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1 Introduction

Symmetric orbifold CFTs play important roles to explain black hole entropy microscopically,
especially for D1-D5 systems [1]. Such a microscopic model is typically described by a two-
dimensional sigma model, whose target space is an instanton moduli space [2–4]. Although
the geometry of this moduli space is complicated, the space is a singularity-resolved manifold
of a symmetric product of the moduli space of a single instanton [5, 6]. One specific type of
the resolution is given by the symmetric orbifold CFTs. This can be regarded as a special
example of AdS/CFT [7]. In order to have a genuine dual of classical gravity (namely
holographic CFTs), we need to introduce strong interactions in the symmetric orbifolds
via a suitable marginal deformation [8–10]. Nevertheless, the free symmetric orbifold CFT
before the deformation acquires the reputation of “something similar to two-dimensional
holographic CFTs”. Indeed, the match of the BPS spectrum was pointed out [11] for example.

Generally, to define a symmetric orbifold CFT, we start with an arbitrary seed CFT C
with a central charge c. The N -th symmetric orbifold CFT CN,S is defined by orbifolding
the product C⊗N by the symmetric group SN :

CN,S = C⊗N/SN , (1.1)

which has a central charge Nc. Every quantity in CN,S is completely determined by the
choice of seed theory C in principle.

Interestingly, symmetric orbifold CFTs are equipped with some important properties
which are necessary conditions for 2-dimensional CFTs to be holographic [12, 13]. The most
significant feature is the presence of the Hagedorn transition in the large N limit regardless
of the choice of the seed theory, as shown in [14, 15]. The reason for this is that each of
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them has a sparse low-energy spectrum in addition to that they obviously have a large
central charge Nc. Moreover, some multi-point correlation functions in symmetric orbifold
CFTs obey the large N factorization [16, 17].

However, it has been known that symmetric orbifold CFTs are not exactly holographic.
This is almost clear because the CFTs do not include interactions other than the orbifold
projections. Thus they are not chaotic, which can be explicitly seen from the Lyapunov
exponent calculations [18] and the evolution of entanglement entropy [19]. Refer also to [20–
23] for other quantum information theoretic approaches to the symmetric product CFTs.
Moreover, although symmetric orbifold CFTs have such sparse spectra that make Hagedorn
transition possible, the spectra are still too dense to have classical gravity duals [24]. In
the “bulk dual” point of view, the spectrum of symmetric orbifold CFTs contains too many
higher-spin modes and thus the bulk dual is not an ordinary classical (super)gravity even if
bulk dual exists.

Despite the above differences from what we expect for the holographic theory, investi-
gating symmetric orbifold CFTs further is still very intriguing. This is partly because they
provide tractable toy models of holographic CFTs. The mechanism of how holographic CFTs
admit their AdS gravity duals is not yet fundamentally understood, and the emergence
of bottom-up construction of holographic CFTs will aid in understanding. As we referred
above, some specific marginal deformations are believed to remove unnecessary higher-spin
modes and to deform the theory into an exact holographic CFT with a classical gravity
dual. For the case of a symmetric orbifold CFT with an N = 2 minimal model as the
seed theory, the marginal operator that removes such higher-spin modes, is constructed
recently [24, 25]. The study of symmetric orbifolds is also intriguing partly because they
are an interesting class of CFTs whose dynamical properties have not been understood
completely. For instance, recently, the complete set of boundary states in symmetric orbifold
CFT was constructed and their typical behaviors were compared with those expected from
gravity duals in an interesting way [25, 26]. In addition to these two motivations, specific
symmetric orbifold theories alone, without any deformations, can admit higher-spin gravity
dual: tensionless string theory on AdS geometry [27–31]. Research in this direction may
provide a more clear understanding of string geometry and ensemble average [32].

