1	Pro	operties of the iliotibial band and their relationships with gait parameters
2	am	ong patients with knee osteoarthritis
3		
4	Au	thors
5	Ma	sahide Yagi ^a , Masashi Taniguchi ^a , Hiroshige Tateuchi ^a , Momoko Yamagata ^{a, b} ,
6	Tet	suya Hirono ^{a, c, d} , Akihiro Asayama ^a , Jun Umehara ^{a, b} , Shusuke Nojiri ^a , Masashi
7	Ko	bayashi ^e , Noriaki Ichihashi ^a
8		
9	Af	ïliations
10	a.	Human Health Sciences, Graduate School of Medicine, Kyoto University, 53
11		Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
12	b.	Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyama Higashimachi,
13		Hirakata, Osaka 573-1136, Japan
14	c.	Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business
15		Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
16	d.	School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho,
17		Toyota, Aichi, 470-0393 Japan
18	e.	Kobayashi Orthopaedic Clinic, 50-35 Kuzetakada-cho, Minami-ku, Kyoto, 601-8211,
19		Japan

21	Corresponding Author:
22	Masahide Yagi
23	Human Health Sciences, Graduate School of Medicine, Kyoto University
24	53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
25	E-mail: yagi.masahide.5s@kyoto-u.ac.jp
26	ORCID: 0000-0002-1825-3570
27	Office phone: +81-75-751-3906
28	Office fax: +81-75-751-3906
29	
30	Running Title: Iliotibial band in knee osteoarthritis
31	
32	AUTHOR CONTRIBUTIONS
33	Conception and design of the study: Masahide Yagi, Masashi Taniguchi, Hiroshige
34	Tateuchi, Momoko Yamagata, and Noriaki Ichihashi; Acquisition of the data:
35	Masahide Yagi, Masashi Taniguchi, Momoko Yamagata, Tetsuya Hirono, Akihiro
36	Asayama, Jun Umehara, Shusuke Nojiri, and Masashi Kobayashi; Analysis and
37	interpretation of the data: Masahide Yagi, Masashi Taniguchi, Hiroshige Tateuchi,

38	Momoko Yamagata, Tetsuya Hirono, Akihiro Asayama, Jun Umehara, Shusuke Nojiri,
39	Masashi Kobayashi, and Noriaki Ichihashi; Drafting and critical revision of the
40	manuscript: Masahide Yagi, Masashi Taniguchi, Hiroshige Tateuchi, Momoko
41	Yamagata, Tetsuya Hirono, Akihiro Asayama, Jun Umehara, Shusuke Nojiri, Masashi
42	Kobayashi, and Noriaki Ichihashi. All authors have read and approved the final
43	submitted manuscript.

44 Abstract

45 This study aimed to determine the thickness and stiffness of the iliotibial band in 46 patients with knee osteoarthritis and to identify the gait parameters that are associated 47 with iliotibial band properties. Eighteen female patients with radiographically diagnosed 48 medial knee osteoarthritis and knee pain (age: 69.7±5.9 years, body mass index: 49 23.0 ± 3.1 kg/m²) and 22 age-matched female individuals without knee pain (age: 50 69.1 ± 7.0 years, body mass index: 21.6 ± 3.6 kg/m²) were included. Shear wave 51 elastography images were obtained at the height of the proximal pole of the patella with 52 the participants in the supine position, and the iliotibial band thickness and shear wave 53 velocity, which is a surrogate measure of stiffness, were calculated. In patients with 54 knee osteoarthritis, the knee and hip joint angles and moments during walking were 55 calculated using a motion analysis system. The shear wave velocity was significantly 56 higher in patients with knee osteoarthritis than in asymptomatic adults (128.3±22.1 vs. 57 102.7 ± 36.5 kPa, respectively; p=0.013); however, the thickness did not differ between them $(2.1\pm0.3 \text{ vs. } 2.1\pm0.4 \text{ mm}, \text{ respectively; } p=0.619)$. The time-integral value of the 58 59 knee adduction moment (β =0.512, p=0.03) and maximum value of the hip flexion 60 moment (β =0.509, p=0.031) were associated with the shear wave velocity. Meanwhile, 61 no parameters were associated with the thickness. The iliotibial band was stiffer in

67	Keywords
66	
65	ITB in patients with knee osteoarthritis.
64	walking. Clinical Significance: Greater mechanical loading was associated with a stiffer
63	band was associated with greater knee adduction and hip flexion moments during
62	patients with knee osteoarthritis than in asymptomatic adults; such a stiffer iliotibial

68 iliotibial band, knee osteoarthritis, shear wave elastography, ultrasound

69 1. INTRODUCTION

70	Knee osteoarthritis (KOA) is a common chronic disease among middle-aged and older
71	adults. ¹ Patients with KOA show degenerative and adaptive changes in the knee
72	components and muscles. ²⁻⁶ A previous study investigated the prevalence of increased
73	signal intensity around the iliotibial band (ITB) using magnetic resonance imaging. The
74	report was that approximately 75% of patients with KOA had increased signal intensity
75	on the lateral side of the knee joint, indicating inflammation or edema around the ITB. ⁷
76	However, what adaptive changes occur in the ITB and what factors are associated with
77	these changes remain unclear.
78	The mechanical and morphological properties of the ITB could change in
79	patients with KOA. Tateuchi et al. investigated ITB stiffness during one-leg standing in
80	healthy adults using ultrasound shear wave elastography. ⁸ They reported that the shear
81	elastic modulus of the ITB, which is an index of stiffness, increased during one-leg
82	standing postures with increased external knee adduction moment and angle. As greater
83	knee adduction moment and knee adduction angle are common in patients with KOA
84	during walking, ^{9,10} greater mechanical loading could also occur in the ITB during
85	walking. Additionally, the ITB is a passive tissue consisting mainly of type I collagen ¹¹
86	and serial elements of muscle, which can transmit muscle force. ¹² These features of the

