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1 Introduction

Moving mirrors [1, 2] have led to interesting and tractable classes of time-dependent back-
grounds in quantum field theories (QFTs). A moving mirror model is described by a QFT
defined on a spacetime Σ with a time-dependent boundary ∂Σ, which is identified with the
mirror trajectory as depicted in figure 1. When conformal field theories (CFTs) are consid-
ered, we can impose boundary conformal invariance on the mirror trajectory, leading to a
boundary CFT (BCFT) [3]. Until now, lots of efforts have particularly been made for apply-
ing moving mirrors to modeling Hawking radiation emanating from black holes [4], see e.g. [5–
17]. However, moving mirrors have also been subject to studies of the (dynamical) Casimir
effect [18–21], cosmological expansion [22–24], entanglement harvesting [25, 26], as well as
quantum energy inequalities [27]. Experimental setups involving moving mirrors have, for in-
stance, been discussed in [28]. The mini-cosmology experiment focusing on dynamical chiral
edge states in a quantum Hall system [29] is also closely related to moving mirror models.

Recently, gravity duals of moving mirrors in two-dimensional CFTs have been con-
structed in [15, 16] by employing the AdS/BCFT correspondence [30–32], which is an
extension of the AdS/CFT duality [33] to the case where the CFT is defined on a man-
ifold with a boundary. On the gravity side, the mirror trajectory is dual to a so-called
end-of-the-world (EOW) brane that extends into the AdS bulk spacetime. We can calculate
entanglement entropy in a geometrical way by using the dual gravity solutions [34–36].
This allows to derive the Page curve [37, 38] for the entanglement entropy of Hawking
radiation, which is a sign of unitary dynamics of black hole evaporation. In this example,
the EOW brane takes a characteristic profile which is dual to black hole evaporation in
two-dimensional gravity via brane-world holography [39–41] and the island proposal [42–44].
Other quantum informational quantities are also analyzed recently in moving mirror se-
tups [45–47]. Another scenario aiming at restoring unitary dynamics in a global black hole
spacetime is given by the black hole final state proposal [48]. In [49], it has recently been
shown that the evolution of pseudo entropy [50] resembles the Page curve when a partially
spacelike mirror profile acts as a final state projection.

Motivated by these developments, the main goal of the present paper is to extensively
study a whole class of moving mirrors in two-dimensional CFTs, namely, going beyond
those which have been motivated for modeling Hawking radiation, both from conformal
field theoretic and holographic perspectives. Focusing on the causal behavior at late times
and assuming that there is only a single mirror, we separate the moving mirror models into
four different classes named type A, B, C, and type D. As will be seen, models in each of
the classes show characteristic properties for the energy stress tensor and entanglement
entropy. Moreover, we present the corresponding gravity duals based on the AdS/BCFT
correspondence. Especially, by studying various types of mirror setups, we observe a peculiar
behavior of the dual EOW branes when the mirror trajectory approaches a lightlike one.
Though, at first sight, the gravity duals look puzzling for certain types, we are able to work
out a reasonable interpretation in general.

The remainder of the paper is organized as follows. In section 2, we first discuss the
field theory description of moving mirrors in two-dimensional CFTs. We then group various
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Figure 1. A moving mirror (green curve), being the boundary of the quantum system (red line)
under consideration, accelerates to the left while approaching the null line. This generates radiation
in form of right moving quanta (red, wiggly arrows).

mirror profiles into four classes, where each type is further divided into three subclasses.
In section 3, we explain the holographic description of moving mirrors via the AdS/BCFT
correspondence. We also present the calculation of entanglement entropy. In section 4,
we study the gravity dual for each mirror type by especially focusing on the profile of the
EOW brane. In section 5, we summarize the main results of this paper. In appendix A, we
present an analysis of a timelike-spacelike-timelike moving mirror model. In appendix B,
having a closer look at the path integral formalism, we give an argument explaining why our
conformal map method can successfully reproduce entanglement entropy and why analogous
computations give pseudo entropy [50] in general.

2 Classifying moving mirrors

In the following, we explore various moving mirrors in two-dimensional spacetime. Par-
ticularly, we restrict our attention to moving mirrors that satisfy the following simple
criteria.

1. Mirror trajectory starts from the past timelike infinity, i− (i.e., t = −∞).

2. Mirror trajectory is continuous (i.e., no piecewise trajectories).

3. Mirror cannot move faster than the speed of light (i.e., no spacelike trajectories).

As a result of these assumptions, we can distinguish various moving mirrors by inspecting
their endpoints. In this section, it is shown that all moving mirrors under the conditions
listed above can be classified into four basic types whose endpoints are given by (A) future
timelike infinity i+, (B) right future null infinity I+

R , (C) left future null infinity I+
L , and

(D) a termination point in bulk spacetime.1 By zooming into the late-time regime, we find
1In the classification scheme above, we have ignored spacelike mirrors because the trajectory of any

physical object cannot move faster than the speed of light. However, it is possible that we interpret the
spacelike mirror as a projective measurement as discussed in [49, 51–53]. Motivated by this possibility, we
study in appendix A an example where the mirror is initially timelike and becomes spacelike afterwards.
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Figure 2. Minkowski spacetime with a static mirror located at x = 0.

that the way of approaching the endpoints for each type of moving mirror also plays a vital
role. According to the late-time behavior of the corresponding mapping function near the
endpoint, we further subdivide these classes into three subclasses by adding the subscripts
+, 0, and −.2

2.1 Four types of holographic moving mirrors

We are interested in studying a CFT2 with a moving mirror. Considering a two-dimensional
spacetime defined by

ds2 = −dt2 + dx2 = −dudv , with u = t− x, v = t+ x , (2.1)

we assume that the trajectory of the moving mirror is given by x = Z(t). For example, the
simplest trajectory is the static mirror case:

x = Z(t) = 0 . (2.2)

This is nothing but the standard setup of BCFT2 where the boundary is located at x = 0.
Although there are infinitely many trajectories for moving mirrors, we do not need to deal
with all of them one by one. Instead, we can map the original configuration to the simple
setup of a BCFT2 with a static mirror by employing conformal transformations.

We start from a vacuum state with vanishing energy stress tensor Tuu = Tvv = Tuv = 0
in a two-dimensional flat spacetime with

ds2 = −dt̃2 + dx̃2 = −dṽdũ , ũ = t̃− x̃ , ṽ = t̃+ x̃ , (2.3)

where ṽ, ũ denote advanced and retarded (null) coordinates, respectively. The static mirror
as the boundary is a timelike straight line located at x̃ = 0, i.e., ũ = ṽ. We are interested
in studying various mirrors defined in the physical two-dimensional spacetime described in

2The precise definitions of each subclasses are given in section 2.2.1 and summarized in tables 2 and 3.
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Figure 3. Various trajectories for different types of simple moving mirrors associated with the
mapping function p(u).

terms of the coordinates (t, x) given in eq. (2.1). Assuming that the coordinates are related
by a chiral conformal transformation as follows

ũ = p(u) , ṽ = q(v) = v , (2.4)

one can also map the static mirror with ũ = ṽ to a moving mirror at x = Z(t) by using the
function

v = p(u) , or

t(u) = p(u)+u
2 ,

x(u) = Z(u) = p(u)−u
2 .

(2.5)

It is straightforward to find that the line element on the moving mirror reduces to

ds2∣∣
Mirror = −(dt(u))2 + (dx(u))2 = −p′(u)du2 = −p′(u)

( 2
p′(u) + 1

)2
dt2 , (2.6)

which simply implies that the moving mirror is timelike or spacelike when p′(u) > 0 or
p′(u) < 0, respectively. We remark that the mirror is null when either p′(u) = 0 or
p′(u) → ∞, where the velocity of the mirror is determined by p′(u). In the main body
of this paper, the mirror velocity is assumed to be not exceeding the speed of light, i.e.,
timelike or null moving mirrors with p′(u) ≥ 0. Due to the importance and specialty of the
zero point and divergence of p′(u), we call a trajectory function normal if there is no zero
point or divergence.

We point out that we need to distinguish the two sides of the moving mirror since we
only identify one of them as the physical region. We call the right-hand side of the moving
mirror the physical spacetime. In figure 2, we show the trajectory of a static mirror in terms
of the coordinates (t, x), where the pink region represents the physical spacetime with the
static mirror as the boundary. We also depict the static mirror in the Penrose diagram of
Minkowski spacetime for later comparison. For asymptotic regions of Minkowski spacetime
whose Penrose diagram is shown in figure 2, we refer to i+, i−, i0 as future timelike infinity,

– 4 –
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Classes of moving mirrors
Class Trajectory Criteria Range of v = p(u)
Type A
(timelike) mirror

i− → i+ u ∈ [−∞,+∞] v ∈ [−∞,+∞]

Type B
(escaping) mirror

i− → I+
L u ∈ [−∞,+∞]

vend = lim
u→∞

p(u)
→ p′(∞) = 0

v ∈ [−∞, vend]

Type C
(chasing) mirror

i− → I+
R u ∈ [−∞, uend]

p(uend) = +∞
→ p′(uend) = +∞

v ∈ [−∞,+∞]

Type D
(terminated) mirror

i− → N u ∈ [−∞, uend]
p(uend) = vend
p′(uend) = +∞/0

v ∈ [−∞, vend]

Table 1. An overview of key features related to moving mirrors of four distinct types.

-10 -5 0 5 10 15
-10

-5

0

5

10

15

Figure 4. Type A mirrors with differently chosen pA(u) as introduced in eq. (2.14). The three
subclasses type A+, A0, A− are defined in table 2. Left: shown are different types of conformal
mapping functions with n = 2, 1, 1

2 , respectively, see also table 2. Right: corresponding trajectories
of moving mirrors are shown in a Penrose diagram. For both plots, we have chosen β = 1 = u0.

past timelike infinity, spatial infinity, respectively. On the other hand, the null boundaries
are labeled by I± called future/past null infinity, respectively. According to the position of
the mirror endpoints, we classify all simple mirrors, which satisfy the assumptions listed
before, into four basic types. See figure 3 for some characteristic trajectories and table 1
for a summary of the main properties. Taking into account the late time behavior, we can
further distinguish between three subclasses for each type, as we discuss below.

Type A: timelike mirrors. The first type is the timelike moving mirror, as shown in
figure 4. As we have explained, in flat two-dimensional spacetime (2.1), moving mirrors
can be analyzed by employing a conformal transformation in eq. (2.4), assuming that the
state at t → −∞ is the vacuum state. The properties of moving mirrors are completely

– 5 –
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Figure 5. Trajectories of type A mirrors with a constant velocity vm.

determined by the function p(u). For example, the static mirror is defined by setting

p(u) = u , or Z(t) = 0 . (2.7)

For the kink mirror, see [16] for more details, the mapping function p(u) is given by

p(u) = −β log(1 + e−u/β) + β log(1 + e(u−u0)/β) . (2.8)

The static mirror, but also the kink mirror, is always timelike, i.e., p′(u) = 1 > 0. Fur-
thermore, its trajectory extends from the past timelike infinity i− to the future timelike
infinity i+. In other words, the trajectories are defined for u ∈ [−∞,+∞]. Including the
simplest static mirror, all moving mirrors with these features shall be of type A. These
trajectories can also be associated with a massive particle moving in Minkowski spacetime.
The diagnostic indicators for type A are given by

• u ∈ [−∞,+∞],

• 0 < p′(u) <∞.

We do not need to impose the extra constraint v ∈ [−∞,+∞]. Combining these two
conditions, we automatically arrive at

v
∣∣
u=+∞ = lim

u→∞
p(u) = +∞ (2.9)

due to the absence of a zero point for p′(u).3
The endpoints of type A moving mirrors always approach the future timelike infinity

with u =∞, v =∞.
3This limit cannot have a finite value, because if this limit exists, we can apply L’Hôpital’s rule,

lim
u→∞

p(u) = lim
u→∞

eup(u)
eu = lim

u→∞
(p(u) + p′(u)), to arrive at lim

u→∞
p′(u) = 0.
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Figure 6. Type B mirrors with vend = 0. The three types B+, B0 and B− are classified in table 2.
Left: different conformal mapping functions pB(u) as defined in eq. (2.18) with fixing β = 1 = u0
and taking n = 2, 1, 1

2 , see also table 2. Right: the corresponding trajectories of moving mirrors
shown in a Penrose diagram.