Every element of symmetric group SN can be decomposed into products of elements
of cyclic group Zi , where 1 ≤ i ≤ N . We can find a strong connection between a cyclic
orbifold CFT and a symmetric orbifold CFT. The N -th cyclic orbifold CFT CN,Z can be
obtained by orbifolding the tensor product of seed theory C⊗N by the cyclic group ZN :

CN,Z = C⊗N/ZN . (1.2)

The structure of cyclic orbifold CFT is much simpler than symmetric one, it is natural to
start with a study of cyclic orbifold CFTs. We can assemble the results of cyclic orbifolds
to obtain quantities in symmetric ones.

We must clarify here the strong connection we referred above. As for one of the
well-known results of symmetric orbifold CFTs, their partition functions on a torus can be
expressed in terms of so-called Hecke operators. We will show that the cyclic orbifold CFT
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partition function on the torus can also be expressed in terms of Hecke operators. The fact
that Hecke operators can describe both orbifold theories offers a strong connection.

The main purpose of the present paper is to explore the dynamical properties of cyclic
and symmetric orbifold CFTs, motivated by the above observations. A useful quantity
that characterizes the dynamical aspects is the entanglement entropy and its cousin, called
Renyi entropy. These entropies are defined in terms of the reduced density matrix obtained
by tracing out a subsystem. These quantities estimate the degrees of freedom in a given
quantum many-body system for static states. In particular, for two-dimensional CFTs,
these entropies follow universal rules for simple choices of subsystems [33, 34]. However, for
more non-trivial setups such as the entropies for double interval subsystems [35, 36] and
those for a single interval subsystem in a finite size system at finite temperature, the results
highly depend on the details of a given CFT, i.e. its spectrum and its interaction, as is
manifest in the free Dirac fermion case [37–40]. Moreover, they are helpful to characterize
how a quantum state gets thermalized, being sensible to whether the theory is chaotic
or not, under non-equilibrium processes such as the quantum quenches [41]. If we apply
the AdS/CFT correspondence [7], such a non-equilibrium process is typically dual to a
black hole formation [42, 43], whose behavior of entanglement entropy can be computed
from the holographic entanglement entropy [44–46] and from its generalization to boundary
conformal field theories [47, 48]. In this paper, we will study the entanglement entropy and
Renyi entropy for the above setups in cyclic and symmetric orbifold CFTs.

This paper is organized as follows. In section 2, we briefly review the symmetric/cyclic
orbifold CFT partition functions on a torus and then introduce Hecke operators. A
symmetric orbifold CFT partition function on a torus can be expressed in terms of Hecke
operators. In section 3, we review the replica methods in 2-dimensional CFTs, and develop
the method on Dirac fermion cyclic orbifold CFTs. We explicitly construct replica twist
operators for this cyclic orbifold. We also discuss the relation between the second Renyi
entropy for double intervals on a plane and the torus partition function. In section 4, we
calculate the Renyi and entanglement entropy in a finite size system at a finite temperature.
For the ZN cyclic orbifold CFT, we evaluate them by limiting to the “diagonal sectors” in
the CFT on replicated tori to Renyi and entanglement entropy analytically and show that
they reproduce the expected part of the thermal entropy by taking the limit where the
subsystem approaches the total system. However, the full contribution to the Renyi entropy
can be obtained only after summing over both the diagonal and non-diagonal sectors. Even
though this is difficult for general N , we solve this problem by focusing on the simplest case
of the second Renyi entropy at N = 2 and obtain the full expression. We also find that
a time-like 2-point function in N -th cyclic orbifold CFT can have a periodicity N times
longer than that in the seed CFT. In section 5, we extend the analysis in section 4 for cyclic
orbifolds to the dynamical process of quantum quenches described by the CFT on replicated
cylinders. We find that the periodicity of time-dependent entanglement entropy in the
N -th cyclic orbifold CFT gets N times larger than that in the seed CFT. In section 6, we
introduce a new type of Hecke operator (we call square-free Hecke operator) by deforming
the ordinary Hecke operator. This new operator is necessary for constructing cyclic orbifold
CFT partition functions in terms of Hecke operators. Here, through Hecke operators, the
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connection between partition functions of symmetric orbifold CFTs and those of cyclic ones,
becomes very clear. By using this connection, we show the calculation of diagonal Renyi
entropy in Dirac fermion symmetric orbifold theory. In section 7, we discuss the connection
between symmetric orbifold CFTs and holographic CFTs. We provide evidence for Dirac
fermion symmetric orbifold theory to have expN recurrence time, which is a significantly
long time even for such an integrable CFT. In section 8, we summarize our conclusions and
discuss future problems. In appendix A, we present the definitions and properties of the
theta functions. In appendix B, we present examples of Hecke operators. In appendix C,
we explain the construction of orbifold partition functions.