87	ITB are structurally and functionally similar to those of the tendons. In addition, the
88	ITB could be subjected to a longitudinal force by the gluteus maximus and tensor
89	fasciae latae and mechanical loads during gait. ^{8,12} The tendon increases in stiffness and
90	size with repeated mechanical axial loading. ¹³ Given the structural and functional
91	similarity between the ITB and the tendon, and the similarity in the forces applied to
92	them, the thickness and stiffness of the ITB may be greater in patients with KOA owing
93	to excessive mechanical loading, as seen in tendons.
94	The lower limb movement, not only of the knee but also the hip movement,
95	changes in patients with KOA 9,10,14, and some of them may cause greater mechanical
96	stress on the ITB. ^{8,15} For example, greater knee adduction moment and angle
97	characterize the gait in these patients. ^{9,10} Moreover, many gait features such as greater
98	external hip adduction moment have been observed in patients with KOA. ¹⁴ However,
99	the ITB could withstand the increased mechanical stress resulting from the gait
100	characteristics of patients with KOA. For example, the ITB force reduces the
101	compression force in the medial knee compartment, ¹⁶ and the ITB is related to hip
102	abduction movements. ^{12,17} Thus, the knee and/or hip movement observed during gait in
103	patients with KOA could cause a greater mechanical load on the ITB, which could be

related to the ITB properties in patients with KOA. However, it is unclear which gait

- 105 features are associated with the ITB stiffness and thickness.
- 106 This study aimed to determine the differences in the ITB thickness and
- 107 stiffness between patients with KOA and older healthy individuals and clarify the
- 108 association of gait features with the ITB thickness and stiffness in patients with KOA.
- 109 We hypothesized that 1) the ITB stiffness and thickness would be greater in patients
- 110 with KOA compared with those in older healthy individuals and that 2) the ITB
- stiffness and thickness could be associated with knee adduction and hip adduction
- 112 moment during walking in patients with KOA.
- 113

114 **2. METHODS**

- 115 Type of study: Cross-sectional study
- 116 Level of evidence: III
- 117

118 2.1 Participants

- 119 Eighteen female patients with medial KOA and knee pain (KOA group) and 22 older
- 120 healthy female individuals without knee pain (control group) participated in the study.
- 121 We chose only female participants because they typically present with a higher

122	prevalence of KOA ^{1,18,19} . Both groups included individuals who lived independently
123	and were able to walk without a cane. The inclusion criteria for the KOA group were
124	knee pain and diagnosis of KOA with a Kellgren/Lawrence (K/L) grade of 2 or higher
125	by an orthopedic surgeon. When patients with KOA had bilateral KOA, we measured
126	the side with a more severe K/L grade. When the K/L grade was the same on both sides,
127	we considered the side with more severe pain. The inclusion criteria for the control
128	group were no history of knee pain lasting more than 3 months, no present pain while
129	walking or climbing stairs, and a range of knee flexion of $>130^{\circ}$. ²⁰⁻²² The side that met
130	all the inclusion criteria was evaluated in the control group (right side: 16 patients). The
131	exclusion criteria for both groups were rheumatoid arthritis, cardiovascular and
132	neurological diseases, history of lower extremity and back surgeries, and cognitive
133	decline hindering the comprehension of the informed consent procedure. In a previous
134	study, patients with ITB syndrome were assumed to have ITB stiffness that was greater
135	than one standard deviation than the general population. ²³ We hypothesized, as in the
136	previous study, that patients with KOA would have ITB stiffness that was greater by
137	more than one standard deviation for the following reasons. A previous study reported
138	that the shear modulus during one-leg standing was greater in conditions with
139	contralateral pelvic drop than in normal conditions. ¹⁵ Contralateral side pelvic drop is

140	often observed in patients with KOA during the stance phase of walking. In addition to
141	this increased load on the ITB, a heavier weight and varus knee deformity place a more
142	significant mechanical load on the patient's knee, and thus on the ITB, while walking. ²⁴
143	Thus, the ITB would be considerably more rigid in patients with KOA. Therefore, we
144	estimated the required sample size to be 17 for a two-sample t-test using a =0.05, 1-b
145	=0.8, and DZ =1.
146	However, to avoid underpowering owing to dropouts and lack of data, we recruited
147	more than 18 participants in each group. Before the start of the study, the study
148	procedures and goals were explained to all participants, and written informed consent
149	was obtained. The Ethics Committee of Kyoto University Graduate School and Faculty
150	of Medicine approved all procedures (R1647).
151	
152	2.2 Experimental procedure
153	The Knee Society Score (KSS) was used to assess knee joint function. The range of
154	knee flexion-extension was measured in increments of 1° in the supine position using a
155	two-arm goniometer (Sakai Medical Co., Ltd., Tokyo, Japan). ²⁵ Subsequently, the ITB
156	properties were evaluated using ultrasound. For patients with KOA, gait analysis at a