Several moving mirrors of this type are shown in figure 5, where we have plotted
timelike moving mirrors with a constant velocity vm. The corresponding mapping functions
are given by

p(u) = 1 + vm
1− vm

u , x = Z(t) = vmt , with vm ∈ (−1, 1) . (2.10)

The derivative p′(u) determines the velocity of the mirrors, i.e.,

p′(u) = 1 + vm
1− vm

. (2.11)

Most of the cases we explore later do not have a constant velocity. We can define a time
dependent velocity

Z ′(t) = vm(t) ≡ p′(u)− 1
p′(u) + 1 , (2.12)

where Z(t) defined in eq. (2.5) describes the mirror trajectory.

Type B: escaping mirrors. Obviously, not all moving mirrors would approach the
future timelike infinity, i+. If the mirror can reach the speed of light, it would be able
to arrive at the null future infinity. We shall define moving mirrors starting from i− and
ranging to the future null infinity I+

L , I+
R to be of type B, C respectively. Let us first consider

the case with endpoints at v = vend = lim
u→∞

p(u) on I+
L . From the viewpoint of a physical

observer, the dynamical mirror is moving away from the observer. We, therefore, call these
type B escaping mirrors. Another distinguishable feature of type B is that the mirror
velocity approaches lim

u→∞
vm → −1 due to lim

u→∞
p′(u) = 0. As a result, we can summarize

the necessary criteria for type B in terms of the mapping function p(u) as follows

• u ∈ [−∞,+∞] , p′(u) ∈ [0,+∞),

• vend = lim
u→∞

p(u) (→ lim
u→∞

p′(u) = 0).

Some characteristic escaping mirrors are shown in figure 6.
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Figure 7. Type C mirrors with uend = 0. Left: three different types of conformal mapping functions
pC(u) as defined in eq. (4.5) with n = 2, 1, 1

2 , see also table 3. Right: corresponding trajectories for
type C+, C0, C− mirrors. The three subclasses are given in table 3.

Type C: chasing mirrors. Similar to type B, the moving mirror could be asymptotically
lightlike but arrive on the right future null infinity. We can locate the endpoint of the
trajectory at u = uend so that p(uend) → +∞, where the velocity of the moving mirror
reaches the speed of light. In contrast to type B, this new type approaches the positive
speed of light, i.e., vm → +1 with p′(u)→ +∞. Since in some sense the mirror is chasing
the physical observer, we shall call these moving mirrors, which start from i− and end at
I+

R , type C chasing mirrors. Analogous to the escaping mirror, the criteria for type C read4

• u ∈ [−∞, uend] , p′(u) > 0,

• p(uend) = +∞ (→ p′(uend) = +∞).

Some characteristic chasing mirrors are shown in figure 7.

Type D: terminated mirrors. By now, we have explored all possible mirrors moving
from past infinity i− to future infinity, i+ or I+. Although we will not discuss piecewise
trajectories in this paper, another possibility is that the mirror terminates at a finite
time, i.e., the endpoint is a finitely valued spacetime point denoted by u = uend and
v = vend = p(uend). The corresponding criteria for type D mirrors thus read

• u ∈ [−∞, uend] , p′(u) > 0,

• p(uend) = vend , (p′(uend) = 0 for D+, p′(uend) =∞ for D−).

Here, we are mainly interested in mirror trajectories truncating at a null point, i.e., a
spacetime point where the velocity of the mirror exactly reaches the speed of light. Even
though a massive object cannot reach the speed of light, this setup is motivated by a
process, where a timelike boundary changes into a spacelike boundary in a CFT and the
transition point becomes lightlike. Refer to appendix A for a detailed analysis of such

4The condition p′(uend) = +∞ is implied by p(uend) = +∞, since we have p(uend)−p(u1) =
∫ uend
u1

p′(u)du.
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Figure 8. Type D mirrors. The three types D+, D0, and D− are distinguished in table 3. Left:
corresponding conformal mapping functions pD(u). The simple type D0 represents a part of the
static case, and the functions pD(u) for D± are taken as defined in eqs. (4.26) and (4.31) with n = 2
and n = 1

2 , respectively, see also table 3. Right: corresponding trajectories of moving mirrors in a
Penrose diagram.

a model. The spacelike boundary is physically meaningful because the future and past
spacelike boundaries can be interpreted as a projection onto a product state and preparation
of a direct product state, respectively.5

By regarding the spacelike boundary as a final state projection on the black hole
singularity and the timelike boundary as a mirror that generates Hawking radiation, we
may expect that the black hole evaporation geometry can be modeled by such a BCFT
model, thus resembling the black hole final state projection scenario [48, 49].

From the viewpoint of holography, see section 4.4, we can interpret this as the natural
endpoint of the mirror due to the infinite energy excitation. If one considers the termination
of the mirror to be happening at a finite point with a velocity less than the speed of light,
this can always be obtained by cutting the mirror trajectories in types A, B, C at a finite
time, leading to type D0. Similarly, as for the types B and C, we can further distinguish
the cases with vm = +1 (p′(uend) =∞) and vm = −1 (p′(uend) = 0) by identifying them as
type D− and type D+, respectively. Trajectories for the three different types of terminated
mirrors are shown in figure 8. The null points for the type D± mirror appear in the
timelike-spacelike-timelike mirror model extensively discussed in appendix A.

In summary, we have figured out the properties and criteria of four different types of
moving mirrors, as summarized in table 1. The differences between these are reflected in
the mapping function p(u) as well as in their trajectories shown in terms of the original
spacetime coordinates (t, x), see left panel of figure 3, and also in the global Penrose diagram
as depicted in the right panel of figure 3.

5Note that the conformal boundary condition at a given time, i.e., the boundary state, can be identified
with a state without any real space entanglement [54].
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Figure 9. The corresponding stress tensors associated with conformal mapping functions pA(u),
pB(u), pC(u), and pD(u). The red, black, and blue curves denote the cases with n = 2, n = 1, and
n = 1

2 , respectively. The dashed purple line represents the position of u = uend. Here, we have
chosen c = 24π.

2.2 Subclassification of moving mirrors

Because of the nontrivial conformal transformation in eq. (2.4), there is a non-zero energy
flux in the original spacetime with a moving mirror. As a result, one can mimic various
dynamical spacetime models by using different mirror profiles [15, 16]. In general, the
non-zero stress tensor is given by the Schwarzian derivative, namely,

Tuu =
(
dũ

du

)2
Tũũ + 1

2π
c

12{ũ, u} = c

24π

(
3
2

(
p′′(u)
p′(u)

)2
− p′′′(u)

p′(u)

)
, Tvv = Tuv = 0 ,

(2.13)
where c denotes the central charge of the CFT we are interested in. It is clear that the
non-vanishing energy flux is completely determined by the mapping function p(u), i.e., by
the trajectory of the mirror. The endpoint of the mirror cannot determine the feature of
many physical quantities in the corresponding system, e.g., the energy flux and entanglement
entropy. In order to describe the underlying dynamics, especially at late times, we shall
consider three subclasses for each mirror type, namely, by distinguishing the leading behavior
of the mapping function p(u) near the endpoint. We show later that this classification helps
us capture the time dependence of physical quantities at late times.
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2.2.1 Three subclasses
As a warm-up, let us first consider a simple generalization of the kink mirror by taking a
series expansion of a family of mapping functions,

pA(u) = −β log(1 + e−u/β) + β
(
log(eu0/β + eu/β)

)n
, with n > 0, (2.14)

which is related to the kink mirror case in eq. (2.8) if we set n = 1. Mirror profiles with
different values for n are shown in figure 4. Of course, pA(u) reduces to the static mirror
function if n = 1 and u0 = 0. The endpoints of moving mirrors associated with eq. (2.14),
where n > 0, are all approaching the future timelike infinity due to pA →∞ in the late-time
limit u→ +∞. However, the asymptotic form of these mapping functions depends on the
choice of the parameter n, namely

lim
u→∞

pA(u) ∼ (u− u0)n + · · · . (2.15)

We find that the velocity of the mirrors are different for various n. By using eq. (2.12),
one gets

Z ′(t)→


−1, n > 1
vm ∈ (−1, 1), n = 1
+1, n < 1

. (2.16)

The energy flux at late times is related to the value of n, because the dominant term is of
the form

lim
u→∞

Tuu ≈
c

24π ×
n2 − 1

2u2 . (2.17)

For example, the cases for Tuu with n = 2, 1, 1/2 derived from eq. (2.14) are plotted in the
left-top panel of figure 9. Later below, we show that entanglement entropy related to these
subclasses are distinct.

Motivated by the simple example in eq. (2.14), we divide all timelike mirrors of type A
into three subclasses by taking account of the asymptotic behavior of the mapping function
p(u) as in eq. (2.15). The three cases with n > 1, n = 1, and 1 > n > 0 are referred to
as type A+, type A0, and type A−, respectively. According to this subclassification, the
static mirror and kink mirror both then become type A0. As a result, we can expect that
the late-time behavior for the kink mirror is similar to that of the static mirror, e.g., the
subsystem entanglement entropy approaches a constant.

Similarly, we may also define three subclasses for mirrors of other types. Similar to
type A in eq. (2.14), a series expansion of a family of mapping functions for type B mirrors
is given by

pB(u) = −β log(1 + e−u/β) + β
(
log(eu0/β + eu/β)

)−n
, with n ≥ 0 , (2.18)

whose mirror trajectories are shown in figure 6. In the top-right panel of figure 9, we plot
the corresponding stress tensors associated with the mirrors described by pB(u) for various
values of n. Again, we can classify type B mirrors by focusing on the asymptotic behavior
of p(u) in the limit u→∞, which leads to

lim
u→∞

pB(u) ∼ vend + c−n
un

+ · · · , with c−n < 0 , (2.19)
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Energy flux of simple moving mirrors with u ∈ [−∞,+∞]
Class Trajectory Leading term of lim

u→+∞
p(u) Leading term of 24π

c Tuu Limit

A+
i− → i+

timelike

cnu
n + · · · , n > 1

n2−1
2u2

+0
A0 cnu

n + · · · , n = 1 ∼ 0
A− cnu

n + · · · , 1 > n > 0 −0
B+

i− → I+
L

escaping

vend + c−n
un + · · · , n > 1

n2−1
2u2

+0
B0 vend + c−n

un + · · · , n = 1 ∼ 0
B− vend + c−n

un + · · · , 1 > n > 0 −0

Table 2. Classification of type A and type B mirrors based on the leading behavior of the mapping
function p(u). We assume that n is finite and nonzero.

where we denote the finite value pB(+∞) as vend which parameterizes the endpoint of the
mirror in future null infinity I+

L . The leading term of the non-vanishing stress tensor Tuu
can also be derived from eq. (2.19). As before, we define the cases with n > 1, n = 1, and
1 > n > 0 in eq. (2.19) to be of type B+, type B0, and type B−, respectively.

The requirement that the mirror trajectory x = Z(t) is timelike leads to the condition
p′(u) > 0. Under this condition, we can conformally map the trajectories of type A and
type B to the static one at x̃ = 0 by using the map in eq. (2.4). Assuming a smooth profile
of Z(t), one finds that the energy stress tensor (2.13) is always finite, as shown by the two
upper plots in figure 9.