2 Orbifold CFT preliminaries

In this section, we briefly review orbifold CFTs, especially so-called symmetric orbifold
CFTs and cyclic orbifold CFTs. We mainly focus on the partition functions of these orbifold
CFTs, on a torus with complex structure τ (q = exp[2πiτ ]). In subsection 2.2, we review
partition functions of symmetric orbifold CFTs, and their generating function. We also
review the well-organized expressions of symmetric orbifold CFT partition functions in
terms of Hecke operators, which are mainly used in the context of number theory. Examples
of Hecke operators and partition functions are displayed in appendix B. We also review
cyclic orbifold CFT partition functions in 2.3 shortly. We will revisit this topic in 6.1.

We introduce a seed CFT C with a central charge c which we can prepare arbitrarily.
We assume that the CFT C has a modular invariant torus partition function Z(τ), which
has the q-expansion

Z(τ) =
∑

m,m̄∈I
d(m, m̄)qmq̄m̄. (2.1)

Cyclic and Symmetric orbifold CFTs can be obtained by orbifolding C⊗N by cyclic group
ZN or symmetric group SN , respectively:

CN,S = C⊗N/SN , (2.2)
CN,Z = C⊗N/ZN . (2.3)

Their central charges are both Nc. From this construction, symmetric/cyclic orbifold CFTs
are completely determined by the choice of seed theory C in principle.

2.1 General orbifold partition functions

The partition function of CFT orbifolded by some discrete group G is [49]

1
|G|

∑
g,h∈G
gh=hg

h�
g

= 1
|G|

∑
g,h∈G
gh=hg

Tr(g)
[
hqHL q̄HR

]
, (2.4)

where HL and HR are the Hamiltonian in the left and right moving sectors, respectively.
Here, g labels the (un)twisted sectors, and running h corresponds to the projection.
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2.2 Symmetric orbifold partition function

The generating function of the N -th symmetric orbifold partition function ZN (τ) is well-
known [14, 15, 50, 51];∑

N≥0
pNZN,S(τ) =

∏
n>0

∏
m,m̄∈I

m−m̄≡0 mod n

1
(1− pnqm/nq̄m̄/n)d(m,m̄) . (2.5)

Here, product over m, m̄ ∈ I (m− m̄ ≡ 0 mod n) can be interpreted as insertion of

δ(n)(m− m̄) ≡ 1
n

n−1∑
k=0

e2πi k
n

(m−m̄). (2.6)

This insertion can be interpreted as performing an orbifold projection. We can calculate
the effect of this projection explicitly by replacing τ/n with (τ + 1)/n.

Alternatively, there is another expression of the generating function [14, 51];

ZN,S(τ) =
∑

partition of N

N∏
k=1

1
(Nk)!