157 comfortable speed (Min-Max:0.83-1.40 m/s) was conducted using a three-dimensional
158 motion capture system.
159

- 160 2.3 Measured variables
- 161 2.3.1 KSS
- 162 Knee joint symptoms and function were evaluated in all participants using the KSS
- 163 2011 Japanese Edition.²⁶ The KSS symptom score consists of pain when walking, pain
- 164 when climbing stairs, and knee stiffness. The KSS symptom and function scores are
- 165 rated from 0 to 25 and 100, respectively. A score of 25 for the symptom score indicates
- 166 no knee joint symptoms, and a score of 100 for the function score indicates the highest
- 167 knee joint function.

168

169 2.4 Ultrasound

170 The participants rested in the supine position for at least 10 min before the

- 171 measurement. A 10° knee joint flexion and a neutral hip joint position were maintained
- using a towel, where the weight of the opposite lower limb was applied to avoid moving
- the measured limb (Figure 1). This position was determined with reference to a previous
- 174 study that measured the ITB stiffness at slight knee flexion.²⁷ Because slight knee

1/5	flexion can vary depending on the knee status of patients with KOA and this variation
176	can affect the shear wave velocity of the ITB, the knee angle should be consistent
177	between participants. Therefore, we measured ITB properties at 10° knee flexion, where
178	even patients with knee extension limitation could be evaluated. Additionally, the knee
179	angle suited our aim of determining the associations between the ITB shear wave
180	velocity and gait parameters because the mean knee angle was approximately $10-15^{\circ}$
181	during the stance phase. ^{28,29} The participants were instructed to relax as much as
182	possible. Ultrasound images were captured at the height of the proximal pole of the
183	patella. ^{8,15}

.....

• . 1

-

...

184

-

185 FIGURE 1

187	A 4–15-MHz linear transducer and an ultrasound machine (Aixplorer 12.2.0;
188	Knee-mode, SuperSonic Imagine, Axi-en-Provence, France) were used to evaluate the
189	mechanical and morphological properties of the ITB. As a surrogate measure for the
190	mechanical properties, the shear wave velocity of the ITB was calculated via shear wave
191	elastography at the following protocol parameters: penetration mode: 2 Hz, gain: 90%,
192	opacity: 100%, persistence: med, and smoothing: 5, 0–16.3 m/s. Since the machine
193	automatically determines the sampling rate depending on the size and depth of the
194	region of interest (ROI), the size and depth of the ROI were consistent in the preset
195	setting for all participants (size: approximately 2.5×1.0 cm, depth: approximately 0.5 -
196	1.5 cm). Before the measurement, on the line perpendicular to the thigh at the height of
197	the superior aspect of the patella, we identified the thickest portion of the ITB in the
198	transverse ultrasonic B-mode image and marked the skin at the site. After the procedure,
199	the probe was placed parallel to the ITB fibers and a color-mapping image was acquired
200	in the elastographic mode. Once a color-mapping image was recorded, the probe was
201	relocated. These procedures were repeated three times to obtain three color-mapping
202	images.
203	To quantify the shear wave velocity, we manually drew a Q-box on the ITB in

the ROI, excluding the adjacent soft tissues (Figure 2). The Axiplorer software can

205	automatically calculate the average Young's modulus in the Q-box using the following
206	equation: Young's modulus= $3\rho V^2$, where ρ is the tissue density, and V is the
207	propagation velocity of the shear wave. The shear wave velocity was calculated the
208	square root of the shear elastic modulus, which was calculated by dividing the value
209	computed automatically by the Axiplorer software by 3. ³⁰
210	As a proxy for morphological properties, the thicknesses of the ITB were
211	measured at the center and at both edges of the ROI on the B-mode image, which was
212	captured simultaneously via the elastographic image (Figure 2). This procedure was
213	conducted using Osirix MD (version 9.0; OsiriX Geneva, Switzerland). Although the
214	tissue thickness is usually measured in the transverse image, a previous study has shown
215	that the ITB thickness obtained in the longitudinal image showed high repeatability and
216	was not significantly different from that obtained in the transverse image. ^{31,32} The mean
217	values of the thickness and shear wave velocity from the three images were used for
218	further analysis.
219	Intraclass correlation coefficients [ICCs (1,k)], one-way random effects,
220	absolute agreement, and multiple measurements were calculated to confirm the intra-
221	session reproducibility of the ITB thickness and shear wave velocity. 33 The ICC (1,3)
222	values for the shear wave velocity and thickness were 0.991 and 0.926, respectively. In

- 223 addition, we measured the ITB thickness and shear wave velocity twice on two different
- days in seven healthy subjects. The ICC (1,1) for shear wave velocity and thickness
- were 0.761 and 0.864, respectively, which confirmed good inter-session
- **226** reproducibility.³³

- **228** FIGURE 2
- 229

230 2.5 Gait analysis among patients with KOA

- 231 In patients with KOA, comfortable walking was captured using a three-dimensional
- 232 motion analysis system (Vicon Nexus 2.7.1; Vicon Motion Systems Ltd., Oxford,
- England) consisting of eight cameras with a sampling frequency of 200 Hz and two

