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Ecological dynamics is driven by complex ecological networks.
Computational capabilities of artificial networks have been
exploited for machine learning purposes, yet whether an
ecological network possesses a computational capability and
whether/how we can use it remain unclear. Here, we developed
two new computational/empirical frameworks based on
reservoir computing and show that ecological dynamics can be
used as a computational resource. In silico ecological reservoir
computing (ERC) reconstructs ecological dynamics from
empirical time series and uses simulated system responses for
information processing, which can predict near future of chaotic
dynamics and emulate nonlinear dynamics. The real-time ERC
uses real population dynamics of a unicellular organism,
Tetrahymena thermophila. The temperature of the medium is
an input signal and population dynamics is used as a
computational resource. Intriguingly, the real-time ecological
reservoir has necessary conditions for computing (e.g.
synchronized dynamics in response to the same input
sequences) and can make near-future predictions of empirical
time series, showing the first empirical evidence that population-
level phenomenon is capable of real-time computations. Our
finding that ecological dynamics possess computational
capability poses new research questions for computational
science and ecology: how can we efficiently use it and how is it
actually used, evolved and maintained in an ecosystem?

1. Introduction
Ecological dynamics is driven by complex interactions such
as interspecific and biotic–abiotic interactions. Empirical and
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theoretical studies have shown that prey–predator, mutualistic, competitive and biotic–abiotic interactions are
prevalent, and that they play a pivotal role in ecological community dynamics [1–4]. In nature, the interactions
shape an ecological network. Information of a node, for example, species abundance or the state of an abiotic
variable, can be processed through interactions and transferred to another node in a complexway that is often
difficult to be accurately represented by equations. Population or community dynamics includes temporal
fluctuations in species abundance and is a consequence of the ‘information processing’. Ecologists have
tried to discern rules that govern the ecological dynamics or the information processing.

The terminologies ‘network’ and ‘information processing’ also appear in computational science, but
they have been studied from a different viewpoint. In computational science, information processing
capability of artificial networks is exploited as a computational resource. Artificial neural networks are
represented by a network of neuron-like processing units (nodes) interconnected via synapse-like
weighted links (interactions), which are typically classified into feedforward neural networks [5] and
recurrent neural networks (RNNs) [6]. A machine learning approach called reservoir computing (RC)
is a special type of RNN that is suitable for temporal information processing such as time series
analysis [7,8]. In RC, input data are nonlinearly transformed into patterns in a high-dimensional space
by an RNN called a ‘reservoir’. Then, a pattern analysis from the transformed patterns is performed
in the readout. The main characteristic of RC is that the input weights (Win) and the weights of the
recurrent connections within the reservoir (W) are not trained, whereas only the readout weights
(Wout) are trained with a simple learning algorithm such as a linear regression. This simple and fast
training process makes it possible to drastically reduce the computational cost of learning compared
with standard RNNs, which is the major advantage of RC [7,8].

Recently, RC implementation using a physical material has been gaining growing attention in
machine learning and engineering fields (physical RC) [9]. A nonlinear, complex information
processing capability is embedded in a physical material (i.e. embodiment) [10], and thus one can
replace a reservoir in RC with a physical material. For example, a soft robotic, tentacle-like arm can
process an input signal from a motor that initiates a movement of the robotic arm, and then the signal
transmits through the arm in a way that depends on physical characteristics of the robotic arm such as
length, material and shape. Nakajima et al. [11,12] have shown that such a soft robotic arm has a short-
term memory and can be used to solve several computational tasks in real time. In addition, a recent
study has shown that even biological entities such as plants may be used as a physical reservoir [13].

Several successful examples of physical RC [8,9,14] imply that we may be able to use information
processing capability of other types of networks as a computational resource. Here, we show that
ecological dynamics can be used as a computational resource. We call this approach ‘ecological reservoir
computing (ERC)’ and implement two types of ERC in this study (figure 1). The first type of ERC is in
silico ERC; it reconstructs ecological dynamics from empirical time series using a time-delay embedding
[15] (i.e. an equation-free ecosystem model) and simulates the system dynamics in response to
hypothetical input signals. In silico ERC uses the reconstructed dynamics and the simulated responses as
a reservoir and reservoir states, respectively, which successfully predicts the near future of chaotic
dynamics and emulates nonlinear dynamics. The second type of ERC is real-time ERC; we set up an
experimental system that enables continuous monitoring of population dynamics of a unicellular
eukaryotic organism, Tetrahymena thermophila, in a small chamber. We manipulated the temperature of
the medium in the chamber as input signal, and monitored changes in population abundance as reservoir
states (i.e. a model-free empirical system). Surprisingly, the real-time ERC has the necessary conditions for
RC and is able to make near-future predictions of model and empirical time series. The computational
performance of the real-time ERC is currently lower than that of other types of RC, but the finding that
untrained ecological dynamics may possess necessary conditions for RC would open up new research
directions in computational science and ecology.
2. Results and discussion
2.1. Reconstructed ecological dynamics as a reservoir
A seminal RC framework, echo state network (ESN), was proposed by Jaeger [7,16]. This model uses an
RNN-based reservoir consisting of discrete-time artificial neurons. When the feedback from the output to
the reservoir is absent, the time evolution of the neuronal states in the reservoir is described as

