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The correlation functions of quantum systems—central objects in quantum field theories—are defined in
high-dimensional space-time domains. Their numerical treatment thus suffers from the curse of
dimensionality, which hinders the application of sophisticated many-body theories to interesting problems.
Here, we propose a multiscale space-time ansatz for correlation functions of quantum systems based on
quantics tensor trains (QTTs), “qubits” describing exponentially different length scales. The ansatz then
assumes a separation of length scales by decomposing the resulting high-dimensional tensors into tensor
trains (also known as matrix product states). We numerically verify the ansatz for various equilibrium and
nonequilibrium systems and demonstrate compression ratios of several orders of magnitude for challenging
cases. Essential building blocks of diagrammatic equations, such as convolutions or Fourier transforms, are
formulated in the compressed form. We numerically demonstrate the stability and efficiency of the
proposed methods for the Dyson and Bethe-Salpeter equations. The QTT representation provides a unified
framework for implementing efficient computations of quantum field theories.
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I. INTRODUCTION

Correlation functions are central building blocks of
quantum field theories for many-body and first-principles
calculations [1]. A typical example is the Matsubara or
nonequilibrium Green’s functions. These correlation func-
tions are high-dimensional space-time objects, which
creates a severe challenge for numerical calculations. A
long-standing and fundamental problem of great practical
importance is thus the search for compact representations
of correlation functions.
Notable theoretical developments have been made in the

Matsubara-frequency domain for the one-particle (1P)
Green’s function, for which compact representations, such
as Legendre [2,3] and Chebyshev [4] bases were con-
structed. The 1P Green’s function is related to a spectral
function through the ill-conditioned analytic continuation

kernel. This prior knowledge was recently employed to
construct the intermediate representation (IR) [5,6] and the
sparse-sampling method [7,8], the minimax method [9],
and the discrete Lehmann representation (DLR) [10]. These
methods are all based on the same prior knowledge and
allow one to treat a wide range of energy scales, from
the bandwidth to low-temperature phenomena, for one-
dimensional (1D) objects in the Matsubara-frequency
domain. Their application enabled first-principles calcu-
lations of correlation functions for unconventional [11] and
phonon-mediated superconductors [12] with low Tc, as
well as recent studies of transition-metal oxides [12–17].
Extending these developments to other space-time

domains, particularly to higher-order correlation functions,
has been a central challenge in many different fields of
computational physics. For the numerical renormalization
group (NRG) and diagrammatic calculations at the
two-particle (2P) level [18–21], compact representations
for the Matsubara-frequency dependence of 2P quantities
have been proposed. Recently, the analytic structure of
arbitrary correlation functions has been clarified [22]; this
structure can be leveraged in NRG calculations [23], the
compression of 2P quantities [24,25], and associated
diagrammatic equations [26].
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An efficient description of the three-momentum depend-
ence of 2P quantities is another actively pursued direction,
relevant for diagrammatic calculations at the 2P level and
the functional renormalization group (fRG) [27]. Examples
of such efforts include the truncated unity approach based
on a truncated form-factor basis [28,29] and a machine-
learning approach [30]. There is also an increasing demand
for efficient treatments of 2P quantities in ab initio calcu-
lations, e.g., for the inclusion of vertex corrections in
GW [31] and the Migdal-Eliashberg theory [32]. For
nonequilibrium systems, a hierarchical low-rank-data struc-
ture has been proposed [33] for the real-time 1P Green’s
function with two time arguments.
Despite these extensive efforts, a generic and efficient

treatment of high-dimensional space-time objects has not yet
been established. The difficulty can be attributed to the
absence of a common and general ansatz for different space-
time domains. A promising ansatz requires (1) an accurate
treatment of a wide range of length scales in space-time,
(2) systematic control over the truncation error, (3) the
possibility of efficient computations in the compressed form,
and (4) straightforward and robust implementations as
computer code.
In this paper, we propose the multiscale space-time ansatz

based on quantics tensor trains (QTTs) [34,35] as a universal
solution. The space-time dependence is described by aux-
iliary bits, which we call “qubits” in the present study,
representing exponentially different length scales in space
and time. The resultant high-dimensional object in the qubit
space is decomposed into tensor trains (TTs), to the physics
community better known as matrix product states (MPSs),
based on the assumption of length-scale separation. TheQTT
representation allows us to describe the space-time depend-
ence of correlation functions on exponentially wide scales
using memory and computational resources which scale
linearly, and thus to remove amajor bottleneck for numerical
many-body calculations.Basic operations such as the Fourier
transform can be formulated in the compressed form, and the
methods can be implemented straightforwardly using stan-
dard MPS libraries. We numerically verify the ansatz for
various equilibrium and nonequilibrium systems: from 1P
and 2P Matsubara and real-time Green’s functions. We
demonstrate compression ratios of several orders of magni-
tude for challenging cases. We also numerically show the
stability and efficiency of the proposed methods for the
Dyson and Bethe-Salpeter equations (BSEs).
Recently, related quantum-inspired algorithms using the

qubit mapping have been proposed for image compression
[36] and for solving Navier-Stokes equations for turbulent
flows [37] or the Vlasov-Poisson equations for collisionless
plasmas [38]. A low-rank tensor train approximation has
been applied to the numerical integration of high-order
perturbation series of quantum systems without the multi-
scale ansatz [39]. The quantics representation was used to
represent spectral functions in combination with a

Boltzmann machine [40]. In this paper, we clarify the
fundamental question: How does such a multiscale ansatz
perform in the context of quantum field theories? The QTT
representation has the potential not only to change the way
in which numerical many-body calculations will be per-
formed, but also to bridge the fields of quantum informa-
tion theory and quantum field theory.
The paper is organized as follows: In Sec. II, we introduce

the QTT representation. We detail common operations
performed with this ansatz in Sec. III. In Sec. IV, we
demonstrate the performance of the QTT representation in
encoding the imaginary-time or Matsubara-frequency,
momentum, real-time, and real-frequency dependence of
correlation functions in a variety of equilibrium and non-
equilibrium systems. Section V is devoted to the demonstra-
tion of the computation of correlation functions. We
summarize the main results of the paper in Sec. VI. The
appendices contain technical discussions on (Appendix A)
matrix product states, (AppendixB)matrix product operators,
(Appendix C) Fourier transforms, and (Appendix D) fre-
quency meshes.
Note on nomenclature.—The QTT representation is

based on concepts already known in the literature as
quantics tensor trains, and we adopt this name here also.
However, in the physics community, tensor trains are better
known as MPSs and matrix product operators (MPOs), and
in the technical parts of the paper we use these names.

II. MULTISCALE SPACE-TIME ANSATZ

In this section,we explain themultiscale space-time ansatz
based on QTTs. The essence of the ansatz is to introduce
multiple indices to describe different space-time length
scales and to assume low entanglement structures between
different scales (see Fig. 1). We focus on the momentum
space and the associated real space as the first examples.

A. Momentum space

Let us first consider a function fðkÞ in momentum
space, where k ∈ ½0; 2πÞ is the (for now, one-dimensional)
momentum. Usually, we discretize fðkÞ on an equidistant
grid of size, e.g., 2R. This technique is straightforward to
implement, but comes with a series of drawbacks: Many-
body propagators have sharp and intricate structures in
momentum space, which means that the precision of the
approximation improves only slowly with 2R.
Instead of considering a “flat” discretization into a vector

of 2R momenta, in the multiscale ansatz, we first separate
out R distinct scales k1;…; kR:

fðkÞ≈ f

�
k1πþ k2

π

2
þ � � � þ kR

2π

2R

�
¼ fðk1;…; kRÞ; ð1Þ

where each kb, 1 ≤ b ≤ R, now takes only two values: zero
or 1. Put differently, k1;…; kR are the bits of 2Rk=ð2πÞ, i.e.,
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k ¼ 2πðk1 � � � kRÞ2=2R. In this notation, k ¼ 0 corresponds
to ð00…0Þ2, k ¼ 2π=2R corresponds to ð00…1Þ2, and
so forth.
We can interpret fðk1;…; kRÞ in a couple of ways. In

terms of physics, we have separated out different scales of
the problem, as illustrated in Fig. 1: k1 partitions the
Brillouin zone into two coarse regions ½0; πÞ and ½π; 2πÞ,
and as we move toward kR, features on finer and finer
scales are captured. In terms of quantum information
theory, fðk1;…; kRÞ can be regarded as an (unnormalized)
wave function in the Hilbert space of dimension 2R spanned
by S ¼ 1=2 spins or qubits. In terms of linear algebra,
we have simply reinterpreted the 2R vector of momenta as a
2 × � � � × 2 (R-way) tensor.
Since up to this point, we have merely reshaped our data

from a vector to a tensor, no information of the original
discretization is lost. The main idea of the multiscale ansatz
is to express the single R-way tensor f by a tensor train
(MPS), a contraction of R three-way tensors F̂ð1Þ;…; F̂ðRÞ,

fðk1;…; kRÞ ≈
XD1

α1¼1

� � �
XDR−1

αR−1¼1

F̂ð1Þ
k1;1α1

� � � F̂ðRÞ
kR;αR−11

≡ F̂ð1Þ
k1

· F̂ð2Þ
k2

·… · F̂ðRÞ
kR

; ð2Þ
where F̂ðbÞ is an auxiliary 2 ×Db−1 ×Db tensor, αb forms
bonds between neighboring tensors, and Db is the bond
dimension of the bth bond. D ¼ maxb Db is the bond
dimension of the whole MPS. (We refer the reader to
Appendix A for more details.) We illustrate Eq. (2) in
Fig. 2(a).
The ansatz (2) is still exact if the bond dimension is very

large, D ∼ 2R; it becomes approximate if the bonds are
truncated to the most important contributions. The core

insight is that for many functions, including, as we shall
show, the propagators in momentum space, the bond
dimension needed to approximate the original tensor grows
only modestly with the desired accuracy ϵ measured by
the Frobenius norm [see Eq. (A5)], allowing us to compress
the function significantly.
More specifically, Fig. 2(b) illustrates how the bond

dimension typically varies along the chain when the MPS
is truncatedwith a certain cutoff ϵ. First, the bond dimension
increases exponentially in the region I, where coarse global
structures are not compressible. This is followed by region II
(plateau region), where different length scales are not stron-
gly entangled (separation of length scales). In region III, the
bond dimension decreases, but there is still a finite entan-
glement that is important for a quantitative description of the
k dependence within the given ϵ. In region IV, the bond
dimension is one, and the tensor train can be truncated
without sacrificing any accuracy. The efficiency of the QTT
representation relies on the existence of the plateau.