234	force plates with a sampling frequency of 1000 Hz (Kistler Japan Co., Ltd., Tokyo,
235	Japan). The marker data were processed with a 6-Hz fourth-order low-pass Butterworth
236	filter, and the ground reaction force data were processed with a 20-Hz fourth-order low-
237	pass Butterworth filter. A Vicon Plug-in-Gait full-body marker set was used. The
238	kinetics and kinematics of the knee and hip joints were calculated from the ground
239	reaction forces and marker position data. The knee angle and external moments of
240	flexion and adduction were calculated (flexion and adduction +, respectively). The knee
241	flexion and adduction moment were bimodal. The peak values of the knee flexion and
242	adduction moment were obtained. In addition, the time integral values of the positive
243	values of the knee flexion and adduction moment during the stance phase were
244	calculated. The maximum knee joint flexion angle and adduction angle during the first
245	half of the stance phase $(0-50\%)$ were extracted. The hip angles and external moments
246	of flexion and adduction were calculated (flexion and adduction +, respectively). We
247	also obtained the maximum value of the hip flexion moment, maximum value of the hip
248	extension moment, and peak value of the bimodal hip adduction moment and calculated
249	the time integrals of the positive values of the hip flexion moment and hip adduction
250	moment during the stance phase. In addition, the maximum hip flexion angle in the first
251	half of the stance phase, maximum hip extension angle in the second half of the stance

phase, and maximum hip adduction angle were extracted. The average values of thethree trials were used for further analyses.

254

255 2.6 Statistical analysis

256 SPSS version 27 (SPSS Japan Inc., Tokyo, Japan) was used. First, the Shapiro–Wilk257 test was used to check the normality of each index and showed that all indices were

258 normally distributed. Second, homogeneity of variance was assessed in each group

using Levene's test for physical characteristics (age, height, weight, body mass index

- [BMI], range of motion, and KSS), and ITB shear wave velocity, and ITB thickness. A
- two-sample t-test was performed when homogeneity of variance was observed;
- 262 otherwise, the Welch's t-test was performed. The effect size (ES) r was estimated for
- 263 each intergroup difference. Third, a simple regression analysis was performed in the
- KOA group, with the ITB thickness or shear wave velocity as the dependent variable
- and each gait parameter as the independent variable. The significance level was set at
- 266 5%.

267

268 **3. RESULTS**

269 **3.1** Characteristics of both groups

270	Table 1 shows the mean values \pm standard deviations of the physical characteristics and
271	knee joint function of the two groups. No differences were found in age, height, weight,
272	and BMI between the groups. However, the ranges of flexion and extension were
273	significantly smaller in the KOA group than in the control group. In addition, the KSS
274	symptom and function scores were significantly lower in the KOA group than in the
275	control group.
276	
277	3.2 Properties of the ITB
278	Figure 3 shows the shear wave velocity and thickness of the ITB. A two-sample t-test
278 279	Figure 3 shows the shear wave velocity and thickness of the ITB. A two-sample t-test was used to compare these properties. The shear wave velocity in the KOA group was
278 279 280	Figure 3 shows the shear wave velocity and thickness of the ITB. A two-sample t-test was used to compare these properties. The shear wave velocity in the KOA group was significantly higher than that in the control group (mean value: 11.3±1.0 m/s in the
278 279 280 281	Figure 3 shows the shear wave velocity and thickness of the ITB. A two-sample t-test was used to compare these properties. The shear wave velocity in the KOA group was significantly higher than that in the control group (mean value: 11.3±1.0 m/s in the KOA group and 10.0±1.8 m/s in the control group, p=0.010, ES=0.40). Meanwhile, the
278 279 280 281 282	Figure 3 shows the shear wave velocity and thickness of the ITB. A two-sample t-test was used to compare these properties. The shear wave velocity in the KOA group was significantly higher than that in the control group (mean value: 11.3±1.0 m/s in the KOA group and 10.0±1.8 m/s in the control group, p=0.010, ES=0.40). Meanwhile, the thickness did not significantly differ between the groups (mean value:2.1±0.3 mm in the

296 4. DISCUSSION

297	This study compared the stiffness and thickness of the ITB between patients with KOA
298	and healthy older adults to determine the mechanical and morphological properties of
299	their ITB. In addition, we investigated the gait parameters associated with each ITB
300	property in patients with KOA. To the best of our knowledge, this is the first study to
301	reveal that the ITB in patients with KOA was stiffer than that in healthy adults and that
302	the time integral values of knee adduction moment and the maximum value of the hip
303	flexion moment were associated with ITB stiffness in patients with KOA.
304	The greater ITB stiffness in patients with KOA partially supports our
305	hypothesis. Since no study has examined the mechanical properties of the ITB in
306	patients with KOA and the mechanism of the greater stiffness, our study could not fully
307	explain why only the mechanical properties of the ITB differed between the groups.
308	However, the ITB alterations are presumed to be similar to the adaptations to
309	mechanical loading in the tendon because the ITB is similar to the tendon. Both are
310	passive tissues that are primarily composed of type I collagen ¹¹ and have the ability to
311	transmit muscle forces. ¹² A previous study has reported that tendon stiffness tends to
312	increase more than the cross-sectional area owing to the mechanical loading from
313	training. ¹³ In particular, the cross-sectional area of the tendon did not increase owing to
314	training in individuals over the age of 60 years. ^{34,35} Furthermore, previous studies that