Xtþ1 ¼ f(W inut þWXt), ð2:1Þ



conceptual illustrations of ‘ecological reservoir computing (ERC)’

(model or reconstructed system) (real ecological system)
real-time ecological reservoir
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Figure 1. Conceptual illustrations of ecological reservoir computing (ERC) and how in silico ERC is implemented. (a) Conceptual
illustrations of in silico ERC and real-time ERC. In silico ERC uses either equations or empirical dynamics reconstructed by
empirical time series as a reservoir. In the present study, we mainly investigated the properties and performance of in silico
ERC using reconstructed dynamics. Real-time ERC uses an empirical ecological interaction network as a reservoir. A node in an
ecological reservoir may represent an individual, species or abiotic variable in this study.
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where t denotes discrete time, Xt is the state vector of the reservoir units, ut is the input vector, Win is the
weight matrix for the input-reservoir connections and W is the weight matrix for the recurrent
connections in the reservoir. The function f represents an element-wise activation function of the
reservoir units, which is typically a sigmoid-type activation function. In the context of a population or
community dynamics model in ecology, the weight matrix, W, represents a rule such as prey–predator
interactions that govern the dynamics. Therefore, if equations governing the ecological dynamics are
known, we can use the system for RC. This is clearly demonstrated in Methods and electronic
supplementary material, figure S1 using a simple two-species model system, i.e. Lotka–Volterra
equations, in the subsection ‘Demonstration of the concept of ecological reservoir computing’ in Methods
(the computational performance of the system is low due to a small reservoir size).

Unfortunately, however, we usually do not know equations that govern real, complex ecological
dynamics. In other words, although previous studies demonstrated universal rules on ‘model’
ecological communities with explicit equations [17,18], whether and how these formulations accurately
represent real ecological dynamics are usually unknown. In this circumstance, an ‘equation-free
modelling’ approach enables extracting a potential mechanism that drives the dynamics. Among such
approaches, a nonlinear time series analysis called ‘empirical dynamic modelling’ [19–21] may
provide a promising way to use an empirical ecological time series as a reservoir. According to a
delay embedding theorem [15,22], multivariate system dynamics may be reconstructed from a single
time series using a time-delay embedding (i.e. reconstruction of system dynamics by plotting time-
lagged coordinates in a multi-dimensional space; figure 2a and electronic supplementary material,
appendix I) even when equations governing system dynamics are unknown, which is known as state
space reconstruction (SSR). One may add one or more variables (ordinates) in the reconstructed state
space, allowing simulations of ecosystem response to external forces, which is a forecasting method of
empirical dynamic modelling known as ‘scenario exploration’ [21]. Scenario exploration predicts
ecosystem response to hypothetical changes in external forces by averaging near-future behaviours of
nearest neighbours of a target state in the reconstructed state space [21,24]. Deyle et al. [21] developed
scenario exploration and predicted how changes in sea surface temperature influence population
abundance of Pacific sardine. In the context of RC, changes in sea surface temperature and predicted
population abundance of Pacific sardine may be regarded as ‘input’ and ‘reservoir state’, respectively.

We demonstrate in silico ERC, as a scenario-exploration-based approach, using empirical ecological
time series: (i) fish-catch time series collected from pelagic regions in Japan and (ii) DNA-based
quantitative prokaryote time series taken from experimental rice plots (figure 2a) [23]. State spaces of
the system were first reconstructed using an optimal embedding dimension (E) determined following
a previous study [25]. Then, reservoir states were calculated as follows:

Xtþ1 ¼ f(W inut þ fsimp(Xt)), ð2:2Þ

where fsimp indicates a ‘simplex projection’ [25], a nonlinear forecasting method that predicts a behaviour
of a target state based on behaviours of nearest neighbours in the reconstructed state space. Briefly, if a
target state is a state at time t� (= Xt�), then fsimp looks for nearest neighbours around the target state Xt�,
and predicts the future state Xt�+1 by calculating the weighted average of the future states of the nearest
neighbours (‘1. Overview of in silico ERC’ in electronic supplementary material, methods). The behaviour
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Algorithm
Step 1. Prepare time series.
Step 2. Reconstruct attractor dynamics
using time-delay embedding.
Step 3. Identify nearest neighbours of a
target point.
Step 4. Predict the next state of the
target point basedon the behaviours of
the nearest neighbors (= simplex projection).