B. Real space

We construct a similar representation for the real space
that is associated with the momentum space by Fourier
transform. In the case of a regular lattice, the lattice points
are labeled by natural numbers r=a ¼ 0; 1;…; 2R − 1,
where a is the lattice constant. As we have done for k,

(b)

(a)

(c)

FIG. 2. (a) QTT representation in momentum space. The
rightmost bits (indices) represent fine structures in momentum
space. Low entanglement structures are assumed between differ-
ent length scales. (b) Schematic illustration of the bond dimen-
sions along the chain representing the momentum dependence.
The dashed line indicates the maximum bond dimensions in
maximally entangled cases. (c) Fourier transform from momen-
tum space to real space by applying a MPO. The orange
diamonds represent the MPO tensors. The structure of the
MPO is illustrated in Fig. 27 in Appendix C.

FIG. 1. Multiscale ansatz for momentum space. Each row,
numbered by the bond index b, corresponds to a different level of
discretization of the 1D momentum k (different length scale). In
this way, k can be represented by a set of bits k1;…; kR (see text).
On the right, the QTT representation of a momentum-dependent
function Eq. (2) is shown.
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we map natural integers to binary numbers as
r=a ¼ ðr1 � � � rRÞ2. Note that ri and kRþ1−i correspond to
the same length scale. We represent the Fourier-
transformed function fðrÞ in the r space as a MPS:

fðrÞ ¼
X
k

e−ikrfðkÞ

≡ 1

2R

X
k1;…;kR

e−2πiðk1=2þ���þkR=2RÞrfðk1;…; kRÞ

≈
Xr1
α1¼1

� � �
XrR−1

αR−1¼1

FðRÞ
rR;1α1

� � �Fð1Þ
r1;αR−11

¼ FðRÞ
rR · FðR−1Þ

rR−1 · ð…Þ · Fð1Þ
r1 : ð3Þ

C. Other spaces

The aforementioned representation can be applied to
other variables. However, special care is needed for
imaginary-time and Matsubara-frequency spaces. An
imaginary time τ is represented as 2Rτ=β ¼ ðτ1 � � � τRÞ2.
A Matsubara frequency is represented as ν ¼ ð2ðn −
2R−1Þ þ ξÞπ=β using n ¼ 0; 1; 2; � � � ; 2R − 1 (ξ ¼ 0; 1 for
bosons and fermions, respectively). A real time t
(0 ≤ t < tmax) is represented by a natural number,
2Rt=tmax. In a similar manner, a real frequency ω
(−W ≤ ω<W) is represented by a natural number,
2RðωþWÞ=ð2WÞ.

D. Higher dimensions

It is easy to construct QTT representations for higher-
dimensional objects spanned by multiple space-time axes.
As an example, let us consider a 2D space spanned by
the two variables x ¼ ðx1 � � � xR0 Þ2 and y ¼ ðy1 � � � yRÞ2
(R0 < R). We assume that we are going to truncate the
expansion at xR0 and yR. In other words, the right qubits
correspond to fine resolution for both x and y. In the present
study, we use the MPS structure shown in Fig. 3. An
important point is that the two qubits or tensors corre-
sponding to the same length scale are next to each other
because they are expected to be strongly entangled.

III. OPERATIONS IN THE QTT
REPRESENTATION

A. Fourier transform

The discrete Fourier transform (DFT) in Eq. (3) can
be represented as a MPO with a small bond dimension.

(We refer the reader to Appendix B for more details.)
This can be intuitively understood by the fact that two
space-time indices rRþ1−i and ki at the same position
(i ¼ 1;…; R) in Fig. 2(c) correspond to the same length
scale. The small bond dimension of the MPO was shown
numerically in 2017 [41].
As detailed in Appendix C, one can construct MPOs

recursively for R ¼ 1; 2; 3;…. Figure 4 shows the bond
dimensions of the numerically constructed MPOs with
ϵ ¼ 10−25. One can clearly see that the bond dimension
weakly depends on R and becomes saturated for R > 10.
This crossover point shifts to larger R as the cutoff ϵ is
reduced. This result indicates that the Fourier transform can
be performed efficiently, with a computational time OðRÞ
for fixed target accuracy.

B. Elementwise product

Solving the Dyson equation requires the computation of
the elementwise product of two MPSs, A and B:

CðiνÞ ¼ AðiνÞBðiνÞ: ð4Þ

To be precise, for given MPSs A and B, one needs to
compute a MPS for the product C. In the compressed form,
the product can be expressed as

CðνR;…; ν1Þ ¼ AðνR;…; ν1ÞBðνR;…; ν1Þ
¼

X
ν0
1
;…;ν0R

AνR;…;ν1
ν0R;…;ν0

1
Bðν0R;…; ν01Þ; ð5Þ

where

AνR;…;ν1
ν0R;…;ν0

1
≡ AðνR;…; ν1ÞδνR;ν0R � � � δν1;ν01 : ð6Þ

A MPO for the auxiliary linear operator A can be
constructed from the MPS tensors of A as

ðAνR
1;a1

δνR;ν0RÞ � � � ðA
ν1
aR;1

δν1;ν01Þ: ð7Þ

FIG. 3. Matrix product state representing a 2D space spanned
by x and y. The expansion can be truncated at the right edge.

FIG. 4. Bond dimensions of the MPO for the discrete
Fourier transform recursively constructed with truncation
cutoff ϵ ¼ 10−25.
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The MPO is illustrated in Fig. 5(a). This allows us to use an
efficient implementation of a MPO-MPS multiplication.

C. Matrix multiplication for two-frequency objects

To solve the BSE or the Dyson equation for the non-
equilibrium Green’s function, one needs to multiply two-
frequency quantities:

Cðiν; iν00Þ ¼
X
ν0
Aðiν; iν0ÞBðiν0; iν00Þ; ð8Þ

where we perform the summation on the mesh of size 2R.
This can be expressed as a MPO-MPS product:

CðνR; ν00R;…; ν1; ν001Þ
¼

X
ðν0

1
ν000
1
Þ;…;ðν0Rν000R Þ

A
ðνRν00RÞ;…;ðν1ν001Þ
ðν0Rν000R Þ;…;ðν0

1
ν000
1
ÞB(ðν0Rν000R Þ;…; ðν01ν0001 Þ): ð9Þ

Here, we introduced a combined index of dimension 4 ð¼ 22Þ
and an auxiliary MPO A, which is illustrated in Fig. 5(b).

D. Linear transformation of arguments
of multidimensional objects

Another typical operation required for solving a dia-
grammatic equation is the linear transformation of argu-
ments of multidimensional objects. As an example, we
consider a function with two time arguments, fðt; t0Þ.
We want to transform this into a function gðt; t0Þ ¼
f(ðt − t0Þ=2; ðtþ t0Þ=2), which depends on the relative
and average times. This linear transformation can be
represented by a MPO with a small bond dimension of
Oð1Þ because the linear transformation can be performed
almost independently at different length scales. Indeed, the
MPOs can be constructed using adders or subtractors of
binary numbers.

IV. COMPRESSION

A. Imaginary-time and Matsubara-frequency
Green’s functions

As a simple example, we consider the imaginary-time
and Matsubara-frequency dependence of the fermionic
Green’s function generated by a few poles. The Green’s
function reads

GðiνÞ ¼
Z

dω
ρðωÞ
iν − ω

¼
XNP

i¼1

ci
iν − ωi

; ð10Þ

GðτÞ ¼ −
XNP

i¼1

cie−τωi

1þ e−βωi
; ð11Þ

with

ρðωÞ ¼
XNP

i¼1

ciδðω − ωiÞ; ð12Þ

where ωi and ci are the positions of the poles and the
associated coefficients, respectively. GðiνÞ decays asymp-
totically as Oð1=iνÞ for large Matsubara frequencies (high-
frequency tail). Since we know the normalization factorPNP

i¼1 ci a priori from the commutation relation of the
operators, this contribution can be subtracted as

G̃ðiνÞ≡GðiνÞ −
PNP

i¼1 ci
iν

; ð13Þ

where G̃ðiνÞ decays faster thanO(1=ðiνÞ2). As we see later,
this subtraction slightly suppresses the bond dimension at
high temperatures.
For NP ¼ 1, GðτÞ can be represented as a MPS of bond

dimension one:

GðτÞ ¼ −
c1

1þ e−βω1

YR
t¼1

e−τt2
−tβω1 ;

¼ −
c1

1þ e−βω1
Gð1Þ · ð� � �Þ ·GðRÞ ð14Þ

with the tth TT tensor

GðtÞ
αt;αtþ1

≡ e−τt2
−tβω1δαt;αtþ1

; ð15Þ
where τ=β ¼ ð0.τ1τ2 � � � τRÞ2 and t ¼ 1; 2;…; R, while αt
and αtþ1 are indices of the virtual bonds. The coefficient in
Eq. (14) can be absorbed into one of the tensors.
For NP > 1, the bond dimension of the natural MPS of

GðτÞ is bounded from above: D ≤ NP. This explicitly
constructed MPS is highly compressible as we numerically
demonstrate below.
We investigate the compactness of the representation

for a model with NP ¼ 100 where the positions and
coefficients of the poles are chosen randomly according

(a)

(b)

FIG. 5. Tensor contraction for the elementwise product (a) and
matrix product (b) of two MPSs A and B. The filled circles in
(a) denote a superdiagonal tensor whose nonzero entries are 1.
The dashed squares denote the tensors of the auxiliary MPOs.
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to the normal Gaussian distribution. We use the truncation
parameter ϵ ¼ 10−20.
Figure 6 presents the results for GðτÞ. As shown in

Fig. 6(a), the singular values decay exponentially. As one
can see in Fig. 6(b), the numbers of relevant singular
values, i.e., the bond dimensions, only mildly depend on
β and are converged at β ¼ 1000. This convergence may
reflect the fact that GðτÞ has limited information, i.e., a
nonzero lower bound for excitation energies, due to the
finite number of poles. The bond dimensions slowly
vanish after the first few bonds, indicating that one can
increase the grid size exponentially with respect to the
memory size, i.e., the number of tensors. The error in the
reconstructed data is almost constant in amplitude over β
[Fig. 6(c)].
Figure 7 shows the results of the decomposition ofGðiνÞ.

