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Abstract

Background: Multiple common variants and also rare variants in monogenic risk genes such as BRCA2 and HOXB13 have been
reported to be associated with risk of prostate cancer (PCa); however, the clinical setting in which germline genetic testing
could be used for PCa diagnosis remains obscure. Herein, we tested the clinical utility of a 16 common variant–based
polygenic risk score (PRS) that has been developed previously for Japanese men and also evaluated the frequency of PCa-
associated rare variants in a prospective cohort of Japanese men undergoing prostate biopsy. Methods: A total of 1336
patients undergoing first prostate biopsy were included. PRS was calculated based on the genotype of 16 common variants,
and sequencing of 8 prostate cancer–associated genes was performed by multiplex polymerase chain reaction based target
sequencing. PRS was combined with clinical factors in logistic regression models to assess whether addition of PRS improves
the prediction of biopsy positivity. Results: The top PRS decile was associated with an odds ratio of 4.10 (95% confidence
interval ¼ 2.46 to 6.86) with reference to the patients at average risk, and the estimated lifetime absolute risk approached
20%. Among the patients with prostate specific antigen 2-10 ng/mL who had prebiopsy magnetic resonance imaging, high PRS
had an equivalent impact on biopsy positivity as a positive magnetic resonance imaging finding. Rare variants were detected
in 19 (2.37%) and 7 (1.31%) patients with positive and negative biopsies, respectively, with BRCA2 variants being the most
prevalent. There was no association between PRS and high-risk rare variants. Conclusions: Germline genetic testing could be
clinically useful in both pre- and post-PSA screening settings.
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Genetic risk factors are among the most well-known causes of
prostate cancer (PCa). Genome-wide association studies (GWAS)
have identified 269 single-nucleotide polymorphisms (SNPs)
associated with PCa (1-6), signifying the contribution of com-
mon variants in PCa development. In addition, mutations in
genes, such as BRCA1 and 2 and ATM, account for up to 10%-
20% of metastatic PCa cases (7,8), and rare variants in HOXB13
are also known to be associated with the risk of developing PCa
(9-11).

Currently, PCa is commonly diagnosed using prostate-
specific antigen (PSA) testing followed by prostate needle bi-
opsy. Because the diagnostic accuracy of a single PSA test is
low, especially in the gray zone (4-10 ng/mL), additional param-
eters such as PSA density, PSA velocity, and multiparametric
magnetic resonance imaging (MRI) are also considered when
selecting patients to undergo biopsy. Family history of PCa is
one of the clinical parameters that prompts PSA screening at a
younger age or earlier biopsy in patients with gray-zone PSA.
However, family history information is often incomplete or im-
precise. The polygenic risk score (PRS) based on common var-
iants is a method that explicitly captures the common
polygenic components of family history (12). It is estimated
that the common variants identified to date account for 40%
of PCa heritability (1). Thus, PRS is expected to be clinically use-
ful in identifying patients who are at a high risk of developing
PCa.

Although the potential utility of germline genetic testing in-
cluding PRS (13,14) and target sequencing of select monogenic
genes (8) has been reported for PCa, the clinical setting in which
these tests would be useful is not well defined. In the present
study, we prospectively tested the utility of a 16-SNP–based PRS
we have previously developed and validated (13), and we also
performed target sequencing of 8 well-known monogenic risk
genes reported to be associated with PCa development in
patients undergoing prostate needle biopsy.

Methods

The key experimental methods are described below. Further
details can be found in the Supplementary Methods (available
online).

Study Design

The Prostate Cancer Susceptibility Single Nucleotide
Polymorphism (PCSSNP) study is a multi-institutional prospec-
tive study to evaluate the utility of PRS in prostate cancer diag-
nosis. A total of 1394 patients were registered, and after
excluding ineligible patients, 1336 were included in the final
analysis (Supplementary Figure 1, available online). The pri-
mary endpoint of the study was to assess whether the addition
of PRS to clinical parameters would improve the prediction of
biopsy positivity in men undergoing prostate needle biopsy.
In addition, the present study aimed to examine the prevalence
of germline mutations in known monogenic PCa-associated
genes among Japanese patients undergoing prostate needle
biopsy. Together, the study was designed to assess the clinical
utility of germline genetic testing for prostate cancer diagnosis.
The study was approved by the ethical committees at each
institution and was registered at the University Hospital
Medical Information Network Clinical Trials Registry (15)
(UMIN000019278).