Figure 2. Schematic illustrations of in silico ecological reservoir computing (ERC). (a) Examples of ecological time series, state space
reconstruction and scenario exploration for in silico ERC. Two empirical time series are shown as examples: fish-catch time series of
Japanese jack mackerel (Trachurus japonicus) and DNA copy number time series of Emticicia sp. in water samples collected from
experimental rice plots (Ushio [23]). Empirical attractor dynamics can be reconstructed by time-delay embedding (embedding
dimension = 3). The red inset indicates that the behaviour of a target point (light blue) is predicted by the behaviours (red
arrows) of nearest neighbours (red points) (see electronic supplementary material, appendix I and methods). (b) Schematic
illustrations of species multiplexing using scenario exploration. Simulated ecosystem responses are collected to generate a
‘multiplexed reservoir state’ ({Mt+1, Nt+1}), which is used for the learning process. Red point in the reconstructed state space
indicates the original vector (Mt or Nt), light blue point indicates perturbated vector (e.g. Winut + Mt), and blue point indicates
the predicted response of the system by simplex projection (denoted by, e.g. fsimp(Winut + Mt)). As in the main text, the
predicted response may be calculated by Winut + fsimp(Mt).
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of Xt is predicted by fsimp so that Xt follows the rule of the empirical ecological dynamics. In other
words, fsimp reflects the rules or behaviours of nearest neighbours, and thus may implicitly include
the consequences of interspecific interactions such as prey–predator interactions and competitions.
Then, a hypothetical input, ut, is added to the state after transformation by Win. We choose an identity
function as f so that equation (2.2) can be interpreted as the population dynamics. Alternatively, one
may apply fsimp after adding a hypothetical input, ut, to Xt (figure 2 and supplementary material,
methods). In addition, one may easily multiplex reservoir states generated by different species (species
multiplexing; figure 2b), which improves the performance of in silico ERC.

This type of in silico ecological reservoir is an equation-free ecosystem model and it possesses a
specific memory capacity and shows echo state property (ESP), which are necessary for successful RC
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Figure 3. Echo state property and memory capacity of in silico ecological reservoir computing (ERC). (a) Echo state property (ESP) of
the reconstructed fish reservoirs (47 fish species included). For each run (i.e., each species’ reservoir), the computation of in silico ERC
started from two different initial conditions, and the dependence of the state difference on the time step was measured by the
Euclidean distance between the two states. Different line colours indicate ecological reservoirs reconstructed by different fish species.
(b) ESP of the reconstructed prokaryote reservoirs (500 prokaryote species included). y-axis in a and b indicates the difference
between reservoir states started from different initial conditions and the difference converges to zero when the same input
sequence is used. (c) An example of forgetting curves of reconstructed prokaryote reservoir. Forgotten curves of single-species
prokaryotic reservoir (Bdellovibrio sp.; the black points and lines) and species-multiplexed prokaryotic reservoir (the red points
and lines) are shown.
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(figure 3 and electronic supplementary, methods). Even if initial conditions of an ecological reservoir are
different, the difference in the reservoir states converges to zero when the same input sequence is used
(figure 3a,b; uniform random values are used as the input sequence), suggesting that the in silico
ecological reservoir possesses ESP. In terms of memory capacity, the in silico ecological reservoir
remembers the information of input data about 10–20 time steps ago (figure 3c; species-multiplexed
reservoir shows a higher memory capacity). We also measured information processing capacities,
which can evaluate the expressiveness of the reservoir in terms of memory capacity and nonlinear
processing of inputs, using both species systematically (electronic supplementary material, figure S2
and methods). Interestingly, the analysis on information processing capacity suggests that the in silico
ecological reservoir has relatively higher nonlinear processing capacity than the linear one compared
with the profile of the conventional ESNs (electronic supplementary material, figure S2c). These
results together suggest that in silico ERC satisfies necessary conditions for RC.