315	examined ITB stiffness using elastography have shown that ITB stiffness was enhanced
316	owing to mechanical loading in postures with increased knee adduction angle and
317	moment, which are common in patients with medial KOA. ^{8,15} Thus, patients with KOA
318	in this study may have had a greater mechanical load on the ITB during motion, such as
319	walking. These factors may have caused the difference only in the shear wave velocity
320	between the two groups.
321	ITB stiffness was related to hip and knee moments, but not to knee or hip
322	angle during walking. In particular, the time integral values of knee adduction moment
323	and the maximum value of the hip flexion moment were correlated with ITB stiffness,
324	which partially supported our hypothesis that the knee adduction moment and hip
325	adduction moment could be related to ITB stiffness. The knee adduction moment, an
326	index of medial knee contact force, could mainly be the mechanical load on the ITB
327	because the ITB decreased the force in the medial knee compartment. ^{16,36} Among the
328	knee adduction moment indices, the time integral values of knee adduction moment
329	approximates the total mechanical load applied to the ITB during the stance phase. A
330	previous study considered that the forces of the gluteus muscle and tensor fasciae latae
331	transmitted through the ITB might generate knee abduction force by creating a medially
332	directed force on the lateral aspect of the knee. ¹² Since this transmitted force may be

333	greater in patients with KOA who have a greater knee adduction moment, a greater
334	force may be added to the ITB against a greater knee adduction moment. In the first half
335	of the stance phase, the muscle forces of the hip extensors, such as the gluteus maximus
336	muscle, increase to resist an external hip flexion moment. ^{37,38} Considering that the force
337	tracts the ITB as a tendon of the gluteus maximus muscle, the greater force of the
338	gluteus maximus muscle could induce a mechanical load on the ITB. ¹² As mentioned
339	above, the ITB adapts to mechanical loading, similar to tendon tissue. A review article
340	reported that the greater the training load on the tendon tissue, the greater the increase in
341	tendon stiffness. ¹³ Given these points, we interpreted that patients with KOA with
342	greater time integral values of knee adduction moment and the maximum value of the
343	hip flexion moment had a stiffer ITB. However, we could not define the mechanism of
344	these relationships for the following reasons:1) because we measured the ITB properties
345	in the supine position but not during gait; 2) because the ITB stiffness in the supine
346	position could be influenced by other factors (e.g., muscle stiffness); and 3) because this
347	study had an observational design. Further validation is needed to reveal the causal
348	relationship between ITB stiffness and the knee adduction moment and the hip flexion
349	moment. This may be achieved through longitudinal studies with musculoskeletal
350	simulation that estimates the muscles and ITB forces.

351	There are limitations in the interpretation of our findings. First, the tissue
352	thickness affects the shear wave velocity when performing shear wave elastography in
353	thin tissues, such as the ITB. Although shear wave elastography is often used to
354	estimate the stiffness of the ITB, ^{8,15,23,27,32,39} the shear wave velocity may be slower in
355	tissues thinner than 25 mm because of the influence of guided waves, which diffuse and
356	reduce the propagation velocity. ⁴⁰ As the mean thicknesses of both groups were less
357	than 25mm, the shear wave velocity could have been influenced by guided waves.
358	However, because our analysis showed no significant difference in the ITB thickness
359	between the two groups, the higher shear wave velocity in the KOA group can be
360	interpreted as a greater ITB stiffness. Second, we could not measure ITB stiffness
361	during movement. if we measured ITB stiffness during walking, we could reveal the
362	relationship between the mechanical load and ITB stiffness during walking. However,
363	because the preliminary study confirmed that the shear wave velocity of the ITB
364	exceeded the upper limit of the shear wave elastography measurement in patients with
365	KOA even in the static standing position, we measured the shear wave velocity in the
366	supine position, but not in the standing position or during motion. Third, we measured
367	the ITB properties only at the height of the proximal pole of the patella. Because the
368	thickness and stiffness of the ITB vary by region, ^{39,41} the results may change if we

369	measure the properties at a different point. Finally, we did not confirm the knee status
370	via radiography, did not measure the gait data, and recruited some participants who had
371	knee pain on the unmeasured side in the control group. Therefore, the control group
372	might have included patients with asymptomatic KOA, and whether the association
373	between ITB stiffness and the gait properties is a characteristic of only female patients
374	with KOA remains unknown.
375	In summary, our study found that ITB stiffness, but not the ITB thickness,
376	was significantly higher in patients with KOA than in healthy adults. Furthermore, the
377	shear wave velocity of the ITB in patients with KOA was associated with the time
378	integral values of knee adduction moment and the maximum value of the hip flexion
379	moment during gait, suggesting that greater mechanical loading could cause stiffer
380	changes in the ITB in patients with KOA.
381	
382	ACKNOWLEDGMENTS
383	We would like to thank the study participants and specifically Ms. Kotono Kobayashi
384	from the Graduate School of Kyoto University, Mr. Katsuya Nobuhara and Mr. Takashi
385	Tachibana from Nobuhara Hospital, and Mr. Yasuyuki Ueda from Takarazuka Medical
386	University for their cooperation with the measurements.