Genotyping of Common Variants and PRS Calculation

A multi-index polymerase chain reaction (PCR)-based target se-
quencing method was used to sequence the target regions, as
previously described (16). We have previously created a genetic
risk prediction model using 16 SNPs that were confirmed to be
associated with PCa in a Japanese cohort (13). The model was
created using 689 PCa patients and 749 healthy individuals and
validated using 2 independent sets of cohorts comprising 3249
PCa patients and 6281 healthy individuals. Logistic regression
analysis was conducted to create the model. Odds were esti-
mated for each sample using the following formula,

odds ¼ p xð Þ
1� p xð Þ ¼ exp b0 þ b1x1 þ b2x2 þ b3x3 þ � � �ð Þ;

where bn are the regression coefficients of each SNP, xn is the
number of risk alleles at each SNP locus, and p(x) is the probabil-
ity of developing PCa conditional on the number of risk alleles
xn. The bn values calculated for each SNP in our previous study
(13) were applied. For the current study, each sample was scored
for each of the 16 SNPs with the number of risk alleles, and the
odds calculated from the formula were used as PRS. The result
of the case-control analysis for the 16 SNPs using the current co-
hort is presented in Supplementary Table 1 (available online).

Target Genome Sequencing and Annotation of Variants

For target genome sequencing, we selected 8 genes (ATM,
BRCA1, BRCA2, BRIP1, CHEK2, HOXB13, NBN, and PALB2) for
which we have conducted a similar analysis previously in a
large cohort of unselected Japanese PCa patients and healthy
controls (9). In the previous study, we chose the 8 genes based
on a review article describing that rare variants in these genes
show high penetrance for PCa (17). We analyzed the complete
coding regions and 2-base pair flanking intronic sequences of
the 8 genes by multiplex PCR-based target sequencing as de-
scribed previously (9). We assigned clinical significance (patho-
genic, benign, or uncertain) for all variants of the 8 genes. First,
we determined the clinical significance based on the pathoge-
nicity assertions registered in ClinVar (18). The variants
reported as “pathogenic” or “likely pathogenic” were considered
pathogenic. Additionally, novel variants not registered in
ClinVar that were predicted to lead to a loss-of-function event
or deletions that disrupt the coding sequences were also consid-
ered pathogenic. We used the same procedure for all genes ex-
cept HOXB13. For HOXB13, p.Gly84Glu, and p.Gly135Glu variants
have been reported to be pathogenic (10,11), whereas we previ-
ously reported p.Gly132Glu and p.Gly17Val variants as novel
pathogenic variants (9); thus, they were considered pathogenic
in this study.

Statistical Analysis

A logistic regression model was created for each combination of
clinical factors and PRS, and their performance in predicting bi-
opsy positivity was compared using receiver operating charac-
teristic analysis. For multivariable analysis, only the parameters
that were statistically significantly associated (P< .05) with out-
comes in the univariate analysis were included in the models.
For PSA density (PSAD) dichotomy, a cutoff of 0.2 ng/mL/mL was
applied.

To compare variables between groups, categorical and con-
tinuous data were analyzed using Pearson v2 test and student t
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test or Wilcoxon rank sum test, respectively. The association of
each SNP was assessed using an additive model, and the
Cochran-Armitage trend test was used to investigate the associ-
ation between each SNP and PCa.

All analyses were performed using R statistical software
(version.3.5.3) or JMP Pro v.14 (SAS Institute, Cary, NC, USA). All
statistical tests were 2-sided with a statistical significance level
of 0.05.

Results

Patient and Tumor Characteristics

An outline of the patient cohort is shown in Supplementary
Figure 1 (available online). At the first biopsy, 778 patients were
diagnosed with PCa (Supplementary Table 2, available online).
Of the 558 patients not diagnosed with PCa at initial biopsy, dur-
ing the median follow-up of 30.5 months (interquartile range ¼
15-38) after biopsy, 72 were rebiopsied at the discretion of the
attending physician, and 23 were diagnosed with PCa. At the fi-
nal data collection, 801 patients were diagnosed by biopsy, and
535 were not diagnosed with PCa (Table 1). Of the 889 patients
with PSA levels 2-10 ng/mL, 446 were diagnosed with PCa and
443 had no PCa detected (Supplementary Table 3, available on-
line). Because prebiopsy MRI was not mandated, MRI was per-
formed in only 747 patients of the entire cohort, and 468 of
those patients had PSA 2-10 ng/mL. Age, abnormal rectal exam
results, PSA levels, prostate volume, and MRI findings were all
statistically significantly associated with PCa in both the entire
cohort and among patients with PSA levels 2-10 ng/mL. The