As seen in Figs. 7(b) and 7(c), in contrast to GðτÞ, the
singular values and the bond dimensions are almost
independent of β. The bond dimensions are close to the
maximum bond dimensions of GðτÞ, which is reasonable

because the two objects contain the same amount of
information.
We now analyze the results for G̃ðiνÞ to get insights into

the sensitivity of the bond dimension on temperature and on
the treatment of the high-frequency tail. Figure 8 shows the
results for G̃ðiνÞ. Comparing Figs. 7(a) and 8(a) reveals that
subtracting the tail slightly reduces the number of relevant
singular values for small β. This indicates that fitting the
trivial high-frequency asymptotic behavior requires some
bond dimensions. As seen in Fig. 8(b), the subtraction of
the tail enhances the β dependence of the singular values
and the bond dimensions as expected. At low temperatures,
the subtraction of the tail does not change the bond
dimensions significantly. Thus, in practical calculations,
such a treatment of the tail may not be necessary.
It should be noted that the size of a compressed object

scales as OðD2Þ. The new representation is less compact
than the IR [5] and DLR [10] but can be naturally
generalized to higher dimensions, e.g., four-point func-
tions, as we see later in Sec. IV F.

(a)

(b)

(c)

FIG. 6. Compression of GðτÞ generated by randomly chosen
100 poles with R ¼ 12 (see the text). (a) Singular values at b ¼ 5,
(b) bond dimensions for ϵ ¼ 10−20, (c) comparison between the
exact and reconstructed data. GðτÞ has three sign changes. In (b),
the dashed line indicates the maximum bond dimensions in
maximally entangled cases.

(a)

(b)

(c)

FIG. 7. Compression of GðiνÞ for the same model as in Fig. 6
with R ¼ 12. (a) Singular values at b ¼ 4, (b) bond dimensions,
(c) comparison between the exact and reconstructed data. In (b),
the dashed line indicates the maximum bond dimensions in
maximally entangled cases.
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B. Momentum dependence: 1D case

To demonstrate the first example of a momentum-
dependent object, we consider a 1D tight-binding model
whose band dispersion is given by

ϵðkÞ ¼ 2 cosðkÞ þ cosð5kÞ þ 2 cosð20kÞ: ð16Þ

The chemical potential is at zero energy. As illustrated in
Fig. 9(a), this model has 34 Fermi points, where the Green’s
function at low frequency has large values [see Fig. 9(b)].
Here, we consider the Matsubara Green’s function at the
lowest positive Matsubara frequency,

Gðiν0; kÞ ¼
1

iν0 − ϵðkÞ : ð17Þ

Figure 9(c) shows the bond dimension of a MPS
constructed to describe the momentum dependence in
the full BZ with cutoff ϵ ¼ 10−10. For the first few

(a)

(b)

(c)

(d)

FIG. 9. Momentum dependence of the Matsubara Green’s
function of the 1D tight-binding model (16). (a) Band dispersion,
(b) Green’s function at the lowest positive Matsubara frequency,
(c) bond dimensions of a MPS for the full BZ, and (d) bond
dimensions of patchwise constructed MPSs. We use ϵ ¼ 10−10

and 25 (¼ 32) patches in (d). The vertical lines in (a) denote the
boundaries of the patches. ϵðkÞ has 34 roots. The shaded region in
(c) corresponds to the patch size. Two out of the 32 patches do not
contain a Fermi point. In (d), the dashed line indicates the
maximum bond dimensions in maximally entangled cases.

(a)

(b)

(c)

FIG. 8. Compression of G̃ðiνÞ for the same model as in Fig. 6
with R ¼ 12. Note that the tail is subtracted from the data before
the compression. (a) Singular values at b ¼ 4, (b) bond dimen-
sions, (c) comparison between the exact and reconstructed data.
In (b), the dashed line indicates the maximum bond dimensions in
maximally entangled cases.
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(coarsest-scale) bonds, the bond dimension increases
exponentially, indicating that the global structures of
GðkÞ (with large length scales in momentum space) are
not compressible with QTTs. After the first few bonds, the
bond dimension gets saturated and eventually decreases.
The maximum of the bond dimension does not strongly
depend on β. As we lower the temperature, the region with
almost constant bond dimensions is enhanced. As we see in
the next subsection, this behavior is specific to 1D cases.
Large bond dimensions should be avoided in practical

calculations because of the increase in the computational
time. The bond dimensions can be significantly reduced by
the patching shown in Fig. 9(a). Patchingmeans partitioning
the full momentum space into several patches of the same
length and representing the momentum dependence within
each patch by a single MPS. In Fig. 9(a), we construct the
patches so that each patch contains only a few Fermi points
(or none). Figure 9(d) shows the bond dimension required to
represent themomentum dependencewithin each patchwith
the same cutoff. One can clearly see that the bond dimen-
sions are below 10. Patches including Fermi points require
larger bond dimensions, as expected. It should be noted that
such a patching is consistent with the fast Fourier transform
and can be done adaptively in solving the Dyson equation in
the QTT representation.

C. Momentum dependence: 2D case

We now move on to 2D systems. As a simple case, we
consider a nearest-neighbor tight-binding model on the
square lattice. At half filling, the Green’s function can be
expressed as

Gðiν; kÞ ¼ 1

iν − ϵðkÞ ; ð18Þ

where ϵðkÞ ¼ −2 cosðkxÞ − 2 cosðkyÞ. We consider the
lowest positive Matsubara frequency.
At half filling, there is a large Fermi surface where the

Green’s function has large values. The length scale of the
structure in momentum space scales as OðTÞ at low
temperatures. Motivated by this fact, we divide the full
BZ into 2P × 2P patches. We take 2P ¼ β=4 for β ¼ 8, 16,
32, 64, 128. The momentum dependence within each patch
is represented using a 256 × 256 mesh. We compress the
momentum dependence by a MPS within each patch using
the cutoff ϵ ¼ 10−10. Figure 10(a) shows the patches and
bond dimension per patch computed at β ¼ 64 and 128.
One can see that relatively large bond dimensions are
required only for a small number of patches near the
Fermi surface. As shown in Fig. 10(b), the maximum of the
bond dimensions stays constant at low temperatures.
Figure 10(c) shows the number of active patches with
relatively large bond dimensions and indicates that the
number of these active patches grows linearly with β.

(a)

(b)

(c)

(d)

FIG. 10. Momentum dependence of the Matsubara Green’s
function for the nearest-neighbor tight-binding model on the
square lattice. (a) Bond dimensions per patch, (b) maximum value
of the bond dimensions, (c) number of patches with large bond
dimensions, and (d) bond dimensions along the chain for patches
with relatively large bond dimensions (≥25). In (d), the dashed
line indicates the maximum bond dimensions in maximally
entangled cases.
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We expect that the number of active patches grows as
Oðβ2Þ in 3D systems.
Let us look at patches with large bond dimensions for the

lowest temperature β ¼ 128. As shown in Fig. 10(d), after
the first few bonds, the bond dimension exhibits a plateau,
followed by an exponential decrease. The existence of the
plateau is evidence of length-scale separation.
These results indicate the importance of the combination

of two different schemes for compressing the momentum
dependence of noninteracting Green’s functions. The over-
all structure of the momentum dependence is barely
compressible with QTTs because Fermi surfaces can
appear anywhere. This leads to the need for patching.
However, this issue is specific to the noninteracting Green’s
function with sharp Fermi surfaces, and it will be less
significant in interacting models. Since the momentum
dependence within each patch has a simpler structure, it is
compressible with QTTs. This allows us to essentially
eliminate discretization errors by using a large R.

D. 2D Hubbard model

In this subsection, we discuss examples of interacting
electrons. We consider the momentum dependence in the
case of the single-orbital Hubbard model on the square
lattice at half filling.
The Hamiltonian of the Hubbard model reads

H ¼ −
X
hiji;σ

ĉ†iσ ĉjσ þ U
X
i

n̂i↑n̂i↓ − μ
X
i;σ

n̂iσ; ð19Þ

where ĉ†iσ is the creation operator for an electron with spin σ
at site i, hiji indicates a pair of neighboring sites, and
n̂iσ ¼ ĉ†iσ ĉiσ. U is the on-site repulsion, μ ¼ U=2, and we
set the nearest-neighbor hopping amplitude to 1.
We solve the model within the fluctuation exchange

(FLEX) approximation [42–44]. FLEX is a conserving
approximation in which several conservation laws are
satisfied in the framework of the Luttinger-Ward theory
[45–48]. It is widely used to study unconventional super-
conductivity induced by spin fluctuations [49,50].
In the FLEX approximation, for a paramagnetic state, the

self-energy is approximated as

Σðk; iνÞ ¼ T
N

X
q;iω

Vðq; iωÞGðk − q; iν − iωÞ; ð20Þ

where N is the size of the momentum grid, q is a bosonic
momentum, and ν and ω are fermionic and bosonic
Matsubara frequencies, respectively. The effective inter-
action V is defined as

Vðq; iωÞ ¼ U2

�
3

2
χsðq; iωÞ þ

1

2
χcðq; iωÞ − χ0ðq; iωÞ

�
;

ð21Þ

where we have introduced the bare, spin, and charge
susceptibility:

χ0ðq; iωÞ ¼ −
T
N

X
k;iν

Gðkþ q; iνþ iωÞGðk; iνÞ; ð22Þ

χsðq; iωÞ ¼
χ0ðq; iωÞ

1 − χ0ðq; iωÞU
; ð23Þ

χcðq; iωÞ ¼
χ0ðq; iωÞ

1þ χ0ðq; iωÞU
: ð24Þ

The Green’s function is given by

Gðiν; kÞ ¼ 1

iν − ϵðkÞ þ μ − Σðiν; kÞ ; ð25Þ

where ϵðkÞ ¼ −2 cosðkxÞ − 2 cosðkyÞ. Using these equa-
tions, the Green’s function, self-energy, and effective inter-
action are self-consistently determined.
We choose the temperature T ¼ 0.03 and U ¼ 1.1,

which is a critical region near the antiferromagnetic
(AF) phase, where the spin susceptibility acquires a strong
momentum dependence. We use a 1024 × 1024 grid of k
points in the full BZ. We use the IR basis [5] and the
sparse-sampling method [7] to perform efficient FLEX
calculations [11].
Figure 11(a) shows the intensity map of the Green’s

function at the lowest positive Matsubara frequency. The
large Fermi surface is broadened by finite-T and correlation
effects. We thus need fewer patches than in the previous
subsection without the self-energy. We use 4 × 4 ¼ 16
patches, which are classified into two types: A and B. The
patches of type A contain more complex features in the BZ.
Within each patch, we expand the momentum dependence
of the Green’s function using a MPS. This approach is
natural because the Dyson equation can be solved patch-
wise in the QTT representation.
We represent the momentum dependence within each

patch using a MPS with ϵ ¼ 10−10. Figure 11(a) shows the
original data and the error in the reconstructed data, while
Fig. 11(b) shows the bond dimensions for the two types of
patches. The absolute error is as small as 10−5, which is
consistent with the square root of the cutoff. The bond
dimensions are larger for the patches of type A, which is
consistent with the complex momentum dependence within
these patches. For all patches, the bond dimensions
decrease after the first few bonds, indicating the validity
of the QTT representation. In practical solutions of the
Dyson equation, one could partition the BZ adaptively by
further dividing patches with large bond dimensions.
We move on to the analysis of spin susceptibility.