(TkZ(τ))Nk , (2.7)

where the partition of N runs over (N1, . . . , NN ) s.t.
N∑
k=1

kNk = N . Here we introduced the

Hecke operator Tk,

TkZ (τ) ≡ 1
k

∑
i|k

i−1∑
j=0

Z

(
kτ

i2
+ j

i

)
. (2.8)

We will discuss the Hecke operator in detail in subsection 6.1. Yet another expression of
the generating function [51] reads:

∑
N≥0

pNZN,S(τ) = exp
[ ∞∑
k=1

pkTkZ(τ)
]
. (2.9)

2.3 Cyclic orbifold partition function

The cyclic orbifold partition function is, G = ZN version of (2.4),

ZN,Z(τ) =
N−1∑
l=0

Tr(l)

(∑N
l′=1 g

l′

N
qHL q̄HR

)

= 1
N

∑
l,l′

Tr(l)
(
gl
′
qHL q̄HR

)
(2.10)

where g is one of the generators of ZN and l labels the (un)twisted sectors. In the l-twisted
sectors, operators in j-th CFT change to ones in (j + l)-th CFT when moving from z to
z + 1. In [51], the more apparent form of N -th cyclic orbifold partition function ZN,Z(τ) is
proposed:

ZN,Z(τ) = 1
N

∑
r,s=1,...,N

Z

((N, r)
N

( (N, r)
(N, r, s)τ + κ(r, s)

))(N,r,s)
, (2.11)
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where κ(r, s) is defined to be the smallest integer in {0, 1, . . . , N
(N,r) − 1} that satisfies

κ(r, s)r − (N,r)s
(N,r,s) ≡ 0 mod N . If N is a prime number, this function becomes as

ZN,Z(τ) = 1
N
Z(τ)N + (N − 1)TNZ(τ)

= 1
N

Z(τ)N + (N − 1)

Z(Nτ) +
N−1∑
j=0

Z

(
τ + j

N

) . (2.12)

This prime N case is indicated in [52].
We will newly derive the representation of this partition function in terms of Hecke

operators in subsection 6.1.

3 Twist operators

A basic and powerful way to calculate the entanglement entropy in two-dimensional CFTs is
to employ the replica method [33, 34]. The n-th Renyi entropy for subsystem A is defined by

S
(n)
A = 1

1− n logTr[(ρA)n], (3.1)

where ρA is the reduced density matrix obtained by tracing out the complement of A for
a given quantum state. In the Euclidean path-integral, the quantity Tr[(ρA)n] is equal to
the partition function on an n-sheeted Riemann surface where the cuts are introduced on
the subsystem A as sketched in figure 1. This partition function can be computed as a
correlation function of twist operators, denoted by σn and σ̄n, inserted on the boundaries
∂A. When the subsystem A is a union of s intervals [ξ1, η1] ∪ [ξ2, η2] · · · ∪ [ξs, ηs], then we
find that Tr[(ρA)n] is given by the 2s point function:

Tr[(ρA)n] = 〈σn(ξ1)σ̄n(η1) · · ·σn(ξs)σ̄n(ηs)〉. (3.2)

Here the correlation function in the right-hand side is normalized such that 〈1〉 = 1 and
this corresponds to the normalization of density matrix TrρA = 1.

The twist operator σn(ξ) creates a cut at z = ξ such that a 2π rotation around z = ξ

reaches the next sheet. In other words, the periodicity around z = ξ is 2πn. The other
twist operator σ̄n(ξ) has the opposite winding such that it absorbs the cut created by σn.
In this section below, we would like to study the properties of the twist operators in the
Dirac fermion CFT and its cyclic orbifolds.

3.1 Twist operators in Dirac fermion CFT

For the free massless Dirac fermion CFT with c = 1, we can find an explicit formula of twist
operators [37, 53]. This can be generalized to the cyclic orbifold CFTs as we explain below.
Consider a free massless Dirac fermion on a complex plane whose coordinate is expressed
as (z, z̄). We write the Dirac fermion field as (ψL(z), ψ̄L(z)) for the left-moving mode and
(ψR(z̄), ψ̄R(z̄)) for the right-moving mode. They satisfy the OPE relation

ψL(z)ψ̄L(0) ∼ 1
z
, ψR(z)ψ̄R(0) ∼ 1

z̄
. (3.3)
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Tr[(ρA)n]=

A

ξ1 ξ2η1 η2

Figure 1. The replica method calculation of Tr[(ρA)n]. We set s = 2 and n = 5.