characteristics of the detected PCa are summarized in Table 2. A
total of 674 patients had localized disease (N0, M0), and 62
(7.7%) patients had nonclinically significant cancer (Gleason
score [GS] 3þ 3¼ 6, � T2a, positive biopsy core � 2, and total
positive core length � 6 mm). A total of 409 (51.1%) patients had
high-risk or advanced cancer (GS � 8 or � T3a or PSA � 20 or
Nþ, or Mþ).

Performance of PRS in Combination With Clinical
Parameters to Predict PCa

The median PRS for the entire cohort, using the logistic regres-
sion model, was 0.91, ranging from 0.09 to 7.58. When patients
were grouped by PRS categories, the estimated odds ratio (OR)
for men in the top 10% of the PRS (90%-100% PRS category) was
4.10 (95% confidence interval [CI] ¼ 2.46 to 6.86) compared with
men with an average risk in the 40%-60% PRS category after
adjusting for age at biopsy (Table 3; Supplementary Table 4,
available online). The odds ratio for men in the top 1% of the
PRS distribution (99%-100%) was 5.37 (95% CI ¼ 1.13 to 25.55).
The area under the curve (AUC) of the PRS for positive biopsy
results was 0.630 (95% CI ¼ 0.600 to 0.660) for the entire cohort
(Supplementary Figure 2, available online). There was no statis-
tically significant difference in PRS between those with clini-
cally significant and nonclinically significant PCa (P¼ .32) or
between high-risk and nonhigh-risk PCa (P¼ .58)
(Supplementary Figure 3, available online). Next, we focused on
patients with PSA levels 2-10 ng/mL, in whom the performance
of PSA to predict PCa is poor. The AUC of the PRS was 0.618 (95%
CI ¼ 0.580 to 0.654). The AUC of PSA alone was 0.575 (95% CI ¼

Table 1. Patient characteristics and the results of final biopsya

Characteristic PCa(þ) PCa(�) Total

Total No. of patients (%) 801 (60.0) 535 (40.0) 1336 (100)
Age, y

Mean (SD) 70.6 (7.2) 66.0 (8.2) 68.7 (7.9)
Median (min, max) 71.0 (47, 90) 67.0 (37, 91) 69.0 (37, 91)

Digital rectal exam, No. (%)
PCa suspected 279 (34.9) 44 (8.2) 323 (24.2)
PCa not suspected 520 (65.1) 490 (91.8) 1010 (75.8)
N/A 2 1 3

PSA, ng/mL
Mean (SD) 80.3 (575.5) 7.4 (4.7) 51.1 (446.9)
Median (min, max) 8.7 (0.03, 14 426) 6 (0.7, 42.7) 7.3 (0.03, 14 426)

Prostate volume, mL3

Mean (SD) 32.0 (17.8) 41.3 (20.0) 35.8 (19.2)
Median (min, max) 28 (7.3, 175) 37.8 (5.7, 186) 30.1 (5.7, 186)

PSA density, ng/mL/mL
Mean (SD) 1.99 (11.55) 0.21 (0.16) 1.28 (8.98)
Median (min, max) 0.34 (0.002, 265.7) 0.17 (0.03, 1.64) 0.43 (0.002, 265.7)

Family history, No. (%)
Yes 43 (5.6) 39 (7.8) 82 (6.5)
No 720 (94.3) 464 (92.2) 1184 (93.5)
N/A 38 32 70

Suspicion of PCa on MRI, No. (%)
Yes 402 (87.2) 164 (57.3) 566 (75.8)
No 59 (12.8) 122 (42.7) 181 (24.2)
N/A 340 249 589