However, the energy fluxes for type C and type D generically diverge. The divergence
is traced back to the fact that the mirrors reach the speed of light at a finite value for u,
u = uend. Similar to the subclassifications of type A and type B, we can further separate
the mirrors of type C and type D into three subclasses by focusing on the leading behavior
of p(u) around the endpoints. Refer to table 3 for an overview of the divergent behavior for
different moving mirrors. In this paper, we do not pay attention to the type D0, because it
represents a portion of the type A. However, we should note that the null endpoint does
not always imply a divergence for the stress tensor. For example, we can still get a finite
stress tensor for type C mirrors if

type C0 : p(uend) ≈ c−1
(uend − u) + c0 + c1(uend − u) · · · . (2.20)

The latter are referred to as type C0 mirrors.6

Before we move on, we would like to note that our classification could also include the
cases which cannot be covered by polynomials e.g., logarithmic or exponential functions in

6For type C0 mirrors, the conclusion that Tuu(uend) is a finite constant depends on the subleading
term in p(u). If we consider p(uend) ∼ c−1

u−uend
+ cm

(u−uend)m + · · · with 0 < m < 1, the stress tensor

at the endpoint is still divergent in terms of Tuu(uend) ∼
(
− cm
c−1

)
1

(u−uend)m+1 . Similarly, for p(uend) ∼
c−1

u−uend
+ c0 + cm(u− uend)m + · · · with 0 < m < 1, one has Tuu(uend) ∼

(
cm
c−1

)
1

(u−uend)1−m .
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Divergent energy flux of simple moving mirrors with u ≤ uend and v ≤ vend

Class Leading term of p(u) Leading term of 24π
c Tuu

C+: i− → I+
R

c−n
(uend−u)n + · · · , n > 1 n2−1

2(u−uend)2 → +∞

C0: i− → I+
R

c−1
(uend−u) + c0 + c1(uend − u) · · · , n = 1 6 c1

c−1
= finite constant

C−: i− → I+
R

c−n
(uend−u)n + · · · , 0 < n < 1 n2−1

2(u−uend)2 → −∞

D+: i− → Nv vend + cn(uend − u)n + · · · , n > 1 n2−1
2(uend−u)2 → +∞

D0: i− → N0 vend + c1(uend − u) + c2(u− uend)2 + · · · 6( c2
c1

)2 = finite constant

D−: i− → Nu vend + cn(uend − u)n + · · · , 1 > n > 0 n2−1
2(u−uend)2 → −∞

Table 3. The leading behavior of the function p(u) and the stress tensor Tuu near the endpoints for
various moving mirrors.

asymptotic expansion. For example, the special case with n = 0 in eq. (2.18) is given by

pB(u) = −β log(1 + e−u/β) , (2.21)

which is called escaping mirror in [16]. Since the late-time limit of the function p(u) is
dominated by

lim
u→∞

pB(u) ≈ vend + c∞ e
−u/β , (2.22)

one finds that the stress tensor approaches a constant,

lim
u→∞

Tuu = c

48πβ2 , (2.23)

and does not decay toward zero. However, we define mirrors for which the mapping function
is of exponential form as in eq. (2.22) to be of type B+, where n→∞. Furthermore, we
define mirrors having dominant logarithmic asymptotic form

lim
u→∞

pB ≈ vend + c0
log (u/β) , (2.24)

to be of type B− with n→ 0, since the corresponding energy flux becomes Tuu ≈ − c
48πu2 .

Similar exponential/logarithmic behavior also exists for other types. We summarize the
subclassifications of the four mirror types in tables 2 and 3, and the special cases in table 4.

3 Entanglement entropy in moving mirrors

In this section, we study the behavior of the time evolution of entanglement entropy in
moving mirror models. We start with a brief review of how we construct the gravity duals of
moving mirrors and of how we calculate the entanglement entropy, mainly following [15, 16].
Then we move on with our analysis of entanglement entropy in various types of moving
mirror models.
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Special cases
Class Leading p(u) Leading

24π
c Tuu

Class Leading p(u) Leading
24π
c Tuu

A+ c∞e
u/β 1

2β2 C+ c∞ exp
(

β
uend−u

)
β2

2(uend−u)4

A− c0 log (u/β) −1
2u2 C− c0 log

(
β

uend−u

)
−1

2(uend−u)2

B+ vend + c∞e
−u/β 1

2β2 D+ vend + c∞
exp(β/(uend−u))

β2

2(uend−u)4

B− vend + c0
log(u/β)

−1
2u2 D− vend + c∞

log(β/(uend−u))
−1

2(uend−u)2

Table 4. Special cases corresponding to n→∞ and n→ 0 for each type.

A

v

u

z

Γext,d

Γext,c

v = p(u)

QEOW brane

Moving Mirror

Figure 10. A sketch of the AdS/BCFT construction and computation of holographic entangle-
ment entropy.

3.1 AdS/BCFT and holographic entanglement entropy

An important class of gravity duals of CFTs with conformal boundaries, so-called BCFTs,
is provided by the AdS/BCFT construction [30, 31]. In AdS/BCFT, the gravity dual of a
BCFT on a manifold Σ with its boundary ∂Σ, is given by a region M , surrounded by an
asymptotic AdS boundary region Σ and EOW brane Q such that ∂M = Σ ∪Q. In order to
preserve the boundary conformal invariance on ∂Σ, the EOW brane satisfies the Neumann
boundary condition,

Kab − habK = −T hab. (3.1)

The metric of the gravity dual M is determined by solving the Einstein equations with a
negative cosmological constant, where the Neumann boundary condition eq. (3.1) is imposed
on Q, and the standard Dirichlet boundary condition is imposed on Σ.

The holographic entanglement entropy (HEE) [34–36] in AdS/BCFT setups can be
computed according to the following rule as worked out in [30, 31]. Consider a subsystem
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A on a constant time slice and introduce the reduced density matrix ρA by tracing out
its complement Ā, leading to ρA = TrĀ[|Ψ〉〈Ψ|], where |Ψ〉 is the quantum state at the
specified time. The entanglement entropy SA is defined as the von Neumann entropy
SA = −Tr[ρA log ρA]. In AdS/BCFT, we can calculate the holographic counterpart of this
entanglement entropy as the area of a codimension two extremal surface Γext

A which ends on
the boundary ∂A on Σ. The important point is that the extremal surface can also end on
the EOW brane Q. Typically, there are thus two candidates: one is the connected extremal
surface, Γext,c

A , and the other one is the disconnected surface, Γext,d
A . The HEE is given by

the smaller one [30, 31],
SA = min

{
Scon
A , Sdis

A

}
, (3.2)

where we have introduced the connected HEE, Scon
A , and the disconnected one, Sdis

A ,
defined by

Scon
A = Area(Γext,c

A )
4GN

, Sdis
A = Area(Γext,d

A )
4GN

. (3.3)

Refer to figure 10 for a sketch of this calculation.
In this paper, we focus on AdS3/BCFT2, where the spacetime M is three-dimensional,

and work out the gravity duals of moving mirrors. When we choose the subsystem A to be
an interval, the surface Γext,c

A is the geodesic connecting the two endpoints of A. On the
other hand, Γext,d

A is the union of the two disconnected geodesics connecting each of the two
endpoints of A with a point on the surface Q. The latter point is determined by minimizing
the geodesic length.

3.1.1 AdS/BCFT with moving mirrors

As seen in the previous section, we can describe moving mirrors by the conformal map (2.4)
from a half plane. The gravity dual in the AdS/BCFT can be found by lifting this two-
dimensional conformal map to the three-dimensional AdS geometry. First, the gravity dual
of a half plane X > 0 is given by the right half of Poincaré AdS3,

ds2 = −dUdV + dη2

η2 ,

V − U + 2λη > 0 , (3.4)

where we have introduced the light cone coordinates U = T −X and V = T +X. The EOW
brane is located at X +λη = 0, and this solves the Neumann boundary condition (3.1) with
tension

λ = T√
1− T 2

. (3.5)

We note that the brane tension for timelike brane Q satisfies |T | < 1, i.e.,

− 1 ≤ T = λ√
1 + λ2

≤ 1 , (3.6)
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with λ being a real dimensionless parameter. Then, we perform the coordinate transforma-
tion dual to the conformal map (2.4), i.e.,

U = p(u) ,

V = v + p′′(u)
2p′(u)z

2 ,

η = z
√
p′(u) .

(3.7)

which is the so-called Bañados map [55–57]. Eventually, the gravity dual of the moving
mirror whose trajectory is parameterized by v = p(u), can be derived from Poincaré
coordinates. With the transformation eq. (3.7), one obtains

ds2 = dz2

z2 + 12π
c
Tuu(u)(du)2 − 1

z2dudv , (3.8)

with
Tuu(u) = c

12π ×
3(p′′)2 − 2p′p′′′

4p′2 , (3.9)

as the non-vanishing energy stress tensor.

3.1.2 Entanglement entropy

In gravity duals of moving mirrors, we can calculate the HEE by following the formulae (3.2)
and (3.3), and using the transformation into Poincaré AdS (3.7), where the calculation of
HEE is straightforward.7

For example, let us take subsystem A as a finite interval A = [x1, x2]. There are both
connected and disconnected geodesics, and we need to take the smaller one as in (3.2).
Each of them at the time t explicitly reads

Scon
A = c

6 log (v2 − v1)(p(u2)− p(u1))
ε2
√
p′(u1)p′(u2)

,

Sdis
A = c

6 log v1 − p(u1)
ε
√
p′(u1)

+ c

6 log v2 − p(u2)
ε
√
p′(u2)

+ 2Sbdy , (3.10)

where u1,2 = t− x1,2, v1,2 = t+ x1,2, and

Sbdy = c

6 log
√

1 + T
1− T = c

6 log
(√

λ2 + 1 + λ
)
, (3.11)

here denotes the boundary entropy [58]. Notice that the entropy result above can only be
applicable to holographic CFTs as the two point function of twist operators in the presence
of a boundary is not universal.

A special case is the choice when subsystem A is taken to be a semi-infinite line
A = [x0,∞). In this case, it is clear that only the disconnected HEE is available. Therefore
we find

SA = c

6 log V0 − U0

ε
√
p′ (u0)

+ Sbdy = c

6 log v0 − p (u0)
ε
√
p′ (u0)

+ Sbdy , (3.12)

7It is, in fact, nontrivial, why such a computation can successfully reproduce entanglement entropies in
moving mirror setups. See appendix B.
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where we have set u0 = t − x0 and v0 = t + x0. It is important to note that this
result (3.12) is true for any BCFT including those not holographic. This is because the
entanglement entropy involves the one-point function of twist operator in the replica method
calculation [59, 60], which is universal up to the value of the boundary entropy.

3.2 Entanglement entropy for static, semi-infinite interval

3.2.1 Entanglement entropy and energy flux

Before we discuss the entanglement entropy with different types of moving mirror, we
would like to first comment on the close connection between energy flux and entanglement
entropy for a static subsystem. Considering the non-vanishing energy stress tensor defined
in eq. (2.13) and integrating by parts, one finds the total amount of energy that can be
recast as

Est ≡
∫ umax

umin
Tuu du = c

48π

∫ (
p′′(u)
p′(u)

)2
du−

(
c

24π
p′′(u)
p′(u)

) ∣∣∣∣umax

umin

, (3.13)

where the observer stays on future null infinity I+
R along u ∈ [umin, umax]. The second term is

a surface term that would not contribute for mirrors with vanishing p′′/p′ as u→ umin, umax.
As shown in figure 9, the stress tensor Tuu at a finite time u can be even negative. However,
ignoring the surface term in the integrated energy flux, we can find the effective energy flux
given by the density

Teff(u) ∼ c

48π

(
p′′(u)
p′(u)

)2
≥ 0 , (3.14)

which is positive by definition.
For mirrors of type A and type B, we can evaluate the total energy flux in the physical

spacetime by taking umin, umax → ±∞. Because of

lim
u→±∞

p′′(u)
p′(u) = 0 , (3.15)

we conclude that the total energy excited by mirrors of type A or type B is always positive,
namely

Est ≥ 0 . (3.16)

This is nothing but the averaged null energy condition (ANEC),
∫
Tuudu ≥ 0. However, the

surface term,
∂Est = − c

24π
p′′(uend)
p′(uend) , (3.17)

still non-trivially contributes in the case of type C and type D mirrors, where the integral
is performed along a null geodesic with u ∈ (−∞, uend]. In particular, from the time
derivative of SA in eq. (3.22), we find that the surface term ∂Est influences the evolution
of entanglement entropy at late times. For example, using the asymptotic analysis in
table 3, we get ∂Est ∼ n−1

uend−u > 0 for type D+ mirrors, ∂Est < 0 for type D−, and
∂Est ∼ − n+1

uend−u < 0 for all type C mirrors. These results are consistent with the time
evolution of entanglement entropy for type C and type D mirrors, as shown in figure 11.
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Of course, the decomposition in eq. (3.13) is not unique. Considering the HEE de-
termined by the disconnected geodesic, one finds the following decomposition of the non-
vanishing stress tensor

2πTuu = ∂u∂uSA + 6
c

(∂uSA)2 . (3.18)

The integrated energy flux can then be rewritten as

2πEst =
∫ 6
c

(∂uSA)2 du+ (∂uSA)
∣∣∣∣umax

umin

. (3.19)

Taking umin → −∞, we find that the time derivative of entanglement entropy at u∗ is
related to the total energy integrated over u ∈ (−∞, u∗),

∂uSA(u∗) = 2πEst −
∫ u∗

−∞

6
c

(∂uSA)2 du , (3.20)

where we have assumed that the state at past infinity is a vacuum state. Hence, a negative
total energy results in a monotonic decrease of entanglement entropy.