In the replica calculation, we write n replicas of the Dirac fermion as ψL,[a] (a = 1, 2, · · · , n)
(and similarly in the right-moving sector). If the fermion goes around a point (simply we
choose z = 0) where the twist operator is inserted, the fermion will go back to the original
sheet after 2πn rotation. However, in this 2πn rotation, the fermion will get the extra phase
−(−1)n. This can be found by conformally mapping from the n-sheeted surface described
by z coordinate into a single plane described by w via w = z1/n. The fermion transforms
as ψL(z) = z

1−n
2n ψL(w). Since in the w-plane there is no holonomy, we obtain the phase

eπi
1−n
n each time ψL(z) goes around z = 0. Therefore under the 2π rotation, the fermion

transforms as follows:
ψL,[a] → eπi(

1−n
n )ψL,[a+1]. (3.4)

Now we perform the discrete Fourier transformation

ψ̃L,q = 1√
n

n∑
a=1

e−2πi qa
n ψL,[a]. (3.5)

By introducing q by shifting p as p = q+ 1−n
2 , under the 2π rotation z → ze2πi, the fermion

transformation reads
ψ̃L,p → e2πi p

n ψ̃L,p. (3.6)

We can choose p to be p = −n−1
2 ,−n−3

2 , · · · , n−1
2 . Note that p takes integer values (or

half-integer values) when n is odd (or even), respectively. Finally, the twist operator inserted
at a point z = z∗ can be explicitly written in the form1 [37]:

σn(z∗, z̄∗) =
n−1

2∏
p=−n−1

2

ei
p
n(ϕ̃L,p(z∗)−ϕ̃R,p(z̄∗)),

σ̄n(z∗, z̄∗) =
n−1

2∏
p=−n−1

2

e−i
p
n(ϕ̃L,p(z∗)−ϕ̃R,p(z̄∗)), (3.7)

where ϕ̃L,R is the massless free scalar field obtained from the bosonization

ψ̃L(z) = eiϕ̃L(z), ¯̃ψL(z) = e−iϕ̃L(z),

ψ̃R(z̄) = eiϕ̃R(z̄), ¯̃ψR(z̄) = e−iϕ̃R(z̄). (3.8)

1Equivalently we can choose
∏n−1

2
p=−n−1

2
ei

p
n (ϕ̃L,p(z∗)+ϕ̃R,p(z̄∗)) by replacing ψR with ψ̄R and vice versa.
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The OPE looks like

ϕ̃L(z)ϕ̃L(0) ∼ − log z, ϕ̃R(z̄)ϕ̃R(0) ∼ − log z̄. (3.9)

To see why the form of the twist operator (3.7) makes sense, note that the OPE

ψ̃L(z)ei
p
n
ϕ̃L(z∗) ∼ (z − z∗)

p
n · ei(1+ p

n)ϕ̃L(z∗), (3.10)

leads to the desired monodromy under the rotation (3.6).

3.2 Relation between second Renyi entropy and torus partition function

For n = 2, we know the following remarkable relation between the partition function of a
general CFT with central charge c defined on a 2-sheeted Riemann surface and that on a
torus [36, 54] as depicted in figure 2:

Tr[ρ2
A] = 〈σ̂2(0)σ̂2(x)σ̂2(1)σ̂2(∞)〉 = (28x(1− x))−

c
12 · Ztorus(τ), (3.11)

where τ is the moduli of the torus and we assume it is rectangular i.e. τ = τ̄ . The twist
operator σ̂2 at each location should be chosen appropriately among several candidates as
we will explain below. The moduli is related to x via

x =
[
θ2(τ)
θ3(τ)

]4
, 1− x =

[
θ4(τ)
θ3(τ)