No. of biopsy cores
Median (min, max) 12 (2,20) 12 (8, 22) 12 (2,22)

amax ¼maximum; min ¼minimum; MRI ¼magnetic resonance imaging; N/A ¼ not available; PCa ¼ prostate cancer; PSA ¼ prostate-specific antigen.
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0.537 to 0.612); however, the AUC of PSAD statistically signifi-
cantly increased to 0.719 (95% CI ¼ 0.685 to 0.751; P< .001)
(Figure 1). When PRS and PSAD were combined in a logistic re-
gression model, the AUC statistically significantly increased to

0.747 (95% CI ¼ 0.713 to 0.777; P¼ .002). A multivariable analysis
incorporating age, PSAD, digital rectal exam (DRE), and PRS
showed that these parameters were all independently associ-
ated with biopsy positivity (Supplementary Table 5, available
online). The AUC including all the variables was 0.784 (95% CI ¼
0.753 to 0.813), and 0.756 (95% CI ¼ 0.723 to 0.786) in a model
without age. Because the decision to rebiopsy was at the physi-
cian’s discretion in the present study, we also conducted a sen-
sitivity analysis based solely on the results of the first biopsy
(Supplementary Figure 4, available online). The AUC including
all the variables was 0.779 (95% CI ¼ 0.747 to 0.807).

To further test the performance of PRS, we also evaluated
the models without PSA (Supplementary Figure 5, available on-
line). The AUC of age alone was 0.627 (95% CI ¼ 0.590 to 0.663)
and increased to 0.679 (95% CI ¼ 0.643 to 0.713) with the addition
of PRS. The AUC approached 0.702 (95% CI ¼ 0.667 to 0.735)
when DRE was also incorporated. However, the addition of PSA
to this model did not improve the discriminative performance
(AUC ¼ 0.709, 95% CI ¼ 0.675 to 0.742). We also evaluated
whether the number of biopsy cores affected the performance
of the model; however, the increase in AUC was minimal (AUC
¼ 0.711, 95% CI ¼ 0.677 to 0.744).

Among the 468 patients with PSA 2-10 ng/mL who had MRI
data available, MRI was also independently associated with a
positive biopsy (Table 4; Supplementary Table 6, available on-
line). The overall effect size of PRS on biopsy positivity was com-
parable to that of MRI after adjusting for age, PSAD, and DRE.
When PRS was included in a multivariable model as a dichoto-
mous variable with a cutoff of 2.0, the odds ratio of PRS of 2.0 or
more was 2.88 (95% CI ¼ 1.50 to 5.53), which was comparable to
that of positive MRI (OR ¼ 2.78, 95% CI ¼1.70 to 4.55). The AUC
was 0.742 (95% CI ¼ 0.696 to 0.784) with the model incorporating
clinical parameters (PSAD and DRE) alone, increased to 0.770
(95% CI ¼ 0.725 to 0.809) with the addition of PRS, and was the
highest when MRI was also included (AUC ¼ 0.795, 95% CI ¼
0.751 to 0.832). The increase in AUC with the addition of PRS
and MRI was statistically significant (P¼ .01 and P ¼ .02, respec-
tively). Taken together, even though PSAD is the strongest pre-
dictor of positive biopsy in patients with PSA 2-10 ng/mL, PRS
and MRI moderately improve the prediction of biopsy positivity.

Utility of PRS to Identify Patients Who May Benefit From
Early Screening

Taking advantage of the large discovery cohort from GWAS and
the PCSSNP cohort, we next explored whether PRS could be
used to identify patients who are at high risk for developing PCa
and may benefit from early PSA screening. To this end, we set
an arbitrary cutoff of PRS at 3.0, 2.5, and 2.0 to define patients at
high risk for PCa. In our Japanese GWAS cohort used for the PRS
creation and validation (13), which comprised 3983 PCa patients
and 7030 healthy individuals, 3.4%, 5.4%, and 9.7% of cases were
classified as high risk based on PRS cutoffs of 3.0, 2.5, and 2.0, re-
spectively (Supplementary Table 7, available online). In the
PCSSNP cohort, 3.6%, 6.2%, and 13.1% of patients were classified
as high risk. At all cutoffs, high genetic risk was associated with
PCa diagnosis with odds ratio higher than 3.0 (Table 5). In the
PCSSNP cohort, genetically high-risk patients were diagnosed
earlier than nonrisk patients based on all cutoffs
(Supplementary Table 8, available online). As an alternative
way to investigate the impact of PRS, we calculated the absolute
risk for a given age for each PRS category based on the age-
specific prostate cancer incidence and age-specific mortality