3.2.2 Characteristic behaviors of entanglement entropy

In this subsection, we explore the time evolution of the entanglement entropy for each type
of moving mirrors. First, we examine the case where subsystem A is a static, semi-infinite
line, so we fix x0 as a time-independent constant. The entanglement entropy SA associated
with various moving mirrors follows from eq. (3.12) by using the corresponding mapping
function p(u). In figure 11, we show the results for the previously identified four mirror
types and their subclasses. Because the initial state at past infinity is the ground state due
to p(u) ∼ u around u→ −∞, the entropies SA for all four types turn out to be constant at
early times, i.e.,

SA ≈
c

6 log 2x0
ε

+ Sbdy . (3.21)

In order to consider the time-dependence of the entanglement entropy eq. (3.12) for
the static, semi-infinite interval A, one can find that the time derivative is given by

∂SA
∂t

= c

6

( 1− p′(u0)
v0 − p(u0) −

p′′(u0)
2p′(u0)

)
. (3.22)

With this decomposition, we may understand the physical origin of the time evolution of
the entanglement entropy as follows. The first term in eq. (3.22) goes back to the relative
motion between the moving mirror and the interval A. The numerator 1− p′(u0) captures
the relative velocity of the mirror vm = p′(u)−1

p′(u)+1 , see eq. (2.11), where the denominator
v0 − p(u0) is the distance between the interval A and the mirror. The second term in
eq. (3.22) captures the influence of the non-vanishing energy flux Tuu(u).

In what follows, we explain the features of the time evolution at late times for various
mirror types shown in figure 11. First, we note that both type A and type B mirrors extend
to future infinity at u→∞, where the energy flux decays to zero, because p′′(u)

2p′(u) vanishes
in the late-time limit. Note that the escaping mirror defined by eq. (2.23) is an exception
(with n → ∞) because it leads to a constant and non-vanishing flux (2.23). One should
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Figure 11. Entanglement entropy for a static, semi-infinite interval A ∈ [x0 = 5,+∞]. The mapping
functions p(u) for mirrors of type A, B, C, and D are respectively defined in eq. (2.14), eq. (2.18),
eq. (4.5), and eq. (4.26), eq. (4.31). The red, black, and blue curves correspond to subclasses +, 0,−,
for which we have chosen n = 2, n = 1, and n = 1

2 in each plot.

notice that type A+ mirrors are moving closer to the interval A and finally collide with it
when v0 = p(u0). As a result, one always gets

SA → 0 (3.23)

at a finite time for type A+ mirrors. On the contrary, mirrors of type A− move away from
interval A. Correspondingly, one can consider the late-time behavior of SA by taking the
limit t → ∞. Noting that the late-time behavior for type A− mirrors is dominated by
p(u) ∼ cnun ∼ cntn with 0 < n < 1, one obtains

∂SA
∂t

∣∣∣∣
t→∞

≈ c

6

( 1
v0 − cntn

− n− 1
2t

)
≈ c

6
3− n

2t , (3.24)

which indicates the logarithmic growth in the entropy, namely

SA ∼
c

6 log (t)(3−n)/2

ε
+ · · · . (3.25)

Similarly, we can find the logarithmic growth, shown in the top-right panel of figure 11,
for type B+, type B0 as well as type B− mirrors. More explicitly, one gets

SA ∼
c

6 log (t)(3+n)/2

ε
+ · · · , (3.26)
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whose growth rate depends on the explicit subclass in type B mirrors. Note that the escaping
mirror (2.21), corresponding to the limit n → ∞, is an exception and its entanglement
entropy at late times follows a linear growth, SA ∝ t, [15, 16].

The time evolution of SA for the three subclasses in type C is similar to the one in type
A+, because type C mirrors keep moving towards the static interval A and finally intersect
with it at a finite time when v0 = p(u0).

Finally, we find that the entanglement entropy for type D± obtains a singular behavior at

uend = u0 ≡ t− x0 , (3.27)

as shown in the bottom-right panel of figure 11. This is traced back to the fact that

p′(uend) =

0 for D+ ,

+∞ for D− .
(3.28)

However, we would like to address that this is different from the decreasing behavior for
type C or type A+. At the critical time t = uend + x0, subsystem A hits a null shockwave
of infinite energy, which origins from the endpoint of the type D± mirror. Namely, the
endpoint of type D± reaches the (positive/negative) speed of light, the null shockwave at
u = uend carries an infinite amount of energy and causes the divergence of SA when the
subsystem passes through. Around the mentioned critical time, one finds

SA ≈


c
6 log 1

ε(uend+x0−t)(n−1)/2 → +∞ for D+,

c
6 log (uend+x0−t)(1−n)/2

ε → 0 for D−.
(3.29)

Hence, this result motivates to interpret the null shockwave with infinite energy as the
‘boundary’ of the physical spacetime. In the next section, we further explore this under-
standing from the viewpoint of the holographic dual spacetime.

3.3 Entanglement entropy for co-moving, semi-infinite interval

As we have explained before, the intersection between mirror and a static interval arises in
the case of type A− and type C, since the mirror moves toward the specified subsystem.
This could be avoided by making the interval move as well. We, therefore, would like to
examine the time evolution of entanglement entropy with a moving subsystem endpoint
x0(t). In particular, we take the distance between x0 and the mirror trajectory to be a
constant ∆x,

x0(t) = Z(t) + ∆x . (3.30)

The time evolution of entanglement entropy of a comoving interval for various mirror
types8 are shown in figure 12. Due to the co-moving subsystem A, the time evolution of
entanglement entropy deviates from the one in the static interval case. In terms of the
mirror trajectory function, x = Z(t), we may write

∂SA
∂t

= c

6

(1 + Z ′(t)− p′(u0)(1− Z ′(t))
v0 − p(u0) − p′′(u0)

2p′(u0)(1− Z ′(t))
)
, (3.31)

8Since moving mirrors of type D terminate at a finite time, we ignore those here.
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Figure 12. Entanglement entropy for a co-moving, semi-infinite interval with fixed endpoint
xa = Z(t) + ∆x, where ∆x = 5 for all three plots. The red, black, and blue curves correspond to
subclasses +, 0,− with n = 2, 1, and 1

2 , respectively. The mapping functions p(u) are chosen as in
figure 11.

where Z ′(t) = p′(u)−1
p′(u)+1 is referred to as the velocity of the mirror at time t. Considering the

late-time limit t→∞, one finds that ∂tSA → 0 for type A. Thus, the entanglement entropy
for all three subclasses of type A always approaches a constant value. The entanglement
entropy for type B mirrors, however, grows logarithmically as

SA ∼
c

6 log t
n+1

2

ε
. (3.32)

Similar logarithmic growth also applies to the late-time entanglement entropy of a co-moving,
semi-infinite subsystem for type C mirrors,

SA ∼
c

6 log t
ε
. (3.33)

A physical interpretation of this universal behavior independent of n for type C mirrors can
be given as follows. The velocity of the mirrors approaches the speed of light at late times.
Therefore, an observer located on the endpoint of the co-moving interval also approaches the
speed of light, and they cannot receive any information generated by the mirror trajectory.
Since the mirror is initially static, this experience of the observer should be able to be
explained by an (imaginary) always-static mirror. In this case, the distance between the
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Figure 13. The physical interpretation for the universal behavior of entanglement entropy for a
co-moving interval in the case of type C mirrors. At late times, the distance v0(t) − u0(t) of the
endpoint of a co-moving interval grows linearly and results in eq. (3.35) for the time evolution of
the entanglement entropy.

observer and the always-static mirror grows as t at late times. The behavior in (3.33)
can merely be predicted from the vacuum entanglement entropy in a two-dimensional
CFT [61]. Another similar explanation is the following: since the system is in a pure state,
the entanglement entropy of subregion A and its complements are the same. In our setup,
the subregion Ac is fixed, and the total system size decreases linearly. Correspondingly,
we can interpret that the size of Ac linearly grows with respect to the entire system and
obtain the behavior of (3.33). We can explicitly show that the behavior of the entanglement
entropy for such a half-infinite interval, i.e., the one whose end-point moves to the right at
the speed of light, is universally independent of the mirror profile. For such a subsystem,
we have the endpoint given by x0(t) = t+ ε+ δ(t), where δ(t)→ 0 as t→∞, and hence

v0(t) = t+ x0(t) = 2t+ ε+ δ(t), u0(t) = t− x0(t) = −ε− δ(t) . (3.34)

We may consider an expansion of the entanglement entropy formula around u0 = −ε at late
times. From (3.12), it follows that

SA(t) = c

6 log 2t+ ε+ δ(t)− (p(−ε)− δ(t)p′(−ε) + · · · )
ε
√
p′(−ε)

(
1− 1

2δ(t)
p′′(−ε)
p′(−ε) + · · ·

) t→∞−−−→ c

6 log t
ε
. (3.35)

It is clear that the time dependence of the entanglement entropy for the co-moving interval
is dominated by the linear term V0 − U0, or v0(t) − u0(t). We refer to figure 13 for an
intuitive sketch.

4 Gravity dual of moving mirrors

In this section, we explore the gravity duals of various moving mirrors by studying the
EOW brane in AdS3 bulk spacetime. In particular, we briefly review the results associated
with type A and type B mirrors which have been studied before e.g., in [15, 16], and then
focus on type C and type D mirrors, for which we find that the null surface related to the
infinite energy flux at u = uend plays an important role.
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4.1 End-of-the-world brane in AdS/BCFT

Using the position of the brane Q in Poincaré coordinates, we find that the induced geometry
on the EOW brane Q reads

ds2 =
(
1 + λ2) dη2 − dT 2

η2 , (4.1)

which is nothing but an AdS2 geometry. Obviously, the intersection between the EOW
brane and the asymptotic boundary located at η → 0 is the mirror at x̃ = 0 = X. We
note here that this has implied that the intersection, i.e., the mirror, is timelike owing to
ds2 ∝ −dT 2 < 0. On the other hand, we can start from a holographic AdS3 spacetime
using the Bañados map given in eq. (3.7) and get the corresponding brane geometry

ds2 = dz2

z2 +
(
p′′

zp′
+ 2λ

√
p′

z2

)
dudz +

(
p′′2

4p2 −
p′

z2 + λp′′

z
√
p′

)
du2 , (4.2)

by fixing the position of the brane as

vbrane = −p
′′z2

2p′ + p(u)− 2λz
√
p′ . (4.3)

Of course, the two induced metrics on the brane, i.e., eq. (4.2) and eq. (4.1), are equivalent
according to the coordinate transformation

η = z
√
p′(u) ,

T = p(u)− λz
√
p′(u) .

(4.4)

We remind that the physical spacetime is given by the right region of the EOW brane Q.

4.2 Gravity duals of type A and type B mirrors

The profiles of EOW branes described by vbrane for type A mirrors are depicted in figure 14.
As we may already expect, the brane profiles for type A+ and type A− show a different
behavior, because mirrors of type A− move away from the physical system. Correspondingly,
the holographic duals for the escaping mirrors of type B± and type B0 are similar. These
have analogous features with mirrors of type A−, as shown in figure 14. We remark that
the profiles of the EOW brane for type A and type B mirrors are always regular, since
the mirrors keep being timelike at any finite time. We refer interested readers to [16] for
more detailed studies about holographic duals of moving mirrors of type A and type B. We
discuss moving mirrors of type C and type D in more detail in the following,

4.3 Gravity dual of type C mirrors

In contrast to the type A and type B cases, moving mirrors of type C are timelike at early
times but become lightlike at a finite u, u = uend. In other words, the mirror accelerates
in the x direction and finally reaches the speed of light at uend. They are moving in the
opposite direction to mirrors of type B, so we call mirrors of type C chasing mirrors.
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Figure 14. Profiles of brane Q associated with type A and type B mirrors in terms of (t, x)
coordinates and for various z. Top: the mapping functions for type A are given in eq. (2.14). Here
we have chosen β = 1 and u0 = 0 as previously. Bottom: the mapping functions for type B are given
in eq. (2.18). We have set β = 1 = u0.