]4
. (3.12)

In our Dirac fermion CFT we have c = 1 and there are two types of twist operators:

σ2 = e
i
4

(
ϕ̃
L, 12
−ϕ̃

R, 12

)
· e
− i

4

(
ϕ̃
L,− 1

2
−ϕ̃

R,− 1
2

)
,

σ̄2 = e
− i

4

(
ϕ̃
L, 12
−ϕ̃

R, 12

)
· e

i
4

(
ϕ̃
L,− 1

2
−ϕ̃

R,− 1
2

)
. (3.13)

We get the following three different partition functions depending on the different
choices of the order of twist operators:

〈σ2(0)σ̄2(x)σ2(1)σ̄2(∞)〉 = θ2
3

θ2θ4
= x−

1
4 (1− x)−

1
4 ,

↔ TrNS(qL0 q̄L̄0) =
∣∣∣∣θ3(τ)
η(τ)

∣∣∣∣2 .
〈σ2(0)σ̄2(x)σ̄2(1)σ2(∞)〉 = θ4

θ2
= x−

1
4 (1− x)

1
4 ,

↔ TrNS((−1)F qL0 q̄L̄0) =
∣∣∣∣θ4(τ)
η(τ)

∣∣∣∣2 .
〈σ2(0)σ2(x)σ̄2(1)σ̄2(∞)〉 = θ2

θ4
= x

1
4 (1− x)−

1
4 ,

↔ TrR(qL0 q̄L̄0) =
∣∣∣∣θ2(τ)
η(τ)

∣∣∣∣2 . (3.14)

Note that the sector TrR(−1)F simply vanishes and thus is absent in the above. Our conven-
tions of theta functions and eta function, used in the above, are summarized in appendix A.
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Tr[(ρA)2]

＝
A

Figure 2. Equivalence between Tr[(ρA)2] and a torus partition function in two-dimensional CFTs.

The above identification (3.14) can be understood by examining the holonomy along
the two cycles of the torus which correspond to the circle which surrounds z = 0 and z = x

and the one which does z = x and z = 1. When the two twist operators surrounded by each
circle have the same (or different) sign, then the circle follows the R (or NS) sector boundary
condition. This analysis also reveals that our previous choice of the twist operator (3.7)
corresponds to the NS sector. In this paper, we will focus on the NS sector contribution below.

3.3 Twist operators in ZN cyclic orbifold CFT

Now we would like to turn to the cyclic orbifold CFT constructed from N Dirac fermions,
denoted by ψjL,R and ψ̄jL,R (j = 1, 2, · · · , N) by the ZN orbifold action:

g : (ψjL,R, ψ̄
j
L,R)→ (ψj+1

L,R , ψ̄
j+1
L,R). (3.15)

We can diagonalize again by taking the discrete Fourier transformation

ψ̃
(k)
L,R = 1√

N

N∑
j=1

e−2πi kj
N ψjL,R, (k = 0, 1, · · · , N − 1), (3.16)

so that the ZN action simply multiplies the phase factor g : ψ̃(k)
L,R → e2πi k

N ψ̃
(k)
L,R. For the

calculation of Tr(ρA)n in the cyclic orbifold CFT, we consider the replicated fermions,
denoted by

ψjL,[a](z), ψ̄jL,[a](z), ψjR,[a](z̄), ψ̄jR,[a](z̄), (3.17)

where j = 1, 2, · · · , N and a = 1, 2, · · · , n. After we perform the discrete Fourier transfor-
mations (3.5) and (3.16) with respect to j and a, we obtain

ψ̃
(k)
L,p(z), ¯̃ψ(k)

L,p(z), ψ̃
(k)
R,p(z̄), ¯̃ψ(k)

R,p(z̄), (3.18)

where k = 0, 1, 2, · · · , N − 1 and p = −n−1
2 , · · · , n−1

2 .
The partition functions in NS sector look like (from (2.10))