Table 2. Characteristics of diagnosed tumor

Tumor characteristics No. (%)

Gleason scorea

3þ 3¼ 6 149 (18.6)
3þ 4¼ 7 171 (21.3)
3þ 5¼ 8 4 (0.5)
4þ 3¼ 7 142 (17.7)
4þ 4¼ 8 179 (22.3)
4þ 5¼ 9 102(12.7)
5þ 3¼ 8 1 (0.1)
5þ 4¼ 9 45 (5.6)
5þ 5¼ 10 8 (1.0)

cT stage
T1c 282 (35.2)
T2a 243 (30.3)
T2b 57 (7.1)
T2c 68 (8.5)
T3a 83 (10.4)
T3b 44 (5.5)
T4 17 (2.1)
Tx 7 (0.9)

cN stage
N0 709 (88.5)
N1 79 (9.9)
Nx 13 (1.6)

cM stage
M0 704 (87.9)
M1 79 (9.9)
Mx 18 (2.2)

Nonclinically significant cancerb 62 (7.7)
Clinically significant cancer 739 (92.3)
Intermediate/low-risk cancer 392 (48.9)
High-risk cancerc 409 (51.1)

aThe highest Gleason score is shown for the patients who have had multiple bi-

opsies after initial active surveillance.
bNonclinically significant cancer: fulfill all of the right (Gleason score 3þ3¼6,

�T2a, positive biopsy core �2, total positive core length �6 mm).
cHigh-risk cancer: fulfill 1 of the right (Gleason score �8, �T3a, prostate-specific

antigen �20, Nþ, Mþ).

Table 3. Odds ratio by polygenic risk score (PRS) category

PRS category, % ORa (95% CI)

0-10 0.75 (0.49 to 1.17)
10-20 0.96 (0.61 to 1.49)
20-30 1.04 (0.67 to 1.61)
30-40 0.92 (0.60 to 1.43)
40-60 1.00 (referent)
60-70 1.39 (0.90 to 2.17)
70-80 2.04 (1.29 to 3.23)
80-90 3.27 (1.98 to 5.37)
90-100 4.10 (2.46 to 6.86)
99-100 5.37 (1.13 to 25.55)

aOdds ratio (OR) is calculated by logistic regression analysis with presence of

PCa as the objective variable and PRS category and age as explanatory variables.

CI ¼ confidence interval.
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rates of Japanese individuals (Supplementary Figure 6, available
online). Absolute risk increased with genetic risk and
approached 20% in men in the top decile. We also examined the
association between PRS and family history. Mean PRS of
patients with a family history of PCa was 1.39 (standard devia-
tion (SD) ¼ 0.09) and was statistically significantly higher than
in those without it (1.12 [SD ¼ 0.02]; P¼ .001), suggesting a strong
positive association between PRS and family history.
Collectively, these data indicate that PRS is a robust index of he-
reditary components of PCa, and defining genetically high-risk
patients based on PRS could be complementary to family his-
tory in clinical settings.

Monogenic Rare Variants in Japanese Undergoing
Prostate Biopsy

Overall, 26 (1.95%) patients harbored a pathogenic mutation in 1
of the 8 genes (Table 6; Supplementary Table 9, available on-
line). Pathogenic variants were identified in 19 (2.37%) and 7
(1.31%) patients with positive and negative biopsies, respec-
tively. The most frequently mutated gene was BRCA2, followed
by HOXB13 and ATM. Two of the 3 PCa patients with ATM muta-
tions and 4 of the 6 PCa patients with BRCA2 mutations had
high-risk PCa. In contrast, although 5 of the 6 patients with a
HOXB13 mutation had PCa, only 1 of them had high-risk PCa,
suggesting that mutations in this gene may not be associated
with disease aggressiveness. Similarly to a previous large-scale
Japanese case-control study, 5 of the 6 mutations in HOXB13
were p.Gly132Glu (46805561 C>T), which has been reported as a
subpopulation-specific variant in Japanese (9). All patients with
this mutation were positive for PCa in the present study. There
were no patients with p.Gly84Glu and p.Gly135Glu mutations,
which have been reported in European and Chinese populations
(10,11). PRS among patients with monogenic risk variants was
evenly distributed from 0.33 to 3.50, suggesting that genetic
high risk defined by PRS and monogenic risk variants is
completely independent.