TABLE 1 Demographic data

	KOA (n=18)	Control (n=22)	P value	ES
Age (years)	69.7±5.9	69.1±7.0	0.779 ^a	0.05
Height (cm)	155.6±6.1	153.8±5.3	0.332 ^a	0.16
Weight (kg)	55.9±9.7	51.2±8.8	0.117 ^a	0.25
BMI (kg/cm2)	23.0±3.1	21.6±3.6	0.217 ^a	0.20
Extension knee ROM (°)	-3.5±3.5	0.5±1.6	< 0.001 ^b	0.68
Flexion knee ROM (°)	141.7±11.6	155.5±7.4	<0.001 ^a	0.59
KSS Symptom (/25)	15.4±4.6	24.3±0.9	<0.001 b	0.88
KSS Function (/100)	75.6±16.5	97.2±3.9	<0.001 ^b	0.78
KL Grade (n)	KL2:7, 3:7, 4:4	-	-	-

388 Bold font indicates statistical significance. ^aTwo-sample t-test; ^bWelch's t-test; KOA:

389knee osteoarthritis, BMI: body mass index, ROM: range of motion, KSS: Knee Society

390 Score, KL: Kellgren/Lawrence

Hip moment							Hip angle [°]		
HFM-Max	HEM-Max	HFM-Impulse	HAM-peak1	HAM-peak2	HAM-Impulse	LIEA Mor			
[Nm]	[Nm]	[Nm · s]	[Nm]	[Nm]	[Nm · s]	нга-мах	HEA-Max	паа-мах	
48.2 ± 18.0	-41.1 ± 20.2	9.1 ± 6.0	52.4 ± 16.7	44.3 ± 24.1	41.2 ± 16.1	29.6 ± 6.0	-16.1 ± 4.4	16.2 ± 12.5	
Knee moment Knee angle [°]									
KFM-Peak1	KFM-Peak2	KFM-Impulse	KAM-peak1	KAM-peak2	KAM-Impulse				
[Nm]	[Nm]	[Nm · s]	[Nm]	[Nm]	[Nm · s]	KFA-Max	KAA-Max		
21.9 ± 17.7	18.7 ± 8.8	12.5 ± 10.1	31.9 ± 11.2	26.6 ± 10.7	25.0 ± 10.0	14.9 ± 9.2	7.2 ± 6.6		

TABLE 2 Gait parameters in the KOA group

KOA: knee osteoarthritis, HFM-Max: maximum hip flexion moment, HEM-Max: maximum hip extension moment, HFM-Impulse: time integral of the hip adduction moment, HAM-Peak1: first peak of the hip adduction moment, HAM-Peak2: second peak of the hip adduction moment, HAM-Impulse: time integral of the hip adduction moment, HFA-Max: maximum hip flexion angle in the first half of the stance phase, HEA-Max: maximum hip extension angle in the second half of the stance phase, HAA-Max: maximum hip adduction angle, KFM-Peak1: first peak of the knee flexion moment, KFM-Peak2: second peak of the knee flexion moment, KFM-Impulse: time integral of the knee flexion moment, KAM-Peak1: first peak of the knee adduction moment, KAM-Peak2: second peak of the knee adduction moment, KAM-Peak2: second peak of the knee flexion angle in the first half of the stance phase, KAA-Max: maximum adduction angle in the first half of the stance phase. Positive values of all parameters indicated flexion and adduction (mean ± standard deviation).

		indepen	dent variable	S	Simple Linear regression					
dependent variables	joint	moment/angle	direction	variable type	В	95%CI	β	р		
			flexion	maximal	0.027	0.002 ~ 0.052	0.498	0.036		
			extension	maximal	-0.011	-0.036 ~ 0.014	-0.224	0.373		
		momont	flexion	impulse	0.048	-0.124 ~ 0.220	0.146	0.563		
		moment		peak1	0.025	-0.003 ~ 0.053	0.422	0.081		
	Hip -		adduction	peak2	0.010	-0.011 ~ 0.031	0.236	0.346		
				impulse	0.052	-0.007 ~ 0.111	0.426	0.078		
		angle	flexion	maximal	-0.001	-0.088 ~ 0.086	-0.005	0.983		
Sheer weye velocity			extension	maximal	0.048	-0.066 ~ 0.162	0.218	0.384		
Shear wave velocity			adduction	maximal	0.021	-0.019 ~ 0.061	0.266	0.286		
				peak1	-0.003	-0.032 ~ 0.026	-0.057	0.822		
			flexion	peak2	0.002	-0.056 ~ 0.061	0.022	0.932		
		momont		impulse	0.027	-0.075 ~ 0.129	0.137	0.587		
	Knee	moment		peak1	0.028	-0.016 ~ 0.072	0.322	0.193		
			adduction	peak2	0.029	-0.017 ~ 0.075	0.316	0.201		
				impulse	0.100	0.010 ~ 0.191	0.507	0.032		
				angle	flexion	maximal	-0.019	-0.074 ~ 0.037	-0.174	0.489

Table3. Liner regressions with the ITB shear wave velocity

	adductio	on maximal	-0.024	-0.102 ~ 0.053	-0.164	0.516
Bold font indicates a s	statistically significant regression	. B: partial coeffi	cient; CI: confi	dence interval; β: sta	andardized part	tial coefficient;

p: p-value.