Figure 12(a) shows the intensity map of the spin suscep-
tibility at zeroMatsubara frequency.One can see a sharp peak
at q ¼ ðπ; πÞ reflecting the proximity to theAF phase at zero
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temperature. There are additionally weaker signals on the
diagonals. Figure 12(b) compares the original data and the
reconstructed ones alongqy ¼ π andqy ¼ π=2, respectively.
The cutoff is set to ϵ ¼ 10−10 and the bond dimensions are
shown in Fig. 12(c). The maximum value of the bond
dimensions is only around 20. Still, the compressed data
can reproduce the sharp peak and the smaller features. For
more general cases with multiple peaks, which could happen
for geometrically frustrated magnets, patching may help.

E. Real-frequency data

As the next example, we discuss the compressibility of
real-frequency local spectral functions ρðωÞ ¼ −ð1=πÞ ×
ImGðωþ i0þÞ of correlated systems, where electronic
correlations lead to the emergence of fine structures or
exponentially small energy scales. Figure 13(a) shows the
results for an antiferromagnetic insulating (U ¼ 8 and
T ¼ 1=13) and an 11% doped Mott-insulating (U ¼ 8,
μ ¼ U=2þ 2.7, and T ¼ 1=30) state of the single-orbital
Hubbard model (19) on the Bethe lattice with infinite
coordination number. The unit of energy is the quarter of

the bandwidth of the free system (U ¼ 0). We solve the
Hubbard model using the real-time dynamical mean-field
theory (DMFT) [51,52] and the noncrossing approxima-
tion [53] and perform a Fourier transform to obtain the
spectra. In Fig. 13(b), we additionally show the spectral
function for the single-orbital Anderson impuritymodel [54]
at half filling (U ¼ 16 and T ¼ 0) with constant hybridiza-
tion set to 1. In this case, thenoninteracting density of states is
a Lorentzian with width 1. The impurity model is solved by
an approximate real-frequency solver which reproduces the
exponential Kondo scale at strong coupling [55,56].
As seen in Fig. 13(a), the spectral function of the AF

insulator exhibits sharp peaks in the Hubbard bands origi-
nating from spin-polaron excitations [57], while the spectral
function of the doped Mott insulator shows a sharp quasi-
particle peak at ω ¼ 0. The spectral function of the impurity
model, shown in Fig. 13(b), features a much sharper peak
whose energy scale is smaller than the bandwidth by several
orders of magnitude [54].

(a)

(b)

FIG. 11. Green’s function of the 2D Hubbard model solved
within FLEX at the lowest positive Matsubara frequency.
(a) Intensity map of the original data and the error in the
reconstructed data. The full BZ is divided into 16 patches.
(b) Bond dimensions for all 16 patches. The dashed line indicates
the maximum bond dimensions in maximally entangled cases.
The compression ratios are 10.86 and 45.20 for the patches A and
B, respectively. Here, the compression ratio is defined as the
ratio between the number of elements in a TT and that of the
original tensor.

(b)

(c)

(a)

FIG. 12. (a) Spin susceptibility of the 2D Hubbard model at
zero frequency and an enlarged plot. (b) Reconstructed data and
error at qy ¼ π and qy ¼ π=2. (c) Bond dimensions of the MPS.
The dashed line indicates the maximum bond dimensions in
maximally entangled cases. The compression ratio is 269.97.
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Figure 13(c) shows the bond dimensions of MPSs
constructed with ϵ ¼ 10−8 and R ¼ 18. It can be clearly
seen that all three spectral functions are QTT compressible.
For the two spectral functions with a single sharp peak, the
bond dimension decreases after the first few bonds,
indicating energy separation. The spectral function of the
AF insulator, with multiple physical features, requires a
larger bond dimension.

F. Hubbard atom

In this section, we extend the application of the QTT
representation to three-frequency objects, namely, two-
particle vertex functions. We demonstrate the compactness
of the representation by compressing vertex functions of

the Hubbard atom for which the exact analytic forms are
known [58].
The two-particle Green’s function in the so-called

particle-hole (ph) frequency notation [59] is defined as

Gð2Þ
σ1σ2σ3σ4ðiν; iν0; iωÞ

¼
Z

β

0

dτ1dτ2dτ3e−iντ1eiðνþωÞτ2

× e−iðν0þωÞτ3hTτcσ1ðτ1Þc†σ2ðτ2Þcσ3ðτ3Þc†σ4ð0Þi; ð26Þ

where σ1;…; σ4 are spin indices, ν, ν0 are fermionic
Matsubara frequencies, and ω is a bosonic Matsubara
frequency.
Gð2Þ can be decomposed into so-called disconnected

parts (products of one-particle Green’s functions) and the
connected part, which is a product of four Green’s functions
and the two-particle vertex F,

Gð2Þ
σ1σ2σ3σ4ðiν; iν0; iωÞ
¼ βGσ1ðiνÞGσ3ðiν0Þδω;0δσ1;σ2δσ3;σ4
− βGσ1ðiνÞGσ2ðiνþ iωÞδν;ν0δσ1;σ4δσ2;σ3
þGσ1ðiνÞGσ2ðiνþ iωÞFσ1σ2σ3σ4ðiν; iν0; iωÞ
×Gσ3ðiν0 þ iωÞGσ4ðiν0Þ: ð27Þ

The vertex F is a sum of two-particle reducible and
irreducible diagrams. Reducibility at the two-particle
level is not uniquely defined, and we need to specify in
which channel the irreducible diagrams are not reducible.
We choose the particle-hole channel here. The vertex F is
related to the irreducible diagrams collected in the irre-
ducible vertex Γph through the BSE in the ph channel

Fσ1σ2σ3σ4ðiν; iν0; iωÞ ¼ Γph
σ1σ2σ3σ4ðiν; iν0; iωÞ

þ 1

β2
X
ν00 ;ν000
σ0 ;σ00

Γph
σ1σ2σ

0σ00 ðiν; iν00; iωÞ

× X0;ph
σ0σ00 ðiν00; iν000; iωÞ

× Fσ0σ00σ3σ4ðiν000; iν0; iωÞ; ð28Þ

with

X0;ph
σσ0 ðiν; iν0; iωÞ ¼ βGσðiν0ÞGσ0 ðiν0 þ iωÞδνν0 : ð29Þ

In the SU(2) symmetric case, which we consider here, the
spin dependence can be diagonalized by introducing linear
spin combinations known as density (d) and magnetic (m)
channels. The BSE then takes the following form:

(a)

(b)

(c)

FIG. 13. Compression of the real-frequency spectral functions
of an AF insulator, a doped Mott insulator, and an impurity
model. See the main text for a more detailed description of the
models. (a) Spectral functions of the AF insulator and the doped
Mott insulator, (b) spectral function of the impurity model (an
enlargement of the low-frequency region is shown in the inset),
(c) bond dimensions for ϵ ¼ 10−8 and R ¼ 18. The compression
ratios are 40.3, 280.7, 318.1, respectively.
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Fd=mðiν; iν0; iωÞ ¼ Γd=mðiν; iν0; iωÞ

þ 1

β2
X
ν00;ν000

Γd=mðiν; iν00; iωÞ

× X0ðiν00; iν000; iωÞ
× Fd=mðiν000; iν0; iωÞ; ð30Þ

where we drop the ph superscript as well as the spin indices
of the bare susceptibility X0 (it is spin diagonal and equal
for both spins in this case).
The frequency dependence of two-particle vertex func-

tions is complicated due to the presence of sharp features
that do not decay for large fermionic frequencies. Particularly
challenging is the numerical treatment of irreducible vertices
in the atomic limit due to the presence of divergences [60,61].
At half filling,Γd is known to diverge at βU ≃ f3.627; 5.127;
10.884; 12.19; 18.138; 19.23;…g. In the vicinity of these
vertex divergences, the numerical treatment is challenging.
In the following, we show the compression of the atomic
irreducible vertex in the density channel Γd for half filling.
The left panels of Fig. 14 show Γdðiν; iν0; iωÞ computed

for several values of U and a fixed bosonic frequency
2mπ=β (with m ¼ 0 and m ¼ 10). We take β ¼ 1 through-
out this subsection. At U ¼ 3 and zero bosonic frequency
m ¼ 0 [Fig. 14(a)], the main structure consists of diagonal
lines extending to high fermionic frequencies. Figure 14(b)
shows the vertex Γd for zero bosonic frequency near a
divergence point (the divergence occurs at U ≃ 3.627).
One can see that Γd is dominated by large values at low
frequencies. At a finite bosonic frequency, as shown in
Fig. 14(c), the vertex is not so strongly peaked, but
additional boxlike structures appear at low frequencies.
We decompose the vertex function on a grid of size

2R × 2R × 2R withR ¼ 10 and cutoff ϵ ¼ 10−14. Themiddle
panels of Fig. 14 show the reconstructed data from theMPSs.
The errors in the reconstructed data are shown in the right
panels of Fig. 14. It is clearly visible that the MPSs can des-
cribe all the complex structures in the three-frequency space.
Figure 15 shows the dependence of the compression

ratio and the error on the bond dimension D. We perform
the compression for several different values of the cutoff ϵ.
The compression ratio is defined as the ratio of the number
of elements in the MPS tensors and that of the original data.
The error roughly decays exponentially with increasing D.
Achieving the accuracy of jΓreconst − Γexactj=jΓexactj∞ <
10−4 requires a bond dimension slightly larger than 100.
The compression ratio is beyond 103 even in this case.
We now take a closer look at the bond dimensions.