Discussion

In the present study, odds ratio of the top 10% of the PRS (90%-
100% category) was 4.10 (95% CI ¼ 2.46 to 6.86). This was

Figure 1. Diagnostic performance of logistic regression models incorporating clinical parameters and PRS. ROC analysis was performed for each combination of clinical

parameters and PRS, and AUC (95% confidence intervals [CIs]) were calculated. AUC ¼ area under the curve; DRE ¼ digital rectal exam; PSA ¼ prostate-specific antigen;

PSAD ¼ prostate-specific antigen density; PRS ¼ polygenic risk score; ROC ¼ receiver operating characteristics.

Table 4. Logistic regression analysis incorporating MRI, PSAD, age,
PRS, and DRE

Parameter ORa (95% CI) Pb

PSAD > 0.2 (�0.2 as reference) 3.89 (2.54 to 5.95) <.001
MRI positive (negative as reference) 2.78 (1.70 to 4.55) <.001
PRS � 2.0 (<2.0 as reference) 2.88 (1.50 to 5.53) .001
DRE positive (negative as reference) 2.08 (1.71 to 3.70) .01

aOdds ratio (OR) is calculated by logistic regression analysis with presence of

prostate cancer as the objective variable and PSAD, MRI, PRS, and DRE findings

and age as explanatory variables. CI ¼ confidence interval; DRE ¼ digital rectal

exam; MRI ¼ magnetic resonance imaging; PRS ¼ polygenic risk score; PSAD ¼
prostate-specific antigen density.
bTwo-sided Pearson v2 test.
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comparable to that reported for Asians using PRS constructed
from all 269 reported PCa-associated SNPs (OR ¼ 4.15, 95% CI ¼
3.33 to 5.17) (1) and supports the high discriminative perfor-
mance of our ancestry-specific PRS. To date, the clinical setting
in which PRS established from common variants can be used
remains obscure. We showed that in patients preselected to un-
dergo prostate needle biopsy based on elevated PSA or other
clinical factors, the addition of PRS to clinical parameters, such
as PSAD, moderately improved the prediction of biopsy positiv-
ity. Notably, for patients with gray-zone PSA and genetic high
risk, defined as PRS of 2 or more, accounting for approximately
10% of patients, PRS had an equivalent impact on biopsy posi-
tivity to a positive MRI finding. A positive MRI is a strong factor
that prompts prostate biopsy in patients with gray-zone PSA,
and the present data suggest that PRS could be equally impor-
tant in deciding who to biopsy.

We also evaluated the potential role of PRS in patients who
had not been screened for PCa. Recently, it has been reported
that men in the top 10% risk by PRS have almost 40% estimated
lifetime risk of developing PCa among Caucasians and 25%
among Asians (1). We showed that the estimated lifetime risk of
developing PCa for men in the top decile is almost 20%; how-
ever, this number may be underestimated by insufficient imple-
mentation of PSA screening in Japan compared with Western
countries. Nonetheless, our data confirmed PRS use in defining
patients at high risk for developing PCa. The present study also
showed that although only 6.5% of patients had a positive fam-
ily history of PCa, PRS was statistically significantly higher in
patients with a family history of PCa. With an overall low inci-
dence of PCa among Japanese patients, the proportion of
patients with a positive family history is small. In addition, fam-
ily history is sometimes not accurately remembered and liable
to recall bias. PRS combined with sequencing of monogenic risk
variants may be as useful as family history in identifying those
who may benefit from earlier PSA screening.

The prevalence of rare variants in the 8 PCa-associated
genes in a large Japanese cohort has been reported previously
(9). Similar to that study, the overall prevalence of rare variants
was 1.95% and higher in patients with a positive biopsy.
However, the prevalence in biopsy-negative patients was 1.31%,
which was higher than that observed in 12 366 (0.8%) healthy
controls in a previous study. This indicates that compared with
healthy individuals, patients undergoing prostate needle biopsy
may be genetically closer to patients diagnosed with PCa, even
when biopsy results are negative. The most frequently altered
gene was BRCA2, followed by HOXB13 and ATM. For HOXB13, we
exclusively detected p.Gly132Glu and p.Gly17Val variants, and
all 5 patients with p.Gly132Glu variants were biopsy positive,
suggesting a strong association between this variant and PCa in
Japanese populations. Interestingly, among those with HOXB13
variants, only 1 had high-risk PCa. One patient (PCS0963) was