We tested the performance of in silico ERC by several standard tasks: prediction of chaotic dynamics,
emulation of nonlinear autoregression moving average (NARMA) time series and generation of an
autonomous system (Mackey–Glass equation) (for detailed parameters, see electronic supplementary
material, tables S1 and S2 and methods). First, in silico ERC with species multiplexing accurately
predicts Lorenz attractor (figure 4a; time series of 500 prokaryotic species in the same experimental
system were multiplexed [23]; total reservoir size = 3271; electronic supplementary material, table S1),
which outperforms predictions made by the simple two-species model reservoir (electronic
supplementary material, figure S1e). Interestingly, the prediction accuracy measured by a correlation
coefficient increases with the number of species-multiplexed (figure 4b), suggesting that species
diversity of a community might be related to the computational capability of an ecological
community. Second, NARMA2 (eqn. 8 in electronic supplementary material, methods) can be
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accurately emulated with species-multiplexed in silico ERC (figure 4c) though the performance is still
lower than that of ESN, a typical RC method (figure 4d for NARMA2, 3, 4, 5 and 10; total reservoir
size of ESN = 2000; electronic supplementary material, table S1). Third, the Mackey–Glass equation
cannot be embedded in a closed loop with in silico ERC in our current numerical experiments, but in
silico ERC generates different attractor dynamics (figure 4e,f ). Altogether, though the performance is
still lower than that of ESN, these results show that the method based on scenario exploration can be
used as RC and solves several standard tasks. More importantly, in silico ERC implies that real
ecological dynamics may also be used as a computational resource.

2.2. Real-time ecological reservoir computing
In this section, we show that ERC is possible even with real ecological dynamics. For real-time ERC, we
set up an experimental system to use the population dynamics of a eukaryotic unicellular organism,
Tetrahymena thermophila [26] (hereafter, Tetrahymena), as a reservoir (figure 5a–d; Methods; electronic
supplementary material, figures S3 and S4). In the experiment, the Tetrahymena population dynamics
in an aluminium chamber is monitored by time-lapse imaging combined with a standard particle
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nutrient is adjusted to change hyperparameters of the population dynamics. (d ) Cell images were taken from the bottom of
the chamber. The number of cells was counted using a custom image analysis pipeline. (e) We used 1.6%, 4% and 10%
modified Neff medium in the experiments. Temperature information first transmits from the regulator to the aluminium
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analysis (Methods and electronic supplementary material, figure S5a). Medium temperature is accurately
controlled with a custom temperature regulator at 5 min intervals, which is an input signal of real-time
ERC. Although there is only a single species in the system, many factors, including temperature, medium
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concentration, cell-to-cell interactions and individual behaviours interact to generate complex, nonlinear
dynamics [27–29] (figure 5d,e), which we expected would be suitable for real-time ERC. Thus, the
number of cells captured in an image is an outcome of the complex system response to an external
force (see Methods for the formulation of the system response in the context of RC), and this system is
a model-free empirical system for RC.

To obtain reservoir states of the system and improve its computational capability, we adopted several
strategies: data preprocessing, time-multiplexing and space-multiplexing. First, the Tetrahymena
population dynamics was preprocessed to be stationary and unbiased (electronic supplementary
material, figure S5b–d), which represents responses of the Tetrahymena population to the inputs and
was used as reservoir states. Second, five reservoir states were multiplexed for one input (time-
multiplexing; i.e. a reservoir state was taken every minute and an input signal was manipulated every
5 min; electronic supplementary material, methods and appendices II and III). Third, reservoir states
taken using three medium concentrations (1.6%, 4% and 10% modified Neff medium) were
multiplexed to further increase the reservoir size (space-multiplexing; electronic supplementary
material, methods and appendices II and III).

We first tested whether the Tetrahymena reservoir has a memory capacity and ESP by inputting
uniform random values as medium temperature using the three strategies. Examples of the
monitoring results with the same input sequence and the same medium concentration for different
trials are shown in figure 5f and electronic supplementary material, movie S1 (https://www.youtube.
com/watch?v=z_QeEka4W3w), which shows a clear common-signal-induced synchronization that is a
signature of ESP [30,31]. A different medium concentration generated different population dynamics
(figure 5f ), suggesting that the population dynamics under a different medium concentration may be
used as a reservoir with different hyperparameters. We further tested the correspondences between
the two runs for each medium concentration, and found that the state differences become smaller
when the same input sequence is inputted to the system (figure 6a–f ). On the other hand, with a
different input sequence in the 4% medium system, the population dynamics show a different pattern
and the state difference does not converge (figure 6g,h). These results suggest that the system has ESP
[30,31]. In addition, the population dynamics have a specific memory capacity; the dynamics recover
the input values at 5–15 min ago (= 1–3 steps ago) (figure 7a–c). These characteristics enable the
Tetrahymena reservoir to measure the medium temperature (figure 7d,e), showing that, by using
the short-term memory of the community dynamics (not the medium), the Tetrahymena population
dynamics can work as a ‘thermometer’ of the system. Together, these results suggest that the
ecological reservoir may be used as a computational resource.