Figure 16 shows the bond dimensions along the chain.
After the first few bonds, the bond dimension stays almost
constant, indicating a separation between different length
scales. The nondecaying bond dimension can be attributed
to the nondecaying structures in the frequency space (with
no high-frequency cutoff). In order to see that, let us, for

simplicity, consider 2D data at zero bosonic frequency [see
Fig. 14(a)]. To simplify the discussion, we model the non-
trivial diagonal structures by an identity matrix, Aij ¼ δij of
size 2R × 2R. All 2R singular (eigen)values of the identity
matrix are 1.Thus, thismatrix is not compressible by singular
value decomposition (SVD). The mapping to qubits

Aði1i2���jRÞ2;ðj1j2���jRÞ2 ¼
YR
b¼1

δib;jb ; ð31Þ

which indicates that the matrix can be represented exactly as
a MPS with a bond dimension of one.

G. 2P quantities from DFT+DMFT calculations

To demonstrate the compression in the case of multiple
spin-orbital indices, we analyze the 2P response functions
of a realistic multiorbital model. In a recent study [62],
where one of us was involved, the multipolar ordering
in the f-electron compound CeB6 was investigated
using DMFT combined with DFT. In this subsection, we
analyze the 2P data from this state-of-the-art DFTþ DMFT
calculation.
Reference [62] constructed a tight-binding model from

DFT calculations and considered local correlation effects
within DMFT. The effective impurity model involves 6 local
degrees of freedom of the j ¼ 5=2 multiplet, which was
solved by the Hubbard-I approximation, i.e., exact diago-
nalization without hybridization. The local interaction was
set to U ¼ 6.2 eV and Hund’s coupling to JH ¼ 0.8 eV.
For a converged self-consistent solution of DMFT, they

computed the multipolar susceptibility χðqÞ in the ph
channel at zero bosonic frequency through the BSE.
First, they computed the local generalized susceptibility
Xloc by exact diagonalization on a fermionic-frequency
mesh of size Nw × Nw. Then they computed the irreducible
vertex Γ by solving the local BSE. By solving the lattice
BSE with Γ, the multipolar susceptibility χðqÞ was
obtained. For technical details, we refer the reader
to Ref. [62].
In this subsection, we analyze two important quantities:

the local generalized susceptibility Xloc and the multipolar
susceptibility χðqÞ. The local generalized susceptibility is
related to the local 2P Green’s function by

Xloc
m1m2;m3m4

ðiν; iν0Þ ¼ 1

β
Gð2Þ

m2m1;m4m3
ðiν; iν0; iω ¼ 0Þ

− Gm2;m1
ðiνÞGm4;m3

ðiν0Þ; ð32Þ

where m1, m2, m3, m4 stand for the eigenvalues of jz,
namely, m ¼ −5=2;−3=2;…;þ5=2. Introducing com-
bined indices I ≡ ðm1m2Þ and J ≡ ðm3m4Þ, we express
this quantity as Xloc

IJ ðiν; iν0Þ. The combined indices are
defined in row major order: I ¼ 1; 2;…; 36 corresponds
to ðm1m2Þ ¼ ð1; 1Þ; ð1; 2Þ;…; ð6; 6Þ.
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(a)

(b)

(c)

FIG. 14. Irreducible vertex function Γd of the Hubbard atom for two values of U: (a) U ¼ 3.0 and (b)–(c) U ¼ 3.56 and for a given
bosonic frequency 2mπ=β (β ¼ 1). The middle panels show the reconstructed data from MPSs (ϵ ¼ 10−14). The right panels show the
error in the reconstructed data. Note that the entire three-frequency dependence is fitted by a single MPS.
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Figure 17(a) illustrates the MPS used for compressing
the local generalized susceptibility. A fermionic frequency
ν is encoded as described in Sec. II C. The combined
indices for the j ¼ 5=2 multiplet I and J are not decom-
posed further in this study. Figures 17(b) and 17(c) show
the results for ðI; JÞ ¼ ð1; 1Þ and (1,36), respectively. The
left panels plot the reconstructed data from the MPS
constructed with ϵ ¼ 10−8 and R ¼ 7 (Nw ¼ 128), while
the right panels show the error. In Fig. 17(b), one sees broad
structures in addition to the diagonal line at ν ¼ ν0. A
similar but weak broad structure is also seen in Fig. 17(c).

All of these structures can be described with high accuracy,
within an error of <10−4.
Figure 17(d) shows the dimensions of the MPS. The

bond dimension is highest at b ¼ 1 between the indices of I
and J. After showing another small local maximum around
b ¼ 5, the bond dimension slowly decreases. The estimated
compression ratio is around 608.
We now analyze the multipolar susceptibility χðqÞ

obtained by solving the lattice BSE. The χðqÞ is defined as

χm1m2;m3m4
ðqÞ≡

Z
β

0

dτhOm1m2
ðq; τÞOm4m3

ð−qÞi: ð33Þ

(a)

(b)

FIG. 15. Dependence of (a) compression ratio and (b) error
(accuracy) on the bond dimension for Γd of the Hubbard atom at
U ¼ 3 (β ¼ 1). We compress the data on a 2R × 2R × 2R grid
with R ¼ 10 using the cutoffs ϵ ¼ 10−6, 10−8, 10−10, 10−12, and
10−14. The symbol j � � � j∞ denotes the maximum norm of a
tensor, which is the maximum of the absolute values of its
elements.

FIG. 16. Bond dimensions of MPSs representing the vertex
function Γd with cutoff ϵ ¼ 10−14. The dashed line indicates the
maximum bond dimensions in maximally entangled cases.

(a)

(b)

(c)

(d)

FIG. 17. Local generalized susceptibility of CeB6 computed by
DFTþ DMFT. (a) MPS, (b),(c) intensity map of the recon-
structed Xloc and error for ϵ ¼ 10−8, (d) bond dimensions along
the MPS. In (d), the dashed line indicates the maximum bond
dimensions in maximally entangled cases. The estimated com-
pression ratio is around 608.
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Here, the argument τ stands for the imaginary time of the
Heisenberg operator. The operator Omm0 ðqÞ is the Fourier
transform of the local density operator Omm0 ðiÞ ¼ f̂†imf̂im0,
where f̂†im and f̂im are the creation and annihilation
operators for the f electrons, respectively.
We analyze the data of size 36 × 36 × 32 × 32 × 32,

where the number of momentum grid points is 323. A
momentum grid point is denoted by three integers as
q ¼ ðq0; q00; q000Þ and we use the MPS illustrated in
Fig. 18(a). Since the multiplet indices correspond to the
shortest (most relevant) length scales, it is a natural choice
to place them on the left edge of the MPS.
Figure 18(b) shows the bond dimensions for ϵ ¼ 10−8 and

R ¼ 5. The bonddimension of theMPS is slightly larger than
100. One can see a plateau behavior around b ¼ 5, support-
ing the length-scale separation. The estimated compression
ratio is around 134. Although this number is already
impressive, it may even be underestimated: The b depend-
ence of the bond dimension in the right half of the chain may
indicate that the mesh size is not large enough.

H. Nonequilibrium Green’s functions

After analyzingMatsubara Green’s functions and vertices
in the previous subsections, we move on to the analysis of
real-time and mixed real- and imaginary-time Green’s func-
tions of equilibrium and nonequilibrium systems. In non-
equilibrium or real-time Green’s function calculations, the
Green’s functions are often defined on the so-calledL-shaped
contour, which consists of the Matsubara branch and a real-
time contour [52,63]. Depending on the position of the
creation and annihilation operators on this contour, one
can define different components of the Green’s functions.
A complete characterization is obtained in terms of the
retarded component [GRðt;t0Þ¼−iθðt− t0ÞhfĉðtÞ; ĉ†ðt0Þgi],

the lesser component [G<ðt; t0Þ ¼ ihĉ†ðt0ÞĉðtÞi], the left-
mixing component [G⌉ðt; τ0Þ ¼ ihĉ†ðτ0ÞĉðtÞi], and the pre-
viously defined Matsubara component.
In nonequilibriumGreen’s function methods, the interact-

ing Green’s function on the L-shaped contour is typically
obtained by solving Dyson equations (Kadanoff-Baym
equations) on this contour [52,63,64]. A standard imple-
mentation based on an equidistant time discretizationwithNt
time steps on the real-time axis and Nτ time steps on the
imaginary-time axis requires a computational time ofOðN3

t Þ
and memory of OðN2

t Þ, assuming that Nt ≫ Nτ [64]. Here,
we address the problem of storing the nonequilibrium (real-
time) Green’s functions and show that these functions are
highly compressible.
To illustrate the QTT compression in the nonequilibrium

case, we focus on the single-band Hubbard model (19) in a
time-dependent electric field

HðtÞ ¼ −
X
hiji

eiϕijðtÞĉ†iσ ĉjσ þ U
X
i

n̂i↑n̂i↓: ð34Þ

The electric field is included via a Peierls phaseϕij, which is
the line integral of the vector potential between the sites
i and j [65]. We consider a half-filled system on the
Bethe lattice, and calculate the Green’s functions using
the nonequilibrium (real-time) extension of DMFT [52].
Two representative cases are analyzed: (i) the paramagnetic
Mott insulating system in equilibrium (see Fig. 19), and
(ii) an initially antiferromagnetic Mott insulating system
which is excitedwith a short electric field pulse (see Fig. 20).
More specifically, we consider a Bethe lattice with infinite
coordination number, which features a semicircular density
of states, and use the quarter of the bandwidth of the free
system (U ¼ 0) as the unit of energy and ℏ divided by the
quarter of the bandwidth as the unit of time. We set the
interaction toU ¼ 6 and use the noncrossing approximation
to solve the effective impurity model in DMFT [53]. For
calculation (i), we choose the temperatureT ¼ 0.2, while for
(ii), we use the initial temperature T ¼ 0.05, which is below
the Néel temperature of the system. Setting ℏ, the bond
length a, and the electron charge to unity, we choose the
vector potential asAðtÞ ¼ ðE0=ΩÞFGðt; t0; σÞ sin½Ωðt − t0Þ�
with FGðt; t0; σÞ ¼ expf−½ðt − t0Þ2=2σ2�g. The vector
potential is related to the electric field EðtÞ by
EðtÞ ¼ −∂tAðtÞ. We set t0 ¼ 12; σ ¼ 3;Ω ¼ 6; E0 ¼ 0.8.
The Green’s functions are obtained using a time-stepping

scheme which exploits the causal nature of the solution
of the Kadanoff-Baym equations. We use Nt ¼ 4096 and
Nτ ¼ 1024, which means that the lesser and retarded
components are stored on ð4096þ 1Þ2=2 ¼ 8.4 × 106 grid
points, while themixed component is stored on ð1024þ 1Þ×
ð4096þ 1Þ ¼ 4.2 × 106 grid points. The left panels of
Figs. 19 and 20 show the imaginary parts of the interacting
Green’s function for the indicated components. The middle
panels plot cuts at fixed t0=tmax ¼ 0.5 (indicated by a black