In order to show the differences from types A, B, we consider a new family of mapping
functions describing type C mirrors,

type C : pC(u) = u+ β(
euend/β − eu/β

)n , with n > 0 . (4.5)

The asymptotic behavior around the endpoint of the trajectory at u = uend is of the form

lim
u→uend

pC(u) ≈ β(
euend/β(uend − u)

)n . (4.6)

This implies that the mapping function eq. (4.5) is of type C+, C0 and C− by taking
n > 1, n = 1, and n < 1, respectively. By taking uend = 0 we show the corresponding mirror
trajectories in figure 7 as well as the non-vanishing stress tensor in figure 9.
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Figure 15. The profiles of brane Q associated with moving mirrors of type C+. The mapping
functions are defined in eq. (4.5). We have chosen β = 1, uend = 0, and n = 2 for both plots.

4.3.1 Type C+

Applying the formula eq. (4.3), we can study the holographic dual of type C mirrors by
focusing on the profiles of the EOW brane Q. Substituting the mapping function eq. (4.5)
with n = 2, we have plotted the EOW brane profiles for type C+ in figure 15. One finds that
the brane profiles for type C+ are similar to those for type A+ e.g., see the top-left plot in
figure 14. However, it is worth noting that the EOW brane for type C+ is always bounded
by the null surface located at u = uend. The region lying to the right of the EOW brane is
physical, since the brane naturally plays the role of a spacetime boundary. In particular,
the constant z slice of the EOW brane for type C+ is smoothly connected. In the following,
we show that the brane profiles drastically change for type C0 and type C− mirrors.

4.3.2 Type C−

In order to show the singular behavior for type C0 and type C− mirrors, let us first examine
the case for type C−. As shown in figure 16, the profiles of the EOW brane for type C− have
some rather exotic behavior. The mirror trajectory (i.e., z = 0 slice) is not connected to the
EOW brane profiles at z > 0. In fact, z = 0 is special because it eliminates the divergent
terms appearing in vbrane, i.e., −p′′z2

2p′ − λz
√
p′ in eq. (4.3). This discontinuity looks like a

serious problem for applying the AdS/BCFT correspondence because the bulk brane does
not extend to the boundary. However, we note that considering a cut-off surface located
at z = ε → 0 automatically avoids this problem. On the other hand, a natural question
is what is the physical region of the gravity dual. Of course, we should always consider
the EOW brane as the boundary of the physical spacetime. As shown in figure 16, the
spacetime bounded by the EOW brane contains a large portion beyond u = uend. However,
we note that not only the mirror trajectory for type C but also the conformal map eq. (2.4)
is defined for u ≤ uend. As a result, the coordinate transformation in eq. (4.4) identifies the
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Figure 16. The profiles of the brane Q associated with moving mirrors of type C−. The mapping
functions are defined in eq. (4.5). We have set β = 1, uend = 0, and n = 1/2 for both plots.

bulk spacetime in Poincaré coordinates with the physical spacetime being defined by

v > vbrane , u < uend . (4.7)

Especially, the null surface u = uend is just mapped to the infinite line at U = p(uend)→
+∞, η = z

√
p′(uend)→ +∞ via the coordinate transformation defined in eq. (3.7). Physical

quantities like geodesics do not go beyond u > uend. In other words, we conclude that the
boundary of the dual spacetime related to the type C mirror is given by the EOW brane
at v = vbrane as well as the null surface at u = uend. Physically, we interpret this as the
consequence of the negative divergence for the energy flux Tuu at u = uend. This is why we
have not seen this exotic behavior for type C+, where the energy flux approaches positive
infinity rather than negative infinity.

4.3.3 Type C0

The profiles of EOW branes for type C0 mirrors share certain features with those for type
C± mirrors. In figure 17, we show the corresponding profiles of EOW branes for type C0
mirrors defined by

pC0(u) = u+ β

1− eu/β
, u < 0 , (4.8)

corresponding to the mapping function in eq. (4.5) with n = 1 and uend = 0. More explicitly,
we find that the profile of the EOW brane is similar to the one for type C+ in the case of
small z. However, the similarity is shared with the one for type C− in the case of large z.
In particular, there is a transition point at

z = zc = β
(√

λ2 + 1− λ
)
. (4.9)

We derive the critical value zc by taking the expansion of v = vbrane around the endpoint
u = uend. Substituting eq. (4.8) into eq. (4.3), one obtains the following expansion

v = vbrane ≈
−β2 + z2 + 2βλz

u
+ β

2 +O(u) . (4.10)
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Figure 17. The profiles of the brane Q associated with mirrors of type C0. The mapping functions
are defined in eq. (4.5). We have set β = 1, uend = 0, and n = 1 for both plots.

It is clear that we have vbrane → +∞ for z � β as in the case of type C+, and vbrane → −∞
for z � β as in the case of type C+. Instead, the transition point with finite vbrane(z =
zc, u = uend) is given by the solution of −β2 + z2 + 2β = 0, i.e., eq. (4.9). The analysis
above can be generalized to any case with type C mirrors, which we briefly touch upon in
the next subsection.

4.3.4 Asymptotic behavior of EOW brane

Following our classification of moving mirrors into four different types, the mapping functions
for type C mirrors turn out to have a universal divergence around u ≈ uend,

lim
u→uend

p(u) = c−n
(uend − u)n + · · · . (4.11)

Here, the constant c−n is always positive because the mirror trajectories are timelike for
u < uend. As a reminder, the position of the brane is determined by the mapping function via

vbrane = −p
′′z2

2p′ + p(u)− λz
√
p′ . (4.12)

Using the universal expansion formula eq. (4.11) for type C mirrors, we find that the brane
position vbrane is dominated by

vbrane ≈ −
n+ 1

2n
z2

(uend − u) + c−n
(uend − u)n − 2λz

√
c−nn

(uend − u)n+1
2

+ · · · , (4.13)

with a leading term depending on the value of n.
Considering the moving mirror of type C+ with n > 1, vbrane is dominated by p(u),

vbrane ≈
c−n

(uend − u)n → +∞ , (4.14)
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Figure 18. Sketch of the transformation of EOW brane from Poincaré AdS3 (left) to the gravity
dual of type C− and C0 moving mirror (right). The red curve (right) is the mirror trajectory mapped
to the red, straight line in the left figure. The EOW branes correspond to the blue-colored regions.

for any z. This indicates the universal behavior of EOW brane profiles for type C+ mirrors
at any constant z slice, see figure 15. On the contrary, the brane profile for type C−
mirrors satisfies

vbrane ≈ −
n+ 1

2n
z2

uend − u
→ −∞ , (4.15)

due to 1 > n+1
2 > n. As a result, the profiles of vbrane develop a zigzag shape as shown in

figure 16. The asymptotic behavior of vbrane in the special type C0 case with n = n+1
2 = 1

is given by

vbrane ≈
−z2 + c−1 − 2λz√c−1

uend − u
+O((uend − u)0) . (4.16)

Here, we have assumed that the subleading term is not divergent. The sign of the numerator
depends on the value of z. It is positive for z � 1, but negative for z � 1. The transition
happens at z = zc, where vbrane is located at a finite value and does not diverge. We
then get

zc = √c−1
(√

λ2 + 1− λ
)
. (4.17)

Recalling the relation between the boundary entropy Sbdy and the parameter λ, see eq. (3.11),
we rewrite the critical value as

zc = √c−1e
− 6
c
Sbdy . (4.18)

We conclude that the EOW brane profiles are similar to the mirror trajectories for z < zc
and evolve in the opposite direction for z > zc. We shall note that we have assumed
that the mapping function p(u) around uend is of some polynomial asymptotic form, e.g.,
p(u) ∼ c−1

uend−u + c0 + c1(u−uend) + · · · . Correspondingly, we have obtained a finite value for
vbrane at z = zc. If there should appear some logarithmic contributions in subleading terms,
e.g., p(u) ∼ c−1

uend−u + clog log (uend − u) + · · · , vbrane may also approach ±∞ at z = zc.
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Figure 19. Physical spacetime (pink shaded area) is divided by a null surface into two parts. Left:
the null surface is located at u = uend in the original spacetime with a moving mirror of type D−
which generates infinite-energy flux along the null surface at its endpoint. Right: the physical region
in (t̃, x̃) coordinates is the pink shaded region divided by the null surface at ũ = p(uend) = vend into
two parts.

4.3.5 Global structure of EOW brane for type C− and type C0

For type C0 and type C− mirrors, the EOW branes turn over as z gets larger. So one
might wonder whether or not the physical spacetime extends to the other region, u > uend.
To better understand this point, let us examine the global structure of the gravity dual.
This becomes clear if we transform the EOW brane described by (u, v, z) to the one
described by Poincaré coordinates (U, V, η). This is sketched in figure 18. In terms of
Poincaré coordinates, one should pick up only the region associated with u < uend, since
the coordinate transformation U = p(u) in eq. (3.7) maps the u < uend region to the whole
region assigned to the static mirror (i.e., V − U > 0). Especially, the u = uend line is
mapped to U = +∞, and any physical probe cannot reach u ≥ uend. This may also be
understood as an effect caused by the singular metric on u = uend with z > 0 that arises
due to the divergence of the energy flux. In summary, in addition to type C+ mirrors, the
AdS/BCFT setups in the presence of EOW branes dual to type C− and type C0 mirrors
turn out to be physically sensible and are defined in a region with u < uend.

4.4 Gravity dual of type D mirrors

In the previous sections, we have seen that the singular (or divergent) behavior in the stress
tensor, entanglement entropy, and holographic dual can be traced back to the appearance
of p′(u) = 0 or p′(u) =∞, as the mirror moves at the speed of light. The unique feature
associated with type D mirrors is that the endpoint of the mirror is located in the bulk
spacetime rather than at the infinitely far boundaries. In terms of lightlike coordinates,
(u, v), moving mirrors of type D± are constrained by

u ∈ (−∞, uend] , v ∈ (−∞, vend] , (4.19)

with vend = p(uend).
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Because type D+/D− mirrors reach the speed of light at their endpoint, the correspond-
ing stress tensor Tuu does not vanish and is given by

lim
u→uend

Tuu ≈
c

48π
n2 − 1

(uend − u)2 , (4.20)

indicating a positive/negative divergence along the null surface u = uend. For later discussion,
we remark that the divergence in the stress tensor is associated with the divergent term
p′′/p′, since

Tuu = c

24π

(
1
2

(
p′′

p′

)2
−
(
p′′

p′

)′)
, (4.21)

where
lim

u→uend

p′′(u)
p′(u) ∼

1− n
uend − u

, (4.22)

holds for moving mirrors of type D±. For example, in figure 9, we show the time evolution
of the non-vanishing stress tensor, where we use the conformal mapping function p(u) for
mirrors described by eq. (4.26) and eq. (4.31). The divergent energy flux also results in
a divergence for the entropy SA. Taking the subsystem A to be a static, semi-infinite
interval, the universal divergent behavior has been seen in eq. (3.29). This can be seen as a
consequence of the infinite-energy flux inserted along u0 = uend, which leads to

lim
u→uend

∂SA
∂t
≈ − c

12
p′′(u0)
p′(u0) ∼

c

12
n− 1
uend − u

. (4.23)

As illustrated in figure 19, the lightlike mirror at (uend, vend) induces an infinite-energy
shockwave moving along the null surface

u = uend . (4.24)

The null surface separates the spacetime into two parts, such that only the right part
becomes accessible to an observer living there.

Our entanglement entropy calculations are based on standard BCFT techniques in the
presence of a static mirror at x̃ = 0. Since the mapping function p(u) for type D± mirrors
is truncated at u = uend, one can only obtain part of the right half-plane,

ũ ∈ (−∞, p(uend)] , (4.25)

via the map ũ = p(u) and ṽ = v. One may imagine that there is another mirror that
connects the truncated mirror of type D and extends to infinity. As a result, the joint
mirror, similar to the types A, B, or C, would be dual to the complete static mirror with the
physical spacetime covered by the right half-plane. However, one can find infinitely many
such smooth mirrors, where the first half is the same as for type D± mirrors. This is not a
contradiction because the null surface at u = uend or ũ = p(uend) divides the spacetime into
two parts. Physical quantities like entanglement entropy for a subsystem can therefore be
determined on one side before reaching the null line. This also motivates us to consider
type D± mirrors as a particular case.
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Figure 20. Profiles of the brane Q associated with mirrors of type D+ in coordinates (t, x) for
various z. The mapping functions are given in eq. (4.26). Here, we have chosen β = 1 for both plots.