dan an dan (an niablas	independent variables					Simple Linear regression			
dependent variables	joint	moment/angle	direction	variable type	В	95%CI	β	р	
			flexion	maximal	0.003	-0.007 ~ 0.012	0.144	0.596	
			extension	maximal	0.006	-0.002 ~ 0.014	0.351	0.153	
			flexion	impulse	0.020	-0.038 ~ 0.079	0.181	0.472	
		moment		peak1	-0.003	-0.013 ~ 0.008	-0.133	0.598	
	Hip		adduction	peak2	-0.002	-0.009 ~ 0.005	-0.135	0.594	
				impulse	-0.001	-0.024 ~ 0.021	-0.036	0.888	
			flexion	maximal	-0.015	-0.044 ~ 0.013	-0.275	0.269	
		angle	extension	maximal	0.010	-0.030 ~ 0.050	0.132	0.601	
Thickness			adduction	maximal	0.002	-0.012 ~ 0.016	0.083	0.743	
				peak1	-0.001	-0.011 ~ 0.009	-0.033	0.896	
			flexion	peak2	-0.006	-0.026 ~ 0.014	-0.165	0.514	
				impulse	0.004	-0.031 ~ 0.039	0.057	0.822	
	Vara	moment		peak1	-0.001	-0.017 ~ 0.015	-0.027	0.915	
	Knee		adduction	peak2	-0.001	-0.018 ~ 0.015	-0.039	0.877	
				impulse	0.005	-0.031 ~ 0.041	0.076	0.766	
		anala	flexion	maximal	0.008	-0.010 ~ 0.027	0.229	0.361	
		angle	adduction	maximal	0.019	-0.006 ~ 0.044	0.381	0.119	

TABLE 4. Liner regressions with the iliotibial band thickness

B: partial coefficient; CI: confidence interval; β : standardized partial coefficient; p: p-value.

Figure legends

FIGURE 1 Measurement posture. Before the measurement, we drew a line perpendicular to the thigh at the height of the superior aspect of the patella. After the thickest portion of the ITB on the line was identified in the transverse ultrasonic B-mode image, the probe was placed parallel to the ITB fibers. The middle portion of the probe was maintained in a line. Next, we marked the probe position (square in the left figure) to define the measurement site. The shear wave velocity and thickness were measured at this location. ITB: iliotibial band

FIGURE 2 Representative ultrasound image obtained on shear wave elastography. The top image is a color map of the shear wave velocity calculated on elastography, and the bottom image is a B-mode image obtained simultaneously with the elastographic image. A Q-box was drawn on the ITB to calculate the average Young's modulus. The length of the yellow line in the B-mode image is measured as the thickness of the ITB. ITB: iliotibial band

FIGURE 3 Comparison of the ITB properties. The shear wave velocity was higher in the KOA group than in the control group by using a two-sample t-test(a); meanwhile, no difference was found in the thickness (b). The upper and lower whiskers represent the maximum and minimum values, respectively. The upper and lower ends of the box represent

the upper and lower quartiles, respectively, and the bars in the box represent the median

value. ITB: iliotibial band, KOA: knee osteoarthritis, ES: effect size

Reference

- Muraki S, Oka H, Akune T, et al. 2009. Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population-based cohorts: the ROAD study. Osteoarthritis Cartilage 17:1137-1143.
- Perry TA, Parkes MJ, Hodgson RJ, et al. 2020. Association between Bone marrow lesions & synovitis and symptoms in symptomatic knee osteoarthritis. Osteoarthritis Cartilage 28:316-323.
- 3. Campbell TM, McGonagle D. 2021. Flexion contracture is a risk factor for knee osteoarthritis incidence, progression and earlier arthroplasty: Data from the Osteoarthritis Initiative. Ann Phys Rehabil Med 64:101439.
- 4. Yamauchi K, Suzuki S, Kato C, et al. 2020. Atrophy of individual thigh muscles measured by MRI in older adults with knee osteoarthritis: A cross-sectional study. Ann Phys Rehabil Med 63:38-45.
- 5. Amin S, LaValley MP, Guermazi A, et al. 2005. The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum 52:3152-3159.
- Emmanuel K, Quinn E, Niu J, et al. 2016. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 24:262-269.
- Vasilevska V, Szeimies U, Stabler A. 2009. Magnetic resonance imaging signs of iliotibial band friction in patients with isolated medial compartment osteoarthritis of the knee. Skeletal Radiol 38:871-875.
- 8. Tateuchi H, Shiratori S, Ichihashi N. 2015. The effect of angle and moment of the hip and knee joint on iliotibial band hardness. Gait Posture 41:522-528.
- Chang AH, Moisio KC, Chmiel JS, et al. 2015. External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthritis Cartilage 23:1099-1106.
- 10. Chang AH, Chmiel JS, Moisio KC, et al. 2013. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis. Osteoarthritis Cartilage 21:1668-

1673.