(a)

(b)

FIG. 18. Multipolar susceptibility of CeB6 computed by
DFTþ DMFT. (a) MPS, (b) bond dimensions along the MPS
for ϵ ¼ 10−8. In (b), the dashed line indicates the maximum bond
dimensions in maximally entangled cases. The estimated com-
pression ratio is around 134.
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line in the left panels) or τ=β ¼ 1.We note that ImG<ðt; t0Þ is
symmetric with respect to the diagonal t ¼ t0, while
ImGRðt; t0Þ is nonzero only for t > t0 and features a jump
of height 1 along the diagonal. The mixed component has a
very different structure, since it connects to the Matsubara
Green’s function for t → 0 and decays to zero for large t. We
furthermore notice that the equilibrium lesser and retarded
components are time-translation invariant (i.e., they are
functions of t − t0), while this is not the case for the
pulse-excited system. The latter system features sharp peaks
related to spin polarons in the spectral function of the initial
antiferromagnetic state [57], and this leads to a slow decay in
the retarded component away from the diagonal.At the same
time, theweight in the lesser component (hole propagator) is
suppressed since we plot the result for the minority-spin
component. After the application of the pulse, the staggered
magnetization quickly melts, which leads to the

disappearance of the spin-polaron peaks and to half filling
[ImG<ðt; tÞ ¼ 0.5] for both spin components.
The right panels of Figs. 19 and 20 demonstrate that

despite the different qualitative features of the three
components and the two distinct setups, the QTT com-
pression scheme is capable of reproducing the Green’s
functions to high accuracy with modest bond dimensions.
More specifically, in the case of the paramagnetic equilib-
rium system, a relative accuracy better than jGreconstructed −
Gexactj∞=jGexactj∞ < 10−4 is achieved with bond dimen-
sions D ∼ 10, while in the more challenging nonequili-
brium case (with antiferromagnetic order in the initial state
and a lack of translation invariance), a similar precision is
reached with D ∼ 50. A noteworthy observation is that the
compression scheme does not seem to encounter any
difficulties in resolving the jump in the retarded component
(compare the results for ImG< and ImGR). While a
representation in terms of average and relative times might

(a)

(b)

(c)

FIG. 19. Real-time and mixed Green’s functions computed for the equilibrium paramagnetic system. Exact data for the imaginary
parts of (a) the lesser, (b) the retarded, and (c) the left-mixing component are shown in the left panels. Cuts through these functions at
t0=tmax ¼ 1=2 or τ=β ¼ 1 (horizontal lines in the left panels) are shown in the middle panel. The right panels show the logarithm of the
error for cutoff ϵ ¼ 10−10 together with the bond dimensionD automatically set by ϵ. The symbol j � � � j∞ denotes the maximum norm of
a tensor, which is the maximum of the absolute values of its elements.
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(a)

(b)

(c)

FIG. 20. Nonequilibrium Green’s functions computed for the photoexcited antiferromagnetic system. See the caption of Fig. 19 for the
description of the panels.

(a)

(b)

(c)

(d)

FIG. 21. Scaling of the relative accuracy [panels (a) and (c)] and compression ratio [panels (b) and (d)] for the different components of
the Green’s function. The left panels are for the equilibrium case and the right panels for the nonequilibrium case. The symbol j � � � j∞
denotes the maximum norm of a tensor.
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look more natural in the case of the retarded component,
the transformation to this representation can be achieved
by a MPO of very small bond dimension, as we discuss
in Sec. III D. Whether or not a reduction of the bond
dimension can be realized by introducing variable trans-
formations will be the subject of a separate study.
To illustrate how the accuracy of the compressed Green’s

function improves with increasing bond dimension D, we
plot in Figs. 21(a) and 21(c) the dependence of the
maximum relative error on D for the imaginary parts of
the different components. The accuracy improves roughly
exponentially with increasing D, both in the equilibrium
case and in the nonequilibrium case. An interesting ques-
tion is, what do these numbers imply for the memory
requirement of the QTT representation and the compression
ratio? The results are shown in Figs. 21(b) and 21(d). We
see that in the equilibrium case, for bond dimensionD ∼ 10

and relative deviations smaller than approximately 10−4, a
compression ratio of about 104 is realized, which for
example means that instead of 8.4 × 106 data points for
the lesser or retarded components, we need to store fewer
than 1000 numbers. In the nonequilibrium case, the
compression ratio is lower, but still impressive. For
D ∼ 50, which again ensures relative deviations smaller
than approximately 10−4, the memory cost is reduced by
approximately 3 orders of magnitude.

V. COMPUTATION

In this section, we demonstrate how to perform basic
operations for diagrammatic calculations in the com-
pressed form.

A. Fourier transform

In this subsection, we discuss the Fourier transform
between the Matsubara-frequency and imaginary-time
domains. As we discuss in Sec. III A, we precompute
the MPO for the Fourier transform. To test the numerical
stability of the Fourier transform using the MPO, we
consider the fermionic Green’s function associated with
a single pole,

GðτÞ ¼ −
e−τω

1þ e−βω
; ð35Þ

where we take β ¼ 100 and ω ¼ 1. We first construct a
MPS of bond dimension one for GðτÞ using Eq. (14) with
a given R. Then, we apply the MPO to the MPS to obtain a
MPS for GðiνÞ, whose bond dimension is truncated
using ϵ ¼ 10−20.
Figure 22 shows the results for R ¼ 24, where we

compare GðiνÞ reconstructed from the MPS to the exact
values. One can see that the error level is constant
throughout the frequency mesh. The error essentially
originates from the discretization in τ, which can be
reduced exponentially by increasing R, as we see later.

Next, we test the inverse Fourier transform from GðiνÞ to
GðτÞ. In practice, we decompose the numerical data of
GðiνÞ on a mesh of size 2R by SVD with ϵ ¼ 10−20. Then,
we apply the MPO of the inverse Fourier transform to the
MPS of GðiνÞ, yielding a MPS of GðτÞ. Figure 23 shows
the results for R ¼ 8, 12, 16. The error around τ > β=2R

vanishes exponentially with increasing R, while the error
around τ ¼ 0 stays almost constant. The region with the
large error vanishes exponentially in width with increas-
ing R.

FIG. 22. Fast Fourier transform of the one-particle
Green’s function, where GðiνÞ is transformed from GðτÞ
[iν ¼ ið2nþ 1Þπ=β]. We only plot every 105th data point.

(a)

(b)

(c)

FIG. 23. Fourier transform of the Green’s function to the τ
domain for R ¼ 8, 12, 16. The other parameters are the same as
in Fig. 22.
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The large error at τ ¼ 0 can be attributed to the
truncation of the Matsubara sum: A discontinuity of
GðτÞ at τ ¼ 0 cannot be reproduced by summing over a
finite number of Matsubara frequencies. To be more
specific, for a finite R, the transformed Gðτ ¼ 0Þ equals
½Gexactðτ ¼ 0þÞ þGexactðτ ¼ 0−Þ�=2, where Gexact is the
exact Green’s function. If Gexactðτ¼ 0þÞ−Gexactðτ¼ 0−Þ
ð≡ΔÞ≠ 0, the error at τ ¼ 0 is larger than or equal to jΔj=2
for R <∞. This does not matter in practice since the
error is localized in exponentially narrow regions near
τ ¼ 0 and β.

B. Dyson equation

In this subsection, we describe how to solve the Dyson
equation. Without loss of generality, we restrict ourselves to
1D cases. The Dyson equation can be expressed as

AðkÞGðiν; kÞ ¼ 1; ð36Þ

where the linear operator AðkÞ is defined as

AðkÞ≡ iν − ϵðkÞ − Σðiν; kÞ: ð37Þ

For a fixed iν, this equation can be expressed in compressed
form as

Aðk1;…; kRÞGðk1;…; kRÞ ¼ 1; ð38Þ

where

Aðk1;…; kRÞ≡ iν 1k1 · ð� � �Þ · 1kR − ϵðk1;…; kRÞ
− Σðk1;…; kR; iνÞ: ð39Þ

Hereafter, we assume that the self-energy is given as a
MPS. The MPS for ϵðkÞ can be constructed from the
hopping matrix as follows. The dispersion ϵðkÞ
(k ¼ 0;…; 2R − 1) can be expressed as

ϵðkÞ ¼
X2R−1
r¼0

ei2πkr=2
R
tr; ð40Þ

where tr is the real-space hopping matrix. In the present
formalism, the hopping “matrix” can be expressed as an
R-way tensor of size ð2; 2;…; 2Þ. For a tight-binding
model, a MPS with a small bond dimension can be
constructed explicitly for the hopping matrix as

X
r0
tr0Tð1Þðr0RÞ · ð� � �Þ · TðRÞðr01Þ; ð41Þ

where the MPS tensor is defined as

ðTðnÞðrR−nþ1
0ÞÞrR−nþ1

an−1;an ≡ δrR−nþ1;rR−nþ1
0 : ð42Þ

Note that the physical index is rn, and r0n is an external
tensor parameter. The bond dimension of the MPS in
Eq. (41) equals or is smaller than the number of nonzero
elements of tr. The bond dimension is only two for a
nearest-neighbor 1D tight-binding model. For a more
complex hopping matrix, one may have to compress the
MPS numerically. The resultant MPS for the hopping
matrix tr can be Fourier transformed numerically to k
space using the MPO of FFT.
Once a MPS for AðkÞ is constructed, one can readily

solve the Dyson equation (36) in the QTT representation
using a standard Krylov method. In the following numeri-
cal demonstration, we transform the MPS of AðkÞ to a MPO
as described in Sec. III B.