diagnosed with metastatic PCa at the age of 51 years. The pa-
tient had a CHEK2 p.R519* pathogenic variant, which is located
in the coding region of the nuclear localization signal of CHEK2
(19). This variant has been observed in patients with breast,
ovarian, prostate, and uterine cancers (20). Detection of a rare
variant in a gene known to be associated with PCa other than
BRCA1 and 2, HOXB13, and ATM in a young patient presenting
with metastatic PCa suggests that, although rare, there are
patients who would benefit from genetic testing of genes other
than the more commonly altered genes.

A strength of the present study is that we have examined
and validated the clinical utility of a PRS that has been estab-
lished and validated in completely independent Japanese
cohorts, which can avoid overfitting the PRS. Furthermore, pros-
tate biopsy was performed in all patients, and biopsy-negative
patients were followed for a few years to check for undetected
cancers at the initial biopsy. Similarly to other PRS reported pre-
viously, our PRS could not discriminate between clinically sig-
nificant and nonclinically significant cancer or high-risk and
nonhigh-risk cancers. However, only 7.7% of PCa detected was
nonclinically significant cancers, and more than half was high-
risk PCa, suggesting that combined with other clinical parame-
ters, the risk of overdiagnosis is low even when PRS is intro-
duced into clinical practice.

The present study had several limitations. First, the rate of
biopsy positivity was relatively high, because many patients
were carefully selected to undergo biopsy. To confirm the gener-
alizability of the present data, we also calculated the age-
adjusted odds ratio in the cohort we used to validate the same
PRS in our previous study (13) comprised of unselected PCa
patients and healthy controls (Supplementary Table 9, available
online). The age-adjusted odds ratio for men in the top PRS dec-
ile was 3.22 (95% CI ¼ 2.73 to 3.81), which was lower than that in
the PCSSNP cohort; however, the 95% confidence interval over-
lapped. Second, the decision to biopsy was at the physician’s
discretion. Although possible selection bias may affect the gen-
eralizability of the data presented, the AUC of PRS was similar
to those reported previously (1,13). In addition, for patients with
PSA 2-10 ng/mL who had MRI data available, most of the
patients were initially screened by PSA and underwent MRI be-
fore the decision to biopsy, which is the current standard prac-
tice in Japan. Therefore, the data is generalizable to
contemporary patients who are screened similarly. Third, the
decision to rebiopsy was at the physician’s discretion and possi-
bly created selection bias. Therefore, we conducted a sensitivity
analysis based on the results of the first biopsy, which showed
that the impact of rebiopsy on the performance of the model
was minimal.

In summary, we have shown that combined with clinical
parameters, a PRS could be used to decide whether prostate bi-
opsy will be recommended in men already screened for PSA and

Table 5. Odds ratio of genomically high-risk patients determined by PRS at different cutoffsa

PRS cutoff
PCSSNP cohort Model creation cohort

Age-adjusted OR (95% CI)b Age-adjusted OR (95% CI)b

PRS �3 vs PRS <3 6.86 (2.65 to 17.77) 3.65 (2.93 to 4.57)
PRS �2.5 vs PRS <2.5 4.93 (2.60 to 9.37) 3.79 (3.17 to 4.52)
PRS �2.0 vs PRS <2.0 3.10 (2.09 to 4.62) 3.55 (3.11 to 4.06)

aPatients were dichotomized into “high” and “nonhigh” risk at arbitrary PRS cutoffs. CI ¼ confidence interval; OR ¼ odds ratio; PCSSNP ¼ Prostate Cancer Susceptibility

Single-Nucleotide Polymorphism; PRS ¼ polygenic risk score.
bOdds ratio of high-risk patients with reference to nonhigh-risk patients were calculated by logistic regression analysis.
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could potentially substitute or complement a family history of
PCa in choosing patients who may benefit from earlier PSA
screening. The prevalence of rare variants in monogenic genes
associated with PCa was approximately half that reported in
European ancestry; however, these variants were independent
of PRS and could provide valuable information on PCa suscepti-
bility in Japanese. A combined assessment of both common var-
iants and rare monogenic variants could improve PCa
diagnosis.
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