Finally, let us consider the dual gravitational spacetime associated with type D± mirrors,
again following the AdS/BCFT dictionary. As introduced before, the dual spacetime is
nothing but AdS3 with an EOW brane extending into the bulk. In the following, we
analyze the corresponding EOW branes for type D± and show that their features differ
from each other.

4.4.1 Type D+

Let us consider the following mapping function for type D+ mirrors

pD+(u) = −β log(e−u/β + eu/β) , with n = 2 , (4.26)

where the endpoints are fixed at u = uend = 0 and vend = −β log 2. The generalization to
an arbitrary uend can be made by shifting u as u→ u− uend. Various mapping functions
and trajectories for mirrors of type D are plotted in figure 8. The trajectory of the mirror
explicitly reads

x = Z(t) = β

2 log
(
1− e2t/β

)
, t = Z−1(x) = β

2 log
(
1− e2x/β

)
, (4.27)

with the endpoint being located at xend = tend = −β
2 log 2. We obtain the velocity of the

moving mirror at time t as follows

Z ′(t) = − e2t/β

1− e2t/β , (4.28)

which reaches the (negative) speed of light at t = −β
2 log 2. Using eq. (4.12), we get the

corresponding EOW brane for the type D+ mirror,

vbrane = − z2

β sinh(2u/β) − β log (2 cosh(u/β))− 2zλ
√

tanh(−u/β) , (4.29)
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Figure 21. An extra null brane (red shaded surface) is inserted in the bulk spacetime. Different
from the standard AdS/BCFT setup with one timelike EOW brane (blue surface), the appearance of
a null brane at U = p(uend) would result in a different state. In this case, the disconnected extremal
surface for subsystem A may end on the null surface (denoted by the green curves) instead of ending
on the timelike EOW brane. In this paper, we only explore the latter case with one EOW brane,
where the corresponding extremal surface (black curves) anchors to the EOW brane.

which has a positive singularity at u = uend = 0. In order to visualize the dual spacetime
in AdS3, we show the positions of the EOW brane at various bulk slices of constant z in
figure 20. The brane itself is always located on the right side of the null surface at u = uend
and moves toward it with increasing u.

This feature is universal for all type D+ mirrors, because the position of the EOW
brane in the limit u→ uend is dominated by the term p′′/p′,

lim
u→uend

vbrane ≈ −
p′′z2

2p′ ∼
z2

2
n− 1
uend − u

→ +∞ . (4.30)

As discussed before, this goes back to the positive infinite energy flux, Tuu → +∞. So
the EOW brane encloses the physical spacetime and plays the role of a boundary in the
asymptotically Poincaré AdS gravity dual. The HEE for a semi-infinite subsystem with
an endpoint close to u = uend can be computed via the geodesic connecting the boundary
endpoint and a point on the EOW brane after mapping to the gravity dual of a static
mirror, i.e., half of Poincaré AdS3. The point on the EOW brane goes beyond the null
surface and takes values in u > uend. If we transform back to the original gravity dual in
the type D+ case, the geodesic extends from the boundary to infinity, v → ∞, and this
coordinate patch describes only part of the geodesic, which is complete for the static mirror
coordinates. To understand the full gravity dual, we need to know the mirror trajectory
after the null point of type D+ mirrors, i.e., u > uend, though the gravity dual for u < uend
is completely fixed by the profile of the mirrors of type D+.
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Figure 22. Profiles of the brane Q associated with mirrors of type D− in coordinates (t, x) for
various z. The mapping functions are given in eq. (4.31).

It might be interesting to introduce a solid null brane at u = uend, as some kind
of EOW brane. In the dual picture, when mapped to the right half-plane of the static
mirror, this corresponds to putting a null brane at U = p(uend) in the bulk spacetime, see
figure 21. Although the spacetime limited by u < uend looks similar, one finds that the two
configurations, namely with and without a null brane, are physically different. For example,
one observes that the geodesics in both cases are distinct as they can naturally end on the
extra null surface, which would predict a different value for HEE.9 We would like to leave
this possibility for future work.

4.4.2 Type D−

Similar to the setup given by eq. (4.26), we can construct a type D− mirror via the following
mapping function

pD−(u) = −u+ β log
(

1−
√

1− 4e2u/β

2

)

= −β arcsech
(
2eu/β

)
, with n = 1

2 ,
(4.31)

where the endpoint is located at uend = −β log 2 and vend = 0. The mirror trajectory reads

x = Z(t) = −β2 log
(
1− e2t/β

)
, t = Z−1(x) = β

2 log
(
1− e−2x/β

)
. (4.32)

Compared to the mirror trajectories in eq. (4.27) and eq. (4.32) for type D±, one finds
that mirror trajectories associated with pD+(u) and pD−(u) can be mapped to each other
by replacing x with −x. Using eq. (4.12), we find that the position of the EOW brane is
related to the one for type D−, as can be seen in figure 22. The behavior shown in figure 22

9In fact, the computation performed in such a construction with a null brane reproduces a sort of pseudo
entropy but not entanglement entropy. This point will be clear after the discussion given in appendix B.
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is general for all mirrors of type D−. Although the position of the EOW brane in the limit
u→ uend is also dominated by the term p′′/p′, similar to type D+, one gets instead

lim
u→uend

vbrane ≈ −
p′′z2

2p′ ∼
z2

2
n− 1
uend − u

→ −∞ , (4.33)

as n < 1 for type D−.
Different from the type D+ case, the EOW brane for type D− mirrors does not enclose

the physical spacetime. However, the physical spacetime for type D− is only specified for
the region constrained by

u < uend . (4.34)

As in the case of type D+, the complete physical spacetime can be fixed, where the mirror
of type D− may be extended to future infinity by joining it with another timelike mirror.
The same is true for the corresponding gravity dual. The geodesic, which computes HEE,
connects the boundary point with u < uend to a point on the EOW brane with u > uend,
i.e., the region outside of the dual gravitational spacetime of D− (up to the null point).
However, we may also consider a modified version of the original setup by introducing an
extra null brane, as depicted in figure 21.

5 Summary

In this paper, we have systematically studied moving mirror models in two-dimensional
CFTs. We have focused on the case with a single mirror, though we do not expect any
essential problem in extending our results to a setup consisting of multiple mirrors. The
reflection of modes from moving mirrors is properly described within the framework of BCFT.
We have begun our discussion by working out a classification of moving mirror models.
According to the endpoints of moving mirrors, we first separate the mirror models into four
types named A, B, C, and D. In addition, we further divided each type into three subgroups
labeled by subscripts 0, +, and −, by carefully examining their asymptotic behavior at late
times. As a result, we end up with the following four families of mirror classes,

type A0, A+, A− (timelike mirrors), type B0, B+, B− (escaping mirrors),

type C0, C+, C− (chasing mirrors), type D0, D+, D− (terminated mirrors),

as we have briefly summarized in table 2 and table 3.
For example, the moving mirror modeling the emission of constant Hawking radiation

is denoted by type B−. A particular model mimicking the formation and evaporation
of a black hole,i.e., the so-called kink mirror, belongs to type A0. Type C mirrors, on
the other hand, are examples of so-called chasing mirrors, where the mirror moves very
fast in the direction of the physical system and not away from it as it is the case in the
previously mentioned examples. Finally, type D mirrors are defined as models where the
mirror terminates at a specific point in bulk spacetime. This mirror type is motivated due
to the appearance of null points when, for instance, a timelike mirror trajectory changes
to be spacelike. The latter segment, forming a spacelike mirror, is regarded as a model of
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performing a projection/preparation of a direct product state. Notably, all of these moving
mirror model can be analyzed by employing conformal transformations into the setup
describing a static mirror, i.e., a two-dimensional BCFT defined on the upper half plane.

We also investigated the energy flux via the described conformal mapping procedure.
We have found that mirrors of type A and type B lead to a finite energy flux, while mirrors
of type C and type D typically encounter divergences for those quantities at the final time.
The subscripts +, 0 and − mentioned above mean that the energy flux becomes positive,
vanishing, and negative at late times, respectively.

We have also calculated the entanglement entropy SA for a given subsystem A. When
subsystem A is taken to be a semi-infinite line, the entanglement entropy is universal in
that it takes the same form for any two-dimensional CFT up to the value of the boundary
entropy. When A is a finite interval, the results generally depend on the details of the
two-dimensional CFT. However, we have found an analytical formula for holographic CFTs.
When the semi-infinite interval is static, we have shown that the corresponding entanglement
entropy grows logarithmically, i.e., SA ∝ log t, for type A−, B±,0, and type D+ mirrors.
On the other hand, for other mirror types, we have ended up with a finite or vanishing
entanglement entropy, where the latter scenario occurs because interval A collides with the
mirror at sufficiently late times. When A is taken as a co-moving interval, the entanglement
entropy grows logarithmically for type B±,0 and type C±,0 mirrors, while it approaches a
constant for mirrors of type A±,0.

Finally, we have extensively studied the gravity duals for each mirror type. Based on
the AdS/BCFT construction, the essential entity in the dual gravitational description of
a BCFT is an EOW brane. For each mirror type, we have explicitly chosen an analytical
profile of a conformal map and shown the shape of the corresponding EOW branes. We have
found that for type A±,0, B±,0 and type C+ mirrors, the EOW branes are given as simple
bulk extensions of the mirror trajectory. However, for mirrors of type C−,0 and type D±,
the EOW branes in the bulk AdS spacetime bend towards the direction opposite to that the
original mirror trajectories heading to. Despite such effects, we have found that the gravity
duals of type C−,0 mirrors appear natural, when the spacetime is limited to the region
u < uend. Here, uend denotes the maximal value of u for the mirror trajectory obtained
after a careful consideration of the EOW brane profiles. On the other hand, the situation
seems to be more complicated for mirrors of type D±. Even though a part of the gravity
dual of type D± mirrors corresponds to the asymptotic Poincaré AdS spacetime in the
presence of an EOW brane, which is restricted to u < uend, we need to paste another patch
for u > uend to obtain the entire dual gravitational spacetime. However, this is reasonable
since the former patch with u < uend fully describes the gravity dual of the causal future of
the mirror trajectory, whereas the other patch with u > uend depends on how the trajectory
evolves after reaching the null point at which the mirror reaches the speed of light.
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A Timelike-spacelike-timelike mirror

In the main text, four classes of timelike moving mirrors have been explored in detail. A
natural question is asking for the meaning of spacelike moving mirrors. In this appendix, we
explore the effect of spacelike mirrors by considering a smooth trajectory that is timelike at
the beginning, becomes spacelike, and then turns back to be timelike again. For simplicity,
we call this a TST mirror. Considering the mirror parametrized by the mapping function
v = p(u), the spacelike regime corresponds to p′(u) < 0. Noting the relation between the
mapping function p(u) and the velocity of the mirror, i.e.,

vm(t) ≡ p′(u)− 1
p′(u) + 1 , (A.1)

one finds that the spacelike mirror becomes superluminal, because of |vm(t)| > 1 for
p′(u) < 0. In the following, we first construct a simple TST mirror and then study the
entanglement entropy10 and also its gravity dual by using AdS/BCFT techniques.

A.1 Construction of TST mirror

Inspired by the kink mirror studied in [15, 16], e.g.,

kink mirror: p(u) = −β log
(
1 + e−u/β

)
+ β log

(
1 + e−(u−u0)/β

)
, (A.2)

we can consider a new mapping function defined by

pTST(u) = −2β log
(
1 + e−u/β

)
+ β log

(
1 + e+(u−u0)/β

)
+ β log

(
1 + e−(u−u0)/β

)
, (A.3)

10In fact, following the discussion in appendix B, the quantity computed in this way is not guaranteed to
be entanglement entropy, since p′(u) has a negative region. However, we here refer to it as entanglement
entropy with a slight abuse of terminology.
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whose first and second order derivatives read

p′TST(u) = 2
1 + e(u0−u)/β − tanh

(
u

2β

)
, p′′TST(u) =

sech2
(
u−u0

2β

)
− sech2

(
u
2β

)
2β , (A.4)

respectively. The characteristic behaviors of pTST(u) and p′TST(u) are shown in figure 23.
For later purpose, we note that the early-time and late-time limits of the mapping function
are given by

pTST(u) ≈ u+ u0 , ((u− u0)/β � −1) ,
pTST(u) ≈ u− u0 , ((u− u0)/β � 1 ) ,

(A.5)

respectively. From the second derivative p′′(u) one obtains the minimal value of p′(u), which
is located at u = u0/2 with

min
(
p′TST(u)

)
= p′TST

(
u0
2

)
= 4

exp
(
u0
2β

)
+ 1
− 1 , pTST

(
u0
2

)
= u0

2 . (A.6)

As a result, we find that the entire mirror trajectory contains a spacelike region when
u0 > 2β log 3. In this case, the mirror profile is first timelike, becomes spacelike afterward,
and then timelike again. If the displacement parameter u0 is smaller than the critical value
above, the mirror trajectory is always timelike and thus similar to the kink mirror defined
in eq. (A.2). For the described TST mirror, we will be focusing on in the following, the
transition between spacelike and timelike behavior happens at p′TST(u±) = 0, i.e.,

u± = 2βarcsech

 2
√

2√
2 + eu0/β ± e−

u0
β

(√(
eu0/β − 9

) (
eu0/β − 1

)3 + 3
)
 . (A.7)

Assuming eu0/β � 1, the two transition points are approximated by u− ≈ 0 and u+ ≈ u0.
Various trajectories of TST mirrors in the original (t, x) coordinates are depicted in figure 24.