To explicitly show that the Tetrahymena reservoir can solve computational tasks, we predicted
three time series: Lorenz attractor (model time series) and two fish-catch time series (empirical time
series). As with the uniform random inputs, the same inputs generate similar population dynamics
under the same medium concentration, showing ESP of the system (electronic supplementary
material, figure S6). By time- and space-multiplexing those reservoir states, the Tetrahymena
reservoir reasonably predicts the near future of the three time series (figure 8a–c; see electronic
supplementary material, movie S2 for how the Tetrahymena reservoir predicts the near future in real
time; https://www.youtube.com/watch?v=SUmkYAnfjFk). The predictions made by the Tetrahymena
reservoir are more accurate than those made by linear readout at certain time points, suggesting that
the computational capability of Tetrahymena population dynamics has been successfully extracted and
used by the experimental system. The Tetrahymena reservoir predicts 15 time-step future of Lorenz
attractor, 19 time-step future of flatfish time series and 30 time-step future of Japanese jack mackerel
time series (figure 8d–f ).

2.3. Significance, current limitations and future perspectives
Recently, machines built completely from biological tissues, called living machines or biological robots,
are gaining attention due to the extreme adaptability and flexibility provided by the protean nature of
their donor organisms [32]. Our work shares the same line of motivation and serves as one of the
examples of living machines or biological robots. However, ecological dynamics are often more
complex and less understood than individual-level phenomena that have previously inspired living
machines or biological robots. Perhaps partly due to this complexity, the computational capability of
ecological dynamics has not been explored so far. This study illustrates for the first time that
ecological dynamics has computational capability that could be harnessed. In this section, we will
discuss the significance of the finding, its current limitations and future perspectives.

https://www.youtube.com/watch?v=z_QeEka4W3w
https://www.youtube.com/watch?v=z_QeEka4W3w
https://www.youtube.com/watch?v=SUmkYAnfjFk
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the input sequence was identical for (a–f ). (a,b) Comparison of two reservoir states (i.e. relative GAM residuals explained in
electronic supplementary material, figure S5; Run1 and Run2) where the same input sequence was added in 4% Neff medium.
Time series plot (a) and scattered plot for the last 501 time points (b). (c,d ) Comparison of two reservoir states in 1.6% Neff
medium (Run3 and Run4) and (e,f ) in 10% Neff medium (Run5 and Run6). (g,h) Comparison of two reservoir states in 4%
Neff medium, but the input sequence was different for Run1 and Run11. Reservoir outputs converged for the identical inputs
when the medium concentration was the same (a–f ). On the other hand, the reservoir outputs did not converge when the
input sequences were different (g,h). Red and dashed lines indicate GAM regression and 1 : 1 line, respectively.
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In the present study, we show the first empirical evidence that ecological dynamics can be used as a
computational resource in two ways: in silico ERC and real-time ERC. The former provides a numerical
framework to quantify the ‘potential’ computational capability of the ecological dynamics and to use
the reconstructed dynamics as a computational resource. In the context of computational science,
while in silico ERC currently has poorer computational performance than traditional RC (figure 4), the
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potential of reconstructed dynamics as a reservoir is worth exploring as it allows for the transformation
of input signals into a higher dimensional feature space in an unconventional manner. In the context of
ecology, quantifying the computational capabilities of ecological time series is important for two reasons.
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First, it provides an efficient way to search for ecological dynamics with potentially high information
processing capability in the real world. Second, comparing the computational capabilities with
ecological factors (such as species identity, phylogeny and environmental factors) may provide
insights into how and why the computational capability of ecological dynamics evolved. For example,
communities in a rapidly changing environment might possess higher information processing capacity
than those in a stable environment.

