-

house-Geisser correction as the assumption of sphericity was violated. However, post-hoc explorations of the main effect of BLOCK 

did not find any significant blocks. CV at block #5 tended to be smaller than that at block #6. CVs at blocks #1 and #2 tended to be 

greater than that at block #5. CV at block #1 tended to be greater than that at block #3. These statistical results indicate that the CV 

values are unlikely to be influenced by the motor learning effect.      

 



 Neural substrates underlying motor rhythmicity Uehara et al., 2022 

 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confirmation of behavior in a different cohort: a, Violin plots showing log-transformed CVs for ITIs in each tempo that were made from 

other independent cohort (n=12). A higher value indicates more disruption of motor rhythmicity during finger tapping. The boxes indicate the 

interquartile ranges. The black diamonds and the error bars indicate the mean and SD, respectively. The violin-shaped areas indicate data 

density. b, A scatterplot showing the relationship between the slope and intercept of the TRF. Marginal density plots of x-axes (top panel) 

and y-axes (right panel) indicate the distribution of the intercept and slope values, respectively. One dot represents data from one partici-

pant. For the y-axis, positive values indicate that rhythmicity was disrupted by the increase in tapping tempo, while negative values indicate 

that rhythmicity was improved by the increase in tapping tempo. For the x-axis, high values indicate imprecise rhythmicity at a slow tempo 

(i.e., discrete movement). c, Typical examples of changes in CVs across the given tapping tempi from representative participants are shown 

(subject C and D). 
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Supplementary Figure 4 

The relationships between tempo-modulated brain activity and TRF parameters (no-significant results): The relationships between 

tempo-modulated brain activity and the TRF, including the slope (a) and the intercept (b), are plotted on a scatterplot concerning each brain 

region. No significant correlations were found in the left cerebellar lobules VI–VII or left ACC, irrespective of the slope or intercept of the TRF. 

Pearson’s correlation was applied using a bootstrapped method. Correlations were considered significant if the 95% CI did not include zero. 

One dot represents data from one participant. Outliers are displayed as a gray dot.  
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Supplementary Figure 5 

 

 

 

Summary of the series of correlation analyses: Each correlation coefficient (r) shown in Figures 3-5 is summarized in a heatmap, 

where deeper red and blue indicate positive and negative correlations, respectively. T-M: tempo-modulated; R-S: resting-state. Sig-

nificant correlations are indicated in bold and italics with an asterisk. 