Let us remind that according our classification, truncated mirrors are of type D. One
finds that the first segment of the TST mirror is nothing but a type D+ mirror. We
interpret the lightlike point of the type D mirror as the endpoint of its trajectory due to
the insertion of an infinite energy flux. For a TST mirror, it is expected that the stress
tensor Tuu diverges when the transition between timelike and spacelike behavior happens
due to p′TST(u) = 0. Substituting the mapping function pTST(u) for the TST mirror into
eq. (2.13), one can derive the corresponding energy flux. While the final expression is
complicated, we show a numerical plot in the left panel of figure 24 for illustration. Although
the TST mirror trajectory is smooth, one finds that the lightlike points play the role of a
branch cut due to divergences. We also find a similar phenomenon for the entanglement
entropy as well as for the holographic gravity dual. The smooth TST mirror also serves as a
motivation for considering the particular type D± as an independent category. Besides the
appearance of lightlike points in the TST mirror model, the spacelike part is rather exotic
since it appears to be ‘unphysical’. In the following, let us first discuss how to describe the
spacelike mirror by including a de Sitter brane with a large tension within the standard
AdS3/BCFT2 framework.
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Figure 24. Right: trajectories of various TST mirrors defined by the mapping function pTST(u) in
eq. (A.3). When the displacement parameter is larger than the critical value, i.e., u0/β > 2 log 3,
the middle part given by u ∈ (u−, u+) ≈ (0, u0) of the profile is always spacelike. Left: non-zero
stress tensor associated with the TST mirror. The divergences originate from the turning point u±
between spacelike and timelike trajectory with p′TST(u±) = 0.
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Timelike

Spacelike

pTST(u−)

ṽ = pTST(u) = ũ
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x̃

ṽũ

pTST(u+)

Figure 25. The map in eq. (A.8) defines the transformation between the TST mirror in the original
coordinates, (t, x), and the static mirror in (t̃, x̃) coordinates. The two timelike parts of the TST
mirror are mapped to the static one with a doubly covered region for t̃ ∈ [pTST(u+), pTST(u−)].

A.2 Holography with TST mirror

By now, we have constructed a smooth mirror trajectory using the continuous function
pTST defined in eq. (A.3). In order to discuss the holographic dual of a TST mirror, a naive
choice is applying the same transformations used for the other mirror types, i.e.,

ũ = p(u), ṽ = v , (A.8)

which map the mirror in (u, v) coordinates to the static mirror at x̃ = 0 in (ũ, ṽ) coordinates.
However, the spacelike mirror results in a problem when we use the map above. As
shown in figure 25, the two disconnected timelike parts of the TST mirror trajectory are
mapped to into two different segments of a static mirror, i.e., ũ ∈ (−∞, pTST(u−)) and
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Figure 26. The spacelike boundary in BCFT corresponds to inserting a dS brane with a tension
|T | > 1. Left: the expected bulk spacetime corresponding to a BCFT whose boundary follows a
timelike-spacelike-timelike trajectory as in the case of the TST mirror. Right: another configuration
that may mimic final state projection.

ũ ∈ (pTST(u+),+∞), respectively. Because the two lightlike points at u± are connected by a
spacelike part, we always have pTST(u+) < pTST(u−), which implies that the middle segment
with ũ ∈ (pTST(u+), pTST(u−)) is doubly covered via the function pTST(u) mapping the TST
mirror to the static mirror. Furthermore, one finds that the spacelike part of the TST
mirror is not really necessary, since the static mirror is always timelike. The problem is,
that we cannot map a (part of) spacelike mirror to the timelike boundary. In the following,
we argue that we should also include a spacelike boundary rather than considering a single
static mirror after the conformal map. As a consequence, the dual bulk spacetime contains
an extra de Sitter brane that intersects with two EOW branes.

A.2.1 Gravity dual of TST moving mirror

Let us first examine a spacelike boundary in BCFT2. In the standard AdS/BCFT corre-
spondence, reviewed in section 3.1.1, one can consider a timelike boundary, e.g., x̃ = 0,
in the BCFT and correspondingly obtain a timelike EOW brane, e.g., X = λη, as the
boundary of the dual bulk spacetime. Particularly, the brane tension T satisfies |T | < 1.
However, one may also find a solution by choosing the brane tension as |T | > 1.11

Naively, introducing the spacelike mirror can be problematic. However, we can inter-
pret the spacelike boundary via analytical continuation (wick rotation) from Euclidean
AdS/BCFT. In this case, the gravitational bulk spacetime contains a timelike dS brane

11For example, see [62] for various brane profiles embedded in AdS spacetime.

– 39 –



J
H
E
P
0
8
(
2
0
2
2
)
2
9
6

whose tension satisfies |T | > 1. Introducing a real parameter λ̃ by

λ ≡ T√
1− T 2

= (−i) T√
T 2 − 1

= iλ̃ , (A.9)

the EOW brane in Lorentzian Poincaré coordinates is given by

T = λ̃η , (A.10)

with an induced metric

ds2 =
−
(
λ̃2 − 1

)
dη2 + dX2

η2 . (A.11)

It is obvious that the EOW brane with |λ̃| > 1, corresponding to the spacelike boundary, is
nothing but a two-dimensional de Sitter spacetime. Different from the standard timelike
boundary of BCFT, the boundary entropy associated with the spacelike boundary now
takes complex values as follows

Sbdy = c

6 log
√

1 + T
1− T = c

6 log
√
T + 1
T − 1 + i

cπ

12 . (A.12)

The BCFT dual of this gravitational setup is constructed in [63].
For the sake of constructing the holographic dual spacetime for a TST mirror, a natural

expectation is that the dS brane could joint the AdS branes, whose intersections with BCFT
are timelike, as shown in the left panel of figure 26. However, we need to point out several
caveats in this proposal. First of all, one can find that this configuration with intersections
of branes explicitly breaks the symmetry of bulk spacetime. It is also expected because the
corresponding state of such a boundary theory is not described by the standard boundary
state |B〉 anymore. One exciting interpretation is that the spacelike boundary in BCFT is
related to a projective measurement. See e.g., [49] for more exploration in this direction.
Furthermore, as the joint between the spacelike mirror and timelike mirror on the conformal
boundary, the two types of branes also intersect in the bulk. One may wonder how to
understand the meaning of the brane intersection. For example, we expect that such an
intersection would cut a part of the brane, as shown in figure 26. Finally, we expect that
the dS brane inserted at distinct position would lead to different interpretations from the
perspective of the boundary field theory. Taking the right panel of figure 26, we would like
to argue that it presents a similar spirit as in final state projection. It is interesting to
explore this possibility as a future direction.

A.2.2 Entanglement entropy

In this subsection, we study the HEE SA of a subsystem in two-dimensional BCFT with a
TST mirror defined by the mapping function pTST(u) in eq. (A.3). On account of the EOW
brane, the RT surface of a boundary subsystem A can be defined as either the connected
or the disconnected geodesic. Although we have mentioned several difficulties with the
holographic dual of a TST mirror, we here leave it all aside and investigate the simplest
choice by taking the results via analytical continuation. Let us again consider a semi-infinite
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Figure 27. Time evolution of HEE SA of a subsystem A in the presence of a TST mirror. Left:
static, semi-infinite interval with endpoint located at xa = 10. Right: co-moving, semi-infinite
interval at various distances to the TST mirror. Note that all peaks appearing in both plots are
infinite in height.

line whose endpoint is located at x0. By performing an analytical continuation from the
Euclidean signature, the corresponding HEE is determined by the disconnected geodesic
described by the earlier formula derived in eq. (3.12). One may worry that the entanglement
entropy related to the spacelike mirror would be complex due to p′(u) < 0. Interestingly,
we can find that the imaginary part from log 1√

p′(u)
with p′(u) < 0 is exactly canceled by

that in the boundary entropy Sbdy derived in eq. (A.12). As a result, we still arrive at a
real-valued HEE, namely

SA = c

6 log va − p (ua)
ε
√
p′ (ua)

+ Sbdy = c

6 log va − p (ua)
ε
√
|p′ (ua) |

+ < (Sbdy) . (A.13)

In the following, we examine the entanglement entropy of the static, semi-infinite interval
and the co-moving one by using the TST mirror constructed via the mapping function
pTST(u) in eq. (A.3).

Static, semi-infinite interval. We first consider a static, semi-infinite interval A with
fixing its endpoint as xa = constant. The time evolution of HEE for the TST mirror is
plotted in figure 27. By using the linear approximation of pTST(u) for the TST mirror, as
shown in eq. (A.5), we may conclude that the leading-order of the time derivative ∂tSA
vanishes, i.e., the entanglement entropy is approximated by a constant at early and late
times. Besides this universal property, another new feature is the appearance of divergences
in the entanglement entropy. Obviously, these divergences are introduced by the two
lightlike points located at t− xa = u±, i.e.,

t ≈ xa , or t ≈ xa + u0 , (A.14)

where we have used the approximations u− ≈ 0 and u+ ≈ u0. This type of divergence is the
same as the one for the type D+ mirror, where the lightlike trajectory generates a positive,
divergent energy flux.

Co-moving, semi-infinite interval. Next, we study the time evolution of HEE for a
subsystem A with a co-moving endpoint xa(t). In particular, we take the distance between
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A and the mirror trajectory to be a constant ∆x, i.e., xa(t) = Z(t)+∆x. The time evolution
of the subsystem entropy for various ∆x is shown in figure 27. We observe that there is a
decay around t ≈ u0/2. Roughly speaking, this is caused by the fast decay of the distance
Va − Ua, when the endpoint of the subsystem evolves in time. For example, by using the
precise values pTST

(u0
2
)

= u0
2 and Z

(u0
2
)

= 0, and taking ∆x→ 0, we can use va = ua = u0
2 ,

i.e., t = u0
2 and x = Z(t) = 0, to exactly get

Va − Ua = va − pTST(ua) = t+ Z(t)− pTST(t− Z(t)) = 0 . (A.15)

When we take the endpoint xa away from the trajectory, i.e., ∆x 6= 0, the distance Va − Ua
does not exactly vanish and approaches a small value. As a result, one gets

lim
t→u0/2

∂SA
∂t
∼ −∞ . (A.16)

This illustrates the decays shown in figure 27 for the co-moving interval A.

B Lorentzian path integrals and density matrices

In this paper and previous works [15, 16], the entanglement entropies for moving mirrors
are computed by applying the RT formula [34–36], or equivalently by inserting twist
operators [59, 60] on Lorentzian path integrals defined on manifolds with moving mirrors.
Although these computations look straightforward and their results are consistent with
entanglement entropies directly computed from wave functionals of free scalars, justifications
for these computations are nontrivial.

The nontrivial point is whether our path integral gives a density matrix or not. Consider
a path integral defined on a Lorentzian manifold and pick up a Cauchy slice on this path
integral, then the Cauchy slice divides the whole path integral into two parts: one comes
from the past and the other comes from the future. Each of them defines a quantum state,
and the two quantum states are generically different. When the two quantum states are the
same, the path integral defines an ordinary density matrix on this Cauchy slice. Otherwise,
it will define a more general transition matrix [50], like setups in [49]. Our computation
via correlation functions of twist operators turns out to lead to entanglement entropies
when and only, when the path integral defines a density matrix on the Cauchy slice we are
focusing on, i.e., the Cauchy slice on which the twist operators are inserted.