The latter, i.e. the fact that untrained ecological dynamics possess necessary conditions for RC and can
solve several machine learning tasks, is more intriguing, and its significance is multi-fold. In the context of
computational science, real-time ERC is a novel computational framework. Though the computational
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performance of ERC is still lower than that of the typical RC, other ecological dynamics (e.g. high-diversity
community dynamics) with different experimental settings (e.g. different input signals such as light) will
possess different reservoir properties (e.g. with/without ESP and different memory capacity) and such
ecological reservoirs might outperform the typical RC. To achieve this, the development of methods for
efficient (eco)system monitoring is key. In the context of ecology, the real-time ERC enables
quantifications of the computational capability of empirical ecological populations or communities. The
computational capability may be regarded as an ‘extended’ functional trait of organisms, which should
evolve by interacting with biotic and abiotic factors in a natural habitat. As we stated in the previous
paragraph, comparing the computational capabilities with ecological factors may provide insights into
how and why the computational capability evolved. In addition, identifying responsible genes for the
computational capability and designing organisms with a high computation capability would be a
fascinating direction. Also, a community with high diversity may potentially have a high reservoir size,
which could beget a high computational capability (as shown in figure 3b). The high computational
capability, high community diversity and stable ecosystem functions might be interdependent, and the
potential positive relationship between community diversity and computational capability may add a
new value to biodiversity. Lastly, if the ‘closed-loop’ approach as shown in the Mackey–Glass equation
in in silico ERC (figure 3e,f ) is successful in real-time ERC, it would imply that we may be able to design
specific dynamics in real-time ecological dynamics. Developing a method for efficient ecosystem
management is a pressing but challenging task and an ERC-based method might be a basis of a novel
approach to manipulate ecological dynamics.
21614
3. Conclusion
The present study provides the first empirical evidence that ecological dynamics may possess
computational capabilities, and we demonstrate how it can be used in terms of RC. In the context of
computational science, ERC does provide a novel framework for computing, and its potential is worth
exploring. In the context of ecology, introducing the concept of ‘computational capability’ into ecological
studies may open up new research directions. While how and why the computational capability of
ecological dynamics evolved cannot be understood in the present study, answering this question may
deepen our understanding of how ecological dynamics is driven and how ecosystem functions are
maintained, which may contribute to better management and forecasting of ecological dynamics.
4. Methods
This section provides the summary of methods, and full methods are described in the electronic
supplementary material. Analysis codes and raw data are available at Github (https://github.com/
ong8181/ecological-reservoir-computing) and archived at Zenodo (https://doi.org/10.5281/zenodo.
7760773 [33]).

4.1. A classic reservoir computing framework: echo state network
In the early 2000s, echo state networks (ESNs) as well as liquid state machines (LSMs) were proposed as a
seminal reservoir computing (RC) approach [7,34]. ESNs (and LSMs) are different from conventional
recurrent neural networks (RNNs) in that weights on the recurrent connections in the reservoir are not
trained, but only the weights in the readout are trained [7]. To apply a simple machine learning
method to the readout, the reservoir should be appropriately designed in advance. The characteristics
of ESNs are briefly described in equation (2.1). Equation (2.1) represents a non-autonomous dynamical
system forced by the external input ut. The output is often given by a linear combination of the
neuronal states as follows: zt =WoutXt, where zt is the output vector and Wout is the weight matrix in
the readout. In supervised learning, this weight matrix is trained to minimize the difference between
the network output and the desired output for a certain time period.

4.2. Demonstration of the concept of ecological reservoir computing
We demonstrate the concept of ERC using a toy model that is frequently used in ecology. Equation (4.1)
shows two coupled difference equations that can be interpreted as a model of two-species

https://github.com/ong8181/ecological-reservoir-computing
https://github.com/ong8181/ecological-reservoir-computing
https://doi.org/10.5281/zenodo.7760773
https://doi.org/10.5281/zenodo.7760773
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population dynamics

xtþ1 ¼ xt(rx � rxxt þ bxyyt)

ytþ1 ¼ yt(ry � ryyt þ byxxt),
ð4:1Þ

where xt and yt indicate a population density of species x and y at discrete time t, respectively. ri indicates
the population growth rate of species i, βij indicates influences from species j to species i (i.e. interspecific
interactions), and the second term in the parenthesis indicates density-dependent effects. We used the
same ri for the linear term and squared term following the previous study [19].