(a)

(b)

(c)

FIG. 24. Solving the Dyson equation for the nearest-neighbor
tight-binding model on the 1D lattice for β ¼ 100. (a) ϵðkÞ
computed by Fourier transformation in the QTT form. (b) [(c)]
Green’s functions computed for ν ¼ ð1=βÞπ [ν ¼ ð11=βÞπ].
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As a simple case, we consider a nearest-neighbor tight-
binding model on the 1D lattice. This case without self-
energy is challenging because of sharp peaks in Gðk; iνÞ at
low frequencies and at the Fermi points. Figure 24(a) shows
ϵðkÞ computed by the Fourier transform for R ¼ 20without
patching. For constructing the MPO of the Fourier trans-
form, we use the cutoff ϵ ¼ 10−25. The resultant MPO for
ϵðkÞ has D ¼ 2. The ϵðkÞ is reconstructed on a grid of size
220 ¼ 1048576, which is compared with the exact result
ϵðkÞ ¼ 2 cosðkÞ. The noise level is constant over the whole
interval. The signal-to-noise ratio for ϵðkÞ becomes worse
around the Fermi points. One can construct MPSs for ϵðkÞ
patchwise to improve the signal-to-noise ratio.
Figures 24(b) and 24(c) show the Green’s function

computed by solving the Dyson equation in the QTT
representation for ν ¼ ð1=βÞπ and ν ¼ ð11=βÞπ, respec-
tively (β ¼ 100). In particular, we use the generalized
minimal residual method [66] with cutoff ϵ ¼ 10−15 for
truncating MPSs during the Krylov-subspace construction.
One can see that the reconstructed Gðk; iνÞ matches the
exact value accurately over the interval. This proves the
numerical stability of the present method.
The error becomes slightly larger around the Fermi

points and at low frequencies, which can be attributed to
the large signal-to-noise ratio in ϵðkÞ. This issue becomes
less serious at higher frequencies and presumably also in
the presence of a self-energy.

C. Bethe-Salpeter equation

We now solve the BSE for the Hubbard atom in the QTT
form. We evaluate the rhs of Eq. (30) using the
QTT representation from the exact vertices and compare
the resultant F with the lhs (exact full vertex). The
evaluation of the rhs is done as follows for a fixed bond
dimension D.
(1) Compute the MPSs for X0, Γ, and F with the fixed

bond dimension D.
(2) Compute the MPS of ϕ0 ≡ X0F.
(3) Compute the MPS of ϕ≡ β−2Γϕ0.
(4) Compute the MPS of Γþ ϕ.

At the end of steps 2–4, we truncate the resultant MPS to
the bond dimension D. At the end of step 4, we should
have Γþ ϕ ≃ F.
Figure 25 shows the results for βU ¼ 3ðβ ¼ 1Þ and

R ¼ 9 on a 2R × 2R × 2R grid. Figure 25(a) shows how the
error in the result decays with increasing bond dimensionD
for several values of R. The error vanishes exponentially
and eventually saturates due to the finite-size effect of the
grid. The finite-size error is estimated by performing the
one-shot BSE calculation without compression directly
on a fermionic-frequency mesh of size 2R × 2R at each
bosonic frequency using matrix multiplications. Note that
this finite-size error vanishes slowly as Oð1=MpÞ with the
mesh size M ¼ 2R (p ¼ 1). In the present approach, the
finite-size error vanishes exponentially with R.

Figure 25(b) shows the timings of the present approach.
We run the code with eight threads on an AMD EPYC
7702P 64-core processor. We perform the matrix multipli-
cation using the fitting algorithm, whose computational
cost scales as OðD4Þ. One can see that the timings depend
weakly on R, as expected. The timings grow slightly slower
than the expected scaling OðD4Þ. This indicates that the
bond dimensions are still too small to see the asymptotic
scaling.
For a fixed temperature, the run-time of the overcomplete

IR method [26] scales as OðL8Þ, where L ∝ − log ϵ. For a
fixed box size R, the run-time of the present method grows
only as OðL4NÞ, where L ∝ − log ϵMPS, N ∝ − log ϵbox,
ϵMPS is the target accuracy for compressing MPSs, and ϵbox
is the target accuracy for the finite-size error of the grid.
Thus, the present approach is asymptotically superior to the
overcomplete IR method for high target accuracy.

VI. SUMMARY AND CONCLUSION

In summary, we propose a multiscale space-time ansatz
for correlation functions of quantum systems based on
QTTs. We numerically establish the validity of the ansatz
for the space-time dependence of correlation functions

(a)

(b)

FIG. 25. (a) Error in the reconstructed full vertex by solving the
BSE, (b) timings of the one-shot solution of the BSE for U ¼ 3

and R ¼ 7, 8, 9. The BSE is solved effectively on a 2R × 2R × 2R

grid. The horizontal dashed line in (a) denotes the error level set
by the finite-size effects of the grid (see the text). The symbol
j � � � j∞ denotes the maximum norm of a tensor.
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in various equilibrium and nonequilibrium systems.
Furthermore, we propose efficient algorithms for basic
operations required for diagrammatic calculations. In
particular, we show that the Fourier transform can be
performed using a MPO, with a small bond dimension.
Finally, we numerically demonstrate the computation of
the Fourier transform, the solution of the Dyson equation,
and the evaluation of the Bethe-Salpeter equation.
This study will open a new route to efficient computa-

tions of quantum field theories using classical computers.
A possible application is the numerical integration of
high-order perturbation series, which has been recently
attacked by a low-rank tensor train approximation using a
tensor cross interpolation formula without the multiscale
ansatz [39]. It is of interest to test the efficiency of more
sophisticated tensor networks, such as tree tensor networks
and multiscale tensor networks.
In the present QTT approach, diagrammatic calcula-

tions are mapped to standard operations in the QTT format,
which can be parallelized using many GPUs and/or
CPUs. The QTT representation is capable of treating high-
dimensional frequency and momentum domains in a
straightforward way.
There are many possible applications of QTTs. In equi-

librium calculations, handling 2P quantities with three
frequencies and momenta incurs huge computational and
memory costs. This limits the application of sophisticated
diagrammatic approaches at the 2P level and makes it
unfeasible to address low-temperature phenomena in
real materials. Examples include parquet (like) equations
[29,55,67–75] and the density-wave (DW) equation [76–78].
For the DFTþ DMFT method, a challenging issue is the
computation of 2P response functions [62,79–82]. Nonlocal
extensions of DFTþ DMFT [18,83–85] require efficient
treatments of BSE and parquet equations as well. Ab initio
fRG [86] and downfolding beyond the constrained RPA
method [87–91] are other interesting targets.
Ab initio calculations where the bands span a wide

energy range require an efficient treatment of internal
degrees of freedom, which may be enabled by the QTT
representation. Vertex corrections to the Migdal-Eliasberg
equation [32] andGW þ BSE [31] could also be addressed.
Recent work on the analytic structure of multipoint

correlation functions [22,23] is in principle orthogonal to
the compression strategies presented in this work. It is
however intriguing to explore synergies, for example, by
trying to express the partial spectral function representa-
tions using MPSs rather than the full object.
In nonequilibrium simulations, the huge memory cost of

storing momentum-dependent two-time Green’s functions
has restricted lattice calculations based on the Σð2Þ [92],
FLEX [93], or two-particle self-consistent [94] approaches to
short times andcoarsemomentum resolutions.An interesting
aspect of correlated nonequilibrium systems however is the
emergence of distinct behaviors on different timescales [52],
as exemplified by the concepts of prethermalization [95,96]

and nonthermal fixedpoints [97,98]. TheQTTrepresentation
essentially eliminates the memory bottleneck, and it should
enable new implementations of the diagrammatic equations
which give access to slow dynamics and provide insights into
the role of nonlocal correlations.
While current implementations of nonequilibrium cal-

culations rely on a time-stepping scheme [64], it is rather
cumbersome to combine this strategy with compressed
representations of nonequilibrium Green’s functions [33].
The routines discussed in this work suggest that it may be
advantageous to give up the time stepping and to imple-
ment the calculations on a fixed-time contour using the
QTT representations. How this affects the numerical
stability and convergence properties of the simulations is
an interesting subject for future studies.
It is also interesting to explore the theoretical possibility

of implementing diagrammatic calculations using a real
quantum computer. This may allow us to handle difficult
cases leading to a large bond dimension with QTTs. It
however requires the implementation of nonunitary oper-
ations such as elementwise multiplication and convolutions
using a unitary quantum circuit. This remains a challenging
problem in quantum information theory.
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APPENDIX A: MPSs

Here we provide a brief overview of matrix product
states. For a comprehensive review, we refer the reader to
Refs. [103,104].
Let A be an n1 × � � � × nL tensor, i.e., an object with L

indices i1;…; iL. We write this as Aði1; i2;…; iLÞ. A MPS
is an approximation of the single L-way tensor A by a
contraction of L three-way tensors Að1Þ;…; AðLÞ:

Aði1; i2;…; iLÞ ≃
XD0

α0¼1

� � �
XDL

αL¼1

Að1Þ
i1;α0α1

Að2Þ
i2;α1α2

� � �AðLÞ
iL;αL−1αL

≡ Að1Þ
i1

· ð� � �Þ · AðLÞ
iL

; ðA1Þ

where AðlÞ is now an auxiliary nl ×Dl−1 ×Dl tensor. Aside
from the outer or physical indices i1;…; iL, we introduce
dummy or virtual indices α0;…; αL. The index αl thereby
forms a “bond” between the tensors Aðl−1Þ and AðlÞ; hence,
its bound Dl is called the bond dimension. (By definition,
D0 ¼ DL ¼ 1.) The bond dimension D of the MPS is
defined as the largest bond dimension of its constituents,
D ¼ maxl Dl. With the outer indices held fixed, the
virtual indices chain the tensors AðlÞ into a matrix product,

which enables the condensed notation Að1Þ
i1

· ð� � �Þ · AðLÞ
iL

for
the MPS.
Any tensor can be decomposed into a MPS. As illus-

trated in Fig. 26(a), we can reshape the original tensor A
into an n1 × ðn2 � � � nLÞ matrix:

Að{1; i2; i3;…; iL|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
J

Þ≡ Aði1; JÞ: ðA2Þ

By means of a SVD, we can detach the first tensor Að1Þ
from A:

Aði1; JÞ ¼
XD0

1

l¼1

ðUÞi1lslðV†ÞlJ ≡Að1Þ
i1

·A0ði2;…; iLÞ; ðA3Þ

where s1 ≥ s2 ≥ � � � ≥ 0. Iterating Eqs. (A2) and (A3) on A0,
we obtain MPS (A1).
The bond dimension D0

k obtained by this procedure is
given by D0

k ¼ minðn1 � � � nk; nkþ1 � � � nKÞ; i.e., it grows
exponentially as we move from the edges toward the center
of the MPS. Fortunately, in many interesting cases, differ-
ent indices ik are not strongly entangled, making Dk a very
loose bound. To utilize this, we approximate A in Eq. (A3)
with its low-rank approximation Ã:

Aði1; JÞ ≈ Ãði1; JÞ ¼
XD1

l¼1

ðUÞi1lslðV†ÞlJ; ðA4Þ

where D1 ≤ D0
1; i.e., we simply discard the smallest

singular values in Eq. (A3). The error of this approximation
is usually taken to be with respect to the Frobenius norm:

ϵ ¼ jjA − Ãjj2F
jjAjj2F

¼
PD0

1

l¼D1þ1 s
2
lPD0

1

l¼1 s
2
l

; ðA5Þ

and can be shown to be optimal for a given rank D0
1 by

virtue of the SVD. (We follow common MPS convention
and express the approximation error in terms of the squared
deviation.)
Equations (A4) and (A5) now provide us with a way to

construct a (lossily) compressed form of the MPS. We start
with an error bound ϵ and optionally a maximum bond
dimension D. Instead of the SVD (A3), we use the
truncated SVD (A4) to detach the first tensor Að1Þ from
A, ensuring that the approximation error (A5) stays below
our error bound. We then iterate (“sweep”) through the
indices to construct the truncated MPS. The MPS obtained
this way is optimal, and we refer to it as a MPS in its
canonical form. A MPS in canonical form cannot be
compressed further without sacrificing accuracy.
The above procedure is not only useful in constructing

the MPS, but also for “recompressing” a MPS of bond
dimension D0 into one of bond dimension D ≤ D0. This is
necessary because intermediate results arising from, e.g.,
elementwise products of two MPSs, are not canonical;

(a) (b)

(c)

FIG. 26. (a) Decomposing a tensor into a tensor train or matrix product state by SVD, yielding a MPS of the dependence on i. The
filled square denotes a diagonal matrix consisting of singular values. The singular values are absorbed into the right singular matrix.
(b) MPO. (c) Multiplication of a MPO and a MPS. We do not show the dummy virtual bonds at the edges for simplicity.
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i.e., these computations yield a MPS with a large bond
dimension but with large redundancy. The recompression
algorithm proceeds along the lines of Eqs. (A4) and (A5),
but is slightly more involved, which is why we do not
detail it here. We just remark that truncating the bond
dimension from D0 to D costs OðnD03LÞ computational
time for D0 ≫ D, where n is the maximum dimension of
the physical indices.

APPENDIX B: MPO

MPOs are a natural generalization of the MPS
concept to operators. A MPO is a decomposition of an
n1 × n01 × � � � × nL × n0L (2L-way) tensor O into a product
of L four-way tensors Oð1Þ;…; OðLÞ:

Oi1;…;iL
i0
1
;…;i0L

≃
XD0

α0¼1

� � �
XDL

αL¼1

Oð1Þ
i1i01;α0α1

Oð2Þ
i2i02;α1α2

� � �OðLÞ
iLi0L;αL−1αL

≡Oð1Þ
i1i01

· ð� � �Þ ·OðLÞ
iLi0L

; ðB1Þ

where OðlÞ is now an auxiliary nl × n0l ×Dl−1 ×Dl tensor,
α0;…; αL are again the bond indices, D0;…; DL the bond
dimensions, D0 ¼ DL ¼ 1, and · again is shorthand for
the contraction along the bond dimension. We illustrate
Eq. (B1) in Fig. 26(b).
Crucially, a MPO (B1) can be applied to a MPS (A1)

“tensor by tensor”:

X
i0
1
;…;i0L

Oi1;…;iL
i0
1
;…;i0L

Xði01;…; i0LÞ

¼
X

i0
1
;…;i0L

½Oð1Þ
i1i01

Xð1Þ
i0
1
� · ð� � �Þ · ½OðLÞ

iLi0L
XðLÞ
i0L

�

≡ Yð1Þ
i1

· ð� � �Þ · YðLÞ
iL

; ðB2Þ

where · now indicates contraction over the bond indices of
both O and X. We illustrate Eq. (B2) in Fig. 26(c).
Equation (B2) shows that the resulting tensor Y can be

expressed in MPS form. However, its bond dimension is as
large as D0 ×D, where D0 and D are the bond dimensions
of O and X, respectively. The resultant MPS is not in
canonical form and thus can be compressed significantly.
The compression by SVD would cost O(D3ðD0Þ3) oper-
ations, which is usually inefficient. The multiplication and
subsequent compression can be done simultaneously using
the density-matrix method or the fitting method [105]
where we avoid creating an intermediate MPS with a large
bond dimension. In the present study, we use the fitting
method. The computation time scales asOðD5Þ andOðD4Þ
for these two algorithms, respectively, when D0 ≃D.
In solving diagrammatic equations, one may have to

evaluate elementwise products Cðt; t0Þ ¼ Aðt; t0ÞBðt; t0Þ
or convolutions Cðt; t0Þ ¼ R

dt00Aðt; t00ÞBðt00; t0Þ. As we

describe in Secs. III B and III C, these operations on two
MPSs can be recast into a MPO-MPS multiplication.
One can perform many operations in the MPS form.

For instance, one can add two MPSs with bond dimensions
D1 and D2, where the resultant MPS has bond dimension
D1 þD2. The resultant MPS can be compressed by
SVD efficiently, at a computational cost which scales as
O(ðD1 þD2Þ3). Thus, addition is usually computationally
cheap compared to multiplication. The same applies to the
addition of two MPOs.

APPENDIX C: FAST FOURIER TRANSFORM

We are attempting to construct a MPO FTk1;…;kR
xR;…;x1 for the

discrete Fourier transform:

fðkÞ ¼
X2R−1
x¼0

exp

�
2πi
2R

kx

�
fðxÞ; ðC1Þ

F̂ð1Þ
k1

� � � F̂ðRÞ
kR

¼
X
fxrg

FTk1;…;kR
xR;…;x1F

ðRÞ
xR � � �Fð1Þ

x1 : ðC2Þ

We start with the definition of the discrete Fourier
transform on a grid of size 2N:

f̂ðkÞ ¼
X2N−1

x¼0

exp

�
2πi
2N

kx

�
fðxÞ; ðC3Þ

where fðxÞ is the discrete real-space signal, f̂ðkÞ is
the corresponding momentum-space function, and x; k ∈
f0;…; 2N − 1g. The standard Cooley-Tukey algorithm
reduces a discrete Fourier transform (C3) of size 2N to
two discrete Fourier transforms of size N:

f̂ðkþ κNÞ ¼
X1
ξ¼0

e
πi
NξðkþκNÞXN−1

x¼0

exp

�
2πi
N

kx

�
fð2xþ ξÞ;

ðC4Þ

where now x; k ∈ f0;…; N − 1g and κ; ξ ∈ f0; 1g. Iterating
Eq. (C4) yields the FFT for problem sizes 2N ¼ 2R for some
integer R.
Let us again expand fðxÞ and f̂ðkÞ as MPSs, which we

reproduce here:

f̂ðkÞ ¼ F̂ð1Þ
k1

· F̂ð2Þ
k2

· ð� � �Þ · F̂ðRÞ
kR

; ðC5aÞ

fðxÞ ¼ FðRÞ
xR · FðR−1Þ

xR−1 · ð� � �Þ · Fð1Þ
x1 ; ðC5bÞ

where x ¼ ðx1 � � � xRÞ2 and k ¼ ðk1 � � � kRÞ2 are again the
bits of x and k, respectively, and · denotes the contraction of
the matrices f or f̂ along the bond dimension.
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Note again that the order of tensors is reversed in f with
respect to f̂. This circumvents the necessity of bit reversals
in a traditional FFT. Using our convention instead, we
can identify ξ ¼ xR and κ ¼ k1 in Eq. (C4), allowing us
to perform the FFT from “left to right” in both f and f̂.
Empirically, we find that including the bit reversal adds a
large amount of entanglement, which is why its avoidance
is critical in this case.
We are attempting to construct a MPO for the discrete FT

in Eq. (C2). Imposing the tensor structure (C5) on the
discrete FT (C4), we obtain the following recurrence for the
MPO (C2):

FTk1;…;kR
xR;…;x1 ¼

YR
r¼1

exp

�
2πi
2r

xRkr

�
FTk2;…;kR

xR−1;…;x1 : ðC6Þ

Unwinding the recurrence (C6), we obtain

FTk1;…;kR
xR;…;x1 ¼

YR
r¼1

Yr
s¼1

exp

�
2πi
2s

xrks

�
; ðC7Þ

in other words, simply a collection of phase shifts applied
whenever some bits in both k and x are set.
In order to write the DFT as a tensor network, we

introduce a set of phase shift tensors:

ðC8Þ

and also three- and two-legged versions where removing a
leg corresponds to removing the associated dependence
and delta function. Using Eq. (C8), we can rewrite the
MPO (C7) in its tensor network form depicted in Fig. 27.
Conceptually, this diagram clarifies the structure of the
FFT—leveraged in high-performance libraries such as

FFTW—as a network of simple 2 × 2 kernels together with
a permutation of inputs. More importantly, it can be applied
efficiently to a MPS layer by layer with intermediate com-
pression steps. Alternatively, one can construct a MPO for
whole sequence of steps recursively. The essentially identical
quantumcircuit was already derived inRefs. [106,107] in the
context of quantum information theory.

APPENDIX D: MATSUBARA-FREQUENCY MESH

We define the grid points as ð2nþ ξÞπT (n ¼ −N=2;
−N=2þ 1;…; N=2 − 1), where ξ ¼ 0, 1 for bosons and
fermions, respectively. This choice has the advantage that
all the frequencies are sorted in ascending order. For this
convention, the MPO for the Fourier transform from
imaginary times to Matsubara frequencies is given by

Ĝn0 ¼ GðiνnÞ ¼
Z

β

0

dτeiνn0þN=2τGðτÞ ðD1Þ

≈
β

2R

X2R−1
m¼0

eiπ
2n0m
2R eiπ

−2Rþξ

2R
mGm; ðD2Þ

where τm ¼ ðβ=2RÞm (m ¼ 0; 1;…; 2R − 1), n0 ¼nþ
2R−1ð¼0;1;…;2R−1Þ. By using m¼ðm1m2 � ��mRÞ2 and
θ≡ πð−2R þ ξ=2RÞ, we obtain a MPO for the transform

ðβ=22RÞF−1P; ðD3Þ

where the phase-rotation layer P is given by

P ¼ U1ð2R−1θÞ · U1ð2R−2θÞ · ð� � �Þ · U1ðθÞ ðD4Þ

with the single-qubit rotation

U1ðαÞ≡
�
1 0

0 eiα

�
: ðD5Þ

The Fourier transform F is defined in Eq. (C3).
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