- Hammer N, Huster D, Boldt A, et al. 2016. A preliminary technical study on sodium dodecyl sulfate-induced changes of the nano-structural and macro-mechanical properties in human iliotibial tract specimens. J Mech Behav Biomed Mater 61:164-173.
- Hutchinson LA, Lichtwark GA, Willy RW, et al. 2022. The Iliotibial Band: A Complex Structure with Versatile Functions. Sports Med 52:995-1008.
- Bohm S, Mersmann F, Arampatzis A. 2015. Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open 1:7.
- 14. Huang SC, Wei IP, Chien HL, et al. 2008. Effects of severity of degeneration on gait patterns in patients with medial knee osteoarthritis. Med Eng Phys 30:997-1003.
- Tateuchi H, Shiratori S, Ichihashi N. 2016. The effect of three-dimensional postural change on shear elastic modulus of the iliotibial band. J Electromyogr Kinesiol 28:137-142.
- Gadikota HR, Kikuta S, Qi W, et al. 2013. Effect of increased iliotibial band load on tibiofemoral kinematics and force distributions: a direct measurement in cadaveric knees. J Orthop Sports Phys Ther 43:478-485.
- Vieira EL, Vieira EA, da Silva RT, et al. 2007. An anatomic study of the iliotibial tract. Arthroscopy 23:269-274.
- Muraki S, Akune T, Oka H, et al. 2012. Incidence and risk factors for radiographic knee osteoarthritis and knee pain in Japanese men and women: a longitudinal populationbased cohort study. Arthritis Rheum 64:1447-1456.
- 19. Prieto-Alhambra D, Judge A, Javaid MK, et al. 2014. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis 73:1659-1664.
- Holla JF, van der Leeden M, Roorda LD, et al. 2012. Diagnostic accuracy of range of motion measurements in early symptomatic hip and/or knee osteoarthritis. Arthritis Care Res (Hoboken) 64:59-65.
- 21. Varbakken K, Loras H, Nilsson KG, et al. 2019. Relative difference in muscle strength between patients with knee osteoarthritis and healthy controls when tested bilaterally and joint-inclusive: an exploratory cross-sectional study. BMC Musculoskelet Disord 20:593.
- 22. Yagi M, Taniguchi M, Tateuchi H, et al. 2022. Relationship between individual forces of each quadriceps head during low-load knee extension and cartilage thickness and

knee pain in women with knee osteoarthritis. Clin Biomech (Bristol, Avon) 91:105546.

- 23. Friede MC, Klauser A, Fink C, et al. 2020. Stiffness of the iliotibial band and associated muscles in runner's knee: Assessing the effects of physiotherapy through ultrasound shear wave elastography. Phys Ther Sport 45:126-134.
- 24. Meireles S, De Groote F, Van Rossom S, et al. 2017. Differences in knee adduction moment between healthy subjects and patients with osteoarthritis depend on the knee axis definition. Gait Posture 53:104-109.
- 25. Peters PG, Herbenick MA, Anloague PA, et al. 2011. Knee range of motion: reliability and agreement of 3 measurement methods. Am J Orthop (Belle Mead NJ) 40:E249-252.
- Taniguchi N, Matsuda S, Kawaguchi T, et al. 2015. The KSS 2011 reflects symptoms, physical activities, and radiographic grades in a Japanese population. Clin Orthop Relat Res 473:70-75.
- 27. Besomi M, Salomoni SE, Hug F, et al. 2021. Exploration of shear wave elastography measures of the iliotibial band during different tasks in pain-free runners. Phys Ther Sport 50:121-129.
- 28. Oberg T, Karsznia A, Oberg K. 1994. Joint angle parameters in gait: reference data for normal subjects, 10-79 years of age. J Rehabil Res Dev 31:199-213.
- Rutherford DJ, Hubley-Kozey CL, Stanish WD. 2012. Knee effusion affects knee mechanics and muscle activity during gait in individuals with knee osteoarthritis. Osteoarthritis Cartilage 20:974-981.
- Lacourpaille L, Hug F, Bouillard K, et al. 2012. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus. Physiol Meas 33:N19-28.
- Gyaran IA, Spiezia F, Hudson Z, et al. 2011. Sonographic measurement of iliotibial band thickness: an observational study in healthy adult volunteers. Knee Surg Sports Traumatol Arthrosc 19:458-461.
- 32. Besomi M, Nava GTA, van den Hoorn W, et al. 2021. Influence of transducer orientation on shear wave velocity measurements of the iliotibial band. J Biomech 120:110346.
- Koo TK, Li MY. 2016. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 15:155-163.
- 34. Reeves ND, Maganaris CN, Narici MV. 2003. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol 548:971-981.
- 35. Docking SI, Cook J. 2019. How do tendons adapt? Going beyond tissue responses to understand positive adaptation and pathology development: A narrative review. Journal

of Musculoskeletal & Neuronal Interactions 19:300-310.

- Kanamiya T, Whiteside LA, Nakamura T, et al. 2002. Ranawat Award paper. Effect of selective lateral ligament release on stability in knee arthroplasty. Clin Orthop Relat Res:24-31.
- 37. Arnold AS, Anderson FC, Pandy MG, et al. 2005. Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. J Biomech 38:2181-2189.
- 38. Correa TA, Crossley KM, Kim HJ, et al. 2010. Contributions of individual muscles to hip joint contact force in normal walking. J Biomech 43:1618-1622.
- 39. Otsuka S, Shan X, Yoshida K, et al. 2020. Site dependent elastic property of human iliotibial band and the effect of hip and knee joint angle configuration. J Biomech 109:109919.
- 40. Brum J, Bernal M, Gennisson JL, et al. 2014. In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis. Phys Med Biol 59:505-523.
- 41. Zwirner J, Babian C, Ondruschka B, et al. 2019. Tensile properties of the human iliotibial tract depend on height and weight. Med Eng Phys 69:85-91.