Based on these, the goal of this appendix is to see that the path integrals in the main
text of this paper and previous works [15, 16] indeed define density matrices on the Cauchy
slices we are interested in. In the following, we firstly review the case for Euclidean path
integrals to help the readers grasp the idea. After that, we will present a sufficient condition
for a Lorentzian path integral to define a density matrix on a given Cauchy slice. At the
end, we will see that setups considered in the main text of this paper and [15, 16] indeed
fall into this class.
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B.1 Euclidean path integrals and reflection symmetries

Given a path integral defined on a Euclidean manifold ME , one can always introduce a
codimension-1 surface Σ which divides the original manifold into two disconnected parts.12

By regarding Σ as a spatial slice, the path integrals on the two sides define a bra state
〈α| and a ket state |β〉, respectively, and the partition function ZME

computes the inner
product of the two states,

ZME
=
∫
ME

Dφ e−SE [φ] = 〈α|β〉 . (B.1)

Note that the states here are not necessarily normalized. If one inserts some operator O on
this codimension-1 surface Σ, the path integral computes the weak value of O under the
transition matrix |β〉〈α|,∫

ME

Dφ e−SE [φ] O(Σ) = 〈α|O|β〉 = Tr (O|β〉〈α|) . (B.2)

In this way, we may say that the path integral overME defines the transition matrix |β〉〈α|
on Σ. In Euclidean formulation of QFTs, setups which are symmetric under the reflection
with respect to Σ are often considered. In these cases, 〈α| ∝ (|β〉)†, and therefore the path
integral realizes a density matrix on Σ. This symmetry is often referred to as the time
reflection symmetry, by regarding Σ as a Euclidean time slice.

For example, consider a Euclidean strip [−T/2, T/2]×R and use (τ, x) to parameterize
it. If we regard τ as the Euclidean time and impose the same boundary condition on
τ = ±T/2, then the path integral on this strip is time reflection symmetric with respect
to τ = 0. If we denote the state on τ = −T/2 as |B〉 and the state on τ = T/2 as 〈B|,
then the path integral over τ ∈ (−T/2, 0) defines the ket state e−HT/2 |B〉 and that over
τ ∈ (0, T/2) defines the bra state 〈B| e−HT/2. Since

(
〈B| e−HT/2

)†
= e−HT/2 |B〉, the path

integral defines the density matrix e−HT/2|B〉〈B|e−HT/2 on τ = 0.
Let us summarize the observations above as follows. Generally, a Euclidean path

integral realizes a transition matrix on a codimension-1 surface Σ. In some special cases,
the transition matrix becomes a density matrix. One sufficient condition for this to happen
is the reflection symmetry with respect to Σ.

As a result, when the Euclidean path integral is time reflection symmetric with respect
to Σ, inserting twist operators on Σ can compute entanglement entropy. Otherwise, it will
be computing pseudo entropy in general. For example, pseudo entropies are computed by
considering non symmetric Euclidean path integrals in [50, 64–66].

B.2 Lorentzian path integrals

Let us then move on to Lorentzian cases. Similarly, given a path integral defined on a
Lorentzian manifoldML, one can always introduce a Cauchy surface Σ which divides the
original manifold into two disconnected parts. The path integrals on the two sides define a
bra state 〈α| and a ket state |β〉.

12In this appendix, we use Σ to denote a codimension-1 surface in a path integral. This should be
distinguished from Σ in the main text, which is used to denote the manifold on which the BCFT is defined.
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Note that a time reflection symmetric setup in Lorentzian sense does not define a
density matrix in general. For example, consider a Lorentzian strip [−T/2, T/2]× R and
use (t, x) to parameterize the time and the spatial direction, respectively. If we impose the
same boundary condition on t = ±T/2, then the path integral on this strip is time reflection
symmetric with respect to t = 0. Similar to but different from the Euclidean case, the
path integral over t ∈ (−T/2, 0) defines the ket state e−iHT/2 |B〉 and that over t ∈ (0, T/2)
defines the bra state 〈B| e−iHT/2. Since

(
〈B| e−iHT/2

)†
= eiHT/2 |B〉 is not proportional to

e−iHT/2 |B〉 in general, the path integral does not define a density matrix but the transition
matrix e−iHT/2|B〉〈B|e−iHT/2 on t = 0.

The next question we would like to ask is when does a Lorentzian path integral define
a density matrix on a given Cauchy slice Σ. As explained above, by definition,

a given Lorentzian path integral on a given Cauchy slice Σ ⇐⇒ (〈α|)† ∝ |β〉 . (B.3)

When expressed in the language of the partition function, it means that

for any boundary condition φ(Σ) = ϕ,

(
Z
φ(Σ)=ϕ
M+

L

)∗
Z
φ(Σ)=ϕ
M−L

= const , (B.4)

whereM+
L (M−L ) is the upper (lower) half ofML separated by Σ, and

Z
φ(Σ)=ϕ
M±L

=
∫ φ(Σ)=ϕ

M±L
Dφ eiSL[φ] , (B.5)

is the partition function onM±L with boundary condition φ(Σ) = ϕ imposed on Σ. Here,
we would like to argue that the property eq. (B.4) is preserved under the following transfor-
mations.

First of all, we would like to argue, that for a given path integral defined on a static
spacetimeML, if eq. (B.4) is satisfied on a Cauchy slice Σ then it is also satisfied on any
other Cauchy slice Σ′. Precisely, it is an assumption rather than a conclusion. Basically,
what this assumption is saying is that the time translation induced by the Lorentzian path
integral between Σ and Σ′ is reversible. If we are considering a theory in which the time
translations are unitary, then of course they are reversible. On the other hand, there are
arguments saying that, in an expanding universe, the time translations should be regarded
as an isometry but not a unitary [24]. This is the reason, why we restrict this argument to
a static spacetime. For example, the right half plane R1,1/Z2 is a static spacetime.

Secondly, consider a 2D CFT defined on ML which is parameterized by (u, v) =
(t− x, t+ x) with the metric given by

ds2 = −dudv = −dt2 + dx2 . (B.6)

Consider mappingML to another manifold M̃L parameterized by (ũ, ṽ) = (t̃ − x̃, t̃ + x̃)
via the conformal transformation

ũ = p(u), ṽ = q(v) , (B.7)
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which satisfies

p′(u) > 0, q′(v) > 0 , (B.8)

with the metric given by

ds2 = −dũdṽ = −dt̃2 + dx̃2 . (B.9)

Then, for any Cauchy slice Σ ⊂ ML, its image Σ̃ ⊂ M̃L is also a Cauchy slice. This
is because the conformal map can be regarded as a diffeomorphism on ML which trans-
forms (B.6) to

ds2 = −
[ 1
p′(u)q′(v)

]
p(u)=ũ,q(v)=ṽ

dũdṽ , (B.10)

combined to a Weyl transformation to M̃L with the Weyl factor

e−2χ(ũ,ṽ) =
[
p′(u)q′(v)

]
p(u)=ũ,q(v)=ṽ , (B.11)

and both diffeomorphism and Weyl transformation (with positive Weyl factor) do not
change the causal structure. We would like to argue that, in this case, if eq. (B.4) is satisfied
on Σ̃ ⊂ M̃L, it is also satisfied on Σ ⊂ ML. To see this, note that (ML, e

2χηab) can be
obtained via a Weyl transformation e2χ from (M̃L, ηab). It is known that for 2D CFTs, the
measure of the path integral transforms as [67]

[Dφ]e2χηab = ei(I[χ,M̃L]−I[0,M̃L])[Dφ]ηab (B.12)

while the action does not change under such a transformation. Here, I[χ,M̃L] is the
Liouville action [68]

I[χ,M̃L] = c

24π

∫
M̃L

dũdṽ
[
−4∂ũχ∂ṽχ+ µe2χ

]
, (B.13)

where c is the central charge of the CFT we are considering.13

Let us now apply the Weyl transformation toM+
L andM−L separately. To do so, we

need to understand how the Weyl factor is modified with respect to the boundary condition
imposed on Σ.

Let us explicitly write down the path integral to see it more clearly. The path integral
overM±L can be written as

Z
φ(Σ)=ϕ
M±L

=
∫ φ(Σ)=ϕ

M±L
Dφ eiSL[φ] =

∫
M±L

Dφ eiSL[φ]δ[φ(Σ)− ϕ] , (B.14)

by using a delta wave functional δ[φ(Σ)− ϕ]. Under a Weyl transformation, the measure
picks up an overall factor as eq. (B.12), and the eiSL[φ] part is invariant. To proceed, we
need to figure out how the δ[φ(Σ)−ϕ] part transforms under the Weyl transformation. This
is in general a hard question, but here we would like to note that this should only depend

13See [69, 70] for related discussions in the context of computational complexity.
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t t̃

x x̃

u ũv ṽ

Figure 28. Sketch of a moving mirror setup (left) and its image (right). The physical region is
shaded grey. Instead of the right half plane, the physical region is given by the ũ < 0 portion of it.
Therefore, one should impose the boundary condition at ũ = 0 to perform the path integral.

on the quantities localized on Σ. In other words, the way of transformation for such a wave
functional should be able to be specified by Σ, its image after the Weyl transformation Σafter,
and the field configuration ϕ localized on the Cauchy slice. Let us denote the prefactor
associated with the Weyl transformation as A(Σ,Σaft, ϕ) which

δ[φaft(Σaft)− ϕaft] = A(Σ,Σaft, ϕ) δ[φ(Σ)− ϕ] , (B.15)

without identifying its explicit form. It is easy to see that A(Σ,Σaft, ϕ) = A∗(Σ,Σaft, ϕ) via
a lattice regularization of the current path integral since the conformal weights are real.
This property will turn out to be important in the following discussions.

Based on the discussions above, if (M̃L, ηab) satisfies eq. (B.4), then for any boundary
condition φ(Σ) = ϕ, there exists a corresponding boundary condition φ(Σ̃) = ϕ̃ such that(
Z
φ(Σ)=ϕ
M+

L

)∗
Z
φ(Σ)=ϕ
M−L

=

(
ei(I[χ,M̃

+
L ]−I[0,M̃+

L ])A(Σ̃,Σ, ϕ̃) Zφ(Σ̃)=ϕ̃
M̃+

L

)∗
ei(I[χ,M̃

−
L ]−I[0,M̃−L ])A(Σ̃,Σ, ϕ̃)Zφ(Σ̃)=ϕ̃

M̃−L

= e−i(I[χ,M̃L]−I[0,M̃L]) × const.

= const. (B.16)

and henceML satisfies eq. (B.4) on Σ. In short, though different boundary conditions pick
up different prefactors under a Weyl transformation, they are cancelled out when taking the
ratio between the path integral overM+

L and that overM−L . As a result, the property (B.4)
is preserved under conformal transformations in 2D CFT.

B.3 Path integrals on timelike moving mirror spacetime

Based on the discussions above, let us then come back to moving mirror setups. For timelike
moving mirrors in 2D CFTs, we analysed it in the following way. Firstly, we construct a
conformal map which satisfies eq. (B.8) and use it to map the original setup to the right
half plane. Then we treat the right half plane as the ground state on a half-infinite line.
Therefore, according to the first argument in the previous section, the path integral of
the right half plane defines a density matrix on any Cauchy slice. Moreover, according
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to the second argument in the previous section, the path integral on the moving mirror
spacetime defines a density matrix on any Cauchy slice. This is the reason why we can
compute the correlation functions and entanglement entropies successfully via the conformal
map method.

In fact, some nontrivial treatments which intrinsically help one to successfully compute
the entanglement entropy are performed in the escaping mirror setup [15, 16]. Consider an
escaping mirror setup with the mirror trajectory given by

x = −β arcsinh e
t
β

2 . (B.17)

This can be mapped to a right half plane by performing the following conformal transfor-
mation

ũ = −β log
(
1 + e

−u
β

)
, ṽ = v . (B.18)

More precisely, the resulting geometry is not the right half plane but the ũ < 0 portion of
it. See figure 28 for a sketch. In fact, there is a choice of the boundary condition imposed
on ũ = 0. The treatment performed in [15, 16] is to fill the ũ > 0 portion and use the
right half plane to perform computations. This treatment implicitly imposes a boundary
condition on ũ = 0, such that the path integral defines density matrices. In this sense, this
treatment implicitly allowed the authors of [15, 16] to reproduce entanglement entropy in
an escaping mirror. Note that the case of type D mirrors is similar to the escaping mirror
explained above.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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