The simple nonlinear model can be used as a small reservoir (i.e. reservoir size = 2) in the context of
RC. First, any inputs, ut, can be converted using the weight matrix for the input-reservoir connections,
Win, and then reservoir dynamics follow equation (4.2). This information processing can be described
as follows:

Xtþ1 ¼ f(W inut þ g(Xt)), ð4:2Þ
where t denotes discrete time, Xt (= {xt, yt}) is the state vector of the reservoir and g is the two-species
population dynamics model (equation (4.1)). f represents an element-wise activation function. While
hyperbolic tangent is often used as f for ESN, here we choose an identity function as f so that
equation (4.2) can be interpreted as the population dynamics of two species in response to the
addition or removal of individuals of species x and y (thus, equation (4.2) is not ESN, but used here
to explain the population dynamics may be regarded as an analogue of ESN). Then, the reservoir
states, Xt, are used to train readout weights by a ridge regression. We used the following parameter
values that were determined by a grid search of rx, ry, βxy and βyx: rx = 3.0, ry = 2.7, βxy = –0.2, βxy = 0.2.
The sparsity (i.e. the proportion of 0 in the matrix elements) of Win (= a matrix that transforms the
input value) was set to 0. Matrix elements of the input weight were chosen from a uniform random
distribution [–1,1], and they were multiplied by 0.3 to adjust the influence of the input vectors.
Readout was trained using a ridge regression (λ for the regularization = 0.05). For detailed information
of the parameters, see electronic supplementary material, tables S1 and S2. Also, see electronic
supplementary material, figure S1a for an example of the dynamics.

This framework enables transforming a traditional ecological population model into an RC system.We
used Lorenz attractor as an input, ut, and this simple reservoir predicts one-time-step future of the chaotic
time series better than a simple ridge regression (electronic supplementary material, figure S1b–e).
4.3. In silico ERC: empirical ecological time series and scenario exploration
In in silico ERC, an empirical ecological time series is used to simulate an ecological system’s responses.
For this purpose, we developed a framework based on SSR, a method to reconstruct an original dynamics
from a single time series [15,22] (figure 2a). In Deyle et al. [21], a numerical method to predict an
ecosystem’s responses to external forces called ‘scenario exploration’ was proposed based on SSR
(figure 2a). We used the scenario exploration to simulate an ecosystem’s response to hypothetical
inputs and used the simulated responses as reservoir states. In other words, rules/mechanisms
governing the reconstructed ecosystem dynamics were used as a computational resource. The scenario
exploration-based in silico ERC is fully explained in electronic supplementary material, methods and
visually explained in figure 2a and electronic supplementary material, appendix I. The in silico
ecological reservoir shows ESP and possesses a specific memory capacity (figure 3 and electronic
supplementary material, methods).

The performance of in silico ERC was evaluated using three tasks: prediction of chaotic dynamics,
emulation of nonlinear autoregression moving average (named NARMA2, 3, 4, 5 and 10; eqns. S3–S5
in electronic supplementary material were used to generate NARMA2, 3–5 and 10, respectively) time
series [35], and generation of an autonomous system (Mackey–Glass equation). All parameters used in
the tasks are described in electronic supplementary material, methods and tables S1 and S2.

The performance of in silico ERC was compared with that of ESN. ESN was implemented following
equation (2.1) and Jaeger [7,16], and detailed parameters are described in electronic supplementary
material, tables S1 and S2. The reservoir size (N = 2000) was chosen because it showed the highest
performance based on our preliminary analysis that tested the effects of reservoir size on the
performance (i.e. reservoir sizes from 20 to 2000 were tested). The implementation of in silico ERC can
be found in the ‘01_ERCinsilico’ folder at the Github repository.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221614
14

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 A

pr
il 

20
23

 

4.4. Real-time ERC: a target unicellular microbe
In real-time ERC, real-time ecological dynamics is used as a reservoir. In the present study, the
population dynamics of Tetrahymena thermophila was used as a reservoir. Tetrahymena thermophila
(hereafter, Tetrahymena) is a unicellular, eukaryotic organism that belongs to the ciliates [26].
Tetrahymena is commonly found in a freshwater ecosystem, and is widely used as a model organism
in molecular biology studies. Tetrahymena can easily be cultured using a wide variety of media,
chambers and conditions, and its doubling time is ca 2 h under optimal conditions [26]. More detailed
physiological characteristics are shown in electronic supplementary material, figures S3 and S4.
Experimental conditions to incubate and maintain Tetrahymena are described in the subsection ‘A
target unicellular organism for real-time ERC: T. thermophila’ in electronic supplementary material,
methods.

4.5. Real-time ERC: Tetrahymena population dynamics as a reservoir
Although there is only a single species in the system, the population dynamics at the bottom of the
aluminium chamber is a result of complex interactions among biotic and abiotic factors such as medium
temperature, cell physiological states, cell–cell interactions and behaviours. Indeed, previous studies
demonstrated that Tetrahymena population dynamics and behaviour may be influenced by temperature
and medium concentrations, and complex nonlinear interactions seem to govern the dynamics and
behaviour [27–29]. These studies imply that complex, but deterministic, nonlinear interactions drive the
population dynamics of Tetrahymena. Specifically, the cell dynamics can be formulated as

Xtþ1 ¼ ftetra(W inut, Xt), ð4:3Þ
where Win determines how the effects of temperature (a scalar value), ut, propagate to the population
dynamics and ftetra determines how temperature influence (Winut) and population density captured at the
bottom of the chamber (Xt) interact in the chamber. Importantly, we do not know exact formulations of
ftetra and Win, but we can still use this system for RC if ftetra and Win are time-invariant.

4.6. Real-time ERC: experimental system to monitor Tetrahymena population dynamics
The computational capability of RCpositively correlateswith the reservoir size, and to increase the reservoir
size, we used three concentrations of modified Neff medium (see electronic supplementary material,
methods) in the experiments (‘low nutrient,’ ‘med. nutrient’ and ‘high nutrient’; see electronic
supplementary material, methods). The Tetrahymena population in the medium was incubated in an
aluminium chamber (figure 5a–d), and the temperature inside the aluminium chamber was
automatically regulated using a custom temperature regulator system (E5CC; OMRON, Kyoto, Japan).
A user can set a maximum of 256 consecutive temperature values at flexible time intervals. Medium
temperatures were changed every 5 min because it took some time to change the medium temperature,
and thus the total incubation time for each experiment was 256 time steps × 5 min = 1280 min. The
medium temperature was also monitored every minute using a temperature logger/sensor (Ondotori
TR-52i; T&D, Matsumoto, Japan). During the incubation, images of the Tetrahymena population at the
bottom of the aluminium chamber were taken every minute, resulting in 1280 images for each run.
Experimental conditions during the monitoring are described in the subsection ‘A target unicellular
organism for real-time ERC: T. thermophila’ in electronic supplementary material, methods.

4.7. Real-time ERC: monitoring Tetrahymena population dynamics, preprocessing the cell count
data and reservoir state multiplexing

In the experiment, we used four time series as inputs, ut: (i) uniform random, (ii) Lorenz attractor,
(iii) empirical fish-catch time series (flatfish; Paralichthys olivaceus), and (iv) empirical fish-catch time
series (Japanese jack mackerel; Trachurus japonicus). The first one was used to quantify the memory
capacity of the ecological reservoir (figure 7), and the other three were used to test the predictive
capability of the Tetrahymena reservoir (figure 8).

Responses of the Tetrahymena population to changing medium temperatures were monitored semi-
automatically using a time-lapse camera (figure 5) and the number of Tetrahymena cells was counted
using a standard particle analysis (electronic supplementary material, figure S5). We preprocessed
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the raw data so that the time series is stationary and unbiased (electronic supplementary material, figure
S5). Then, time- and space-multiplexing techniques were applied to increase the reservoir size (see
electronic supplementary material, appendices II and III for visualized explanation of the time- and
space-multiplexing). For explanation purposes, we name the reservoir state Si,jt , where i, j and t
indicate a nutrient condition (‘l’, ‘m’ and ‘h’ denote low, medium and high, respectively), a replicate of
the experiment (1 or 2), and time step, respectively. For example, Sm,1

t indicates the reservoir state
taken from the first run of the medium nutrient concentration (4% modified Neff). For the
quantification of memory capacity (uniform random value inputs), {Sl,1t , Sm,1

t , Sh,1t } was used for the
training and {Sl,2t , Sm,2

t , Sh,2t } was used for the testing. As each Tetrahymena time series, Si,jt , was time-
and space-multiplexed for each run, the combined reservoir state, {Sl,1t , Sm,1

t , Sh,1t }, has a 256-row × 15-
column matrix (i.e. the experiment generated data that include 256 steps × 5min (1 image per 1 min) ×
3 runs). Wout, a 1-row × 15-column matrix, was learned by a ridge regression and used to predict a
past input value with the test reservoir state, {Sl,2t , Sm,2

t , Sh,2t } (see electronic supplementary material,
appendix II for visual explanation). For the prediction tasks, all six reservoir states were time- and
space-multiplexed and combined. Thus, {Sl,1t , Sl,2t , Sm,1

t , Sm,2
t , Sh,1t , Sh,2t } is a 256-row × 30-column matrix.

Wout was learned by a ridge regression, and the remaining data were used for testing (see electronic
supplementary material, appendix III for visual explanation). Detailed information on the size of
training and testing data and training parameters (e.g. ridge regression parameters) is described in
electronic supplementary material, methods and table S1. Analysis codes for real-time ERC are
available in the ‘02_ERCrealtime’ folder of the Github repository.
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