ZNS
N,Z =

N−1∑
l=0

Tr(l)NS

[
N−1∑
l′=0

gl
′

N
qHL q̄HR

]

= 1
N

N−1∑
l,l′=0

N−1∏
k=0

ei
πk2
N2 l

2(τ−τ̄)

∣∣∣∣∣∣
θ3
(
kl′

N + kl
N τ |τ

)
η(τ)

∣∣∣∣∣∣
2

, (3.19)
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where l = 0, 1, · · · , N − 1 is the label of the twisted sectors such that l = 0 is the untwisted
sector and the summation over l′ realizes the ZN projection. We can easily confirm the
invariance under the S transformation τ → −1/τ .

In order to calculate the entanglement entropy, we again need to examine the twist
operator σn in the replica of the orbifold CFT. By bosonizing the Nn fermions

ψ̃
(k)
L,p(z) = eiϕ̃

(k)
L,p(z), ψ̃

(k)
R,p(z̄) = eiϕ̃

(k)
R,p(z̄), (3.20)

the twist operator at z = z∗ can be explicitly written as in the N = 1 case (3.7):

σn(z∗, z̄∗) =
n−1

2∏
p=−n−1

2

N−1∏
k=0

ei
p
n

(ϕ̃(k)
L,p(z∗)−ϕ̃(k)

R,p(z̄∗)),

σ̄n(z∗, z̄∗) =
n−1

2∏
p=−n−1

2

N−1∏
k=0

e−i
p
n

(ϕ̃(k)
L,p(z∗)−ϕ̃(k)

R,p(z̄∗)). (3.21)

Note that the ZN cyclic orbifold action shifts the scalar as follows:

g : ϕ̃
(k)
L,p → ϕ̃

(k)
L,p + 2πk

N
, ϕ̃

(k)
R,p → ϕ̃

(k)
R,p + 2πk

N
. (3.22)

It is obvious that the twist operator (3.21) is invariant under this ZN action and also that
it provides the correct ZN twist of the Dirac fermions.

3.4 Twist operator in N = 2 cyclic/symmetric orbifold CFT

As the simplest example among non-trivial cyclic orbifolds, we consider the N = 2 cyclic
orbifold. This can also be regarded as the N = 2 symmetric orbifold CFT. In this case, the
NS sector partition function takes the form:

ZNS
2,Z =

∣∣∣∣θ3(τ)
η(τ)

∣∣∣∣2 ·
(
|θ3(τ)|2 + |θ4(τ)|2 + |θ2(τ)|2

2|η(τ)|2

)
. (3.23)

If we compare this with

Z2,Z = 1
2

[
Z(τ)2 + Z(2τ) + Z

(
τ

2

)
+ Z

(
τ + 1

2

)]
, (3.24)

then we identify (we employ the formulas in appendix A.2)

Z(τ) =
∣∣∣∣θ3(τ)
η(τ)

∣∣∣∣2 = 22/3x−1/6(1− x)−1/6,

Z(2τ) =
∣∣∣∣θ4(2τ)
η(2τ)

∣∣∣∣2 = 24/3x−1/3(1− x)1/6,

Z

(
τ

2

)
=
∣∣∣∣∣θ2

(
τ
2
)

η
(
τ
2
) ∣∣∣∣∣

2

= 24/3x1/6(1− x)−1/3,

Z

(
τ + 1

2

)
= 0. (3.25)
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In terms of the twist operator four-point functions, we find

Tr[ρ2
A] = 2−

4
3x−

1
6 (1− x)−

1
6ZNS

2,Z

= 2−
4
3
(
x−

1
2 (1− x)−

1
2 + (1− x)−

1
2 + x−

1
2
)
,

= 〈σ2(0)σ̄2(x)σ2(1)σ̄2(∞)〉+ 〈σ2(0)¯̃σ2(x)σ̃2(1)σ̄2(∞)〉
+ 〈σ2(0)σ̄2(x)σ̃2(1)¯̃σ2(∞)〉, (3.26)

where we defined the twist operators as follows:

σ2 = e
i
4 ϕ̃

(0)
L, 12

(z∗)− i
4 ϕ̃

(0)
R, 12

(z̄∗)
· e
− i

4 ϕ̃
(0)
L,− 1

2
(z∗)+ i

4 ϕ̃
(0)
R,− 1

2
(z̄∗)

· e
i
4 ϕ̃

(1)
L, 12

(z∗)− i
4 ϕ̃

(1)
R, 12

(z̄∗)
· e
− i

4 ϕ̃
(1)
L,− 1

2
(z∗)+ i

4 ϕ̃
(1)
R,− 1

2
(z̄∗)

,

σ̃2 = e
i
4 ϕ̃

(0)
L, 12

(z∗)− i
4 ϕ̃

(0)
R, 12

(z̄∗)
· e
− i

4 ϕ̃
(0)
L,− 1

2
(z∗)+ i

4 ϕ̃
(0)
R,− 1

2
(z̄∗)

· e
− i

4 ϕ̃
(1)
L, 12

(z∗)+ i
4 ϕ̃

(1)
R, 12

(z̄∗)
· e

i
4 ϕ̃

(1)
L,− 1

2
(z∗)− i

4 ϕ̃
(1)
R,− 1

2
(z̄∗)

. (3.27)

Also, σ̄2 and ¯̃σ2 are simply the complex conjugate of σ2 and σ̃2, respectively. The reason why
we need to introduce extra twist operators σ̃2 and ¯̃σ2 in addition to the original ones (3.21)
is because we need to twist the boundary conditions along the two cycles of the torus in a
way that exchanges the two fermion fields in the N = 2 cyclic orbifold. Indeed, if a fermion
goes around the twist fields σ̃2 and ¯̃σ2, it is not only moved into the other sheet of replica
but also replaced with the other one i.e. ψ1

L,[1] → iψ2
L,[2].

4 Entanglement entropy in cyclic orbifold CFTs on a finite size space at
finite temperature

Here we would like to study the entanglement entropy on a compactified space at finite
temperature for the cyclic orbifolds, as shown in figure 3. In general, we can calculate the
quantity Tr[(ρA)n] as the two-point function of twist operators on a torus:

Tr[(ρA)n] = 〈σn(z1, z̄1)σn(z2, z̄2)〉T 2 , (4.1)

where we introduce the torus coordinate (z, z̄) such that it is compactified as z ∼ z + 1
and z ∼ z + τ , where we set τ = iβ in terms of the inverse temperature β. For a single
Dirac fermion CFT i.e. N = 1 this was studied in [37]. Refer also to [55] for general CFT
arguments. Below we will generalize this previous calculation to our orbifolds for N > 1.

4.1 Entanglement entropy in cyclic orbifolds

Consider entanglement entropy in the cyclic orbifold CFTs. We can bosonize the twist
operators in terms of free scalars as we have seen in (3.21). Thus, one may think the
Renyi entropy and entanglement entropy can be analytically computed in the cyclic orbifold
CFTs by a straight generalization of the Dirac fermion case. However, if we consider the
summation over all twisted sectors of the cyclic orbifold CFTs, the n replicated fermions

– 11 –
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2π

β

Figure 3. A sketch of calculation of entanglement entropy on a torus.

can have different boundary conditions on each torus in general. This makes the analytical
computation complicated. Therefore, in this subsection, we focus on the diagonal sectors
where all of the fermions ψ(k)

L,p for all values of k = 0, 1, 2, · · · , N − 1 satisfy the same
boundary condition, described by (l, l′), on the torus. Later, we will provide a full analysis
including all non-diagonal sectors by focusing on the simplest case N = 2 and n = 2, i.e.
the second Renyi entropy in the Z2 cyclic / S2 symmetric orbifold.

4.1.1 Two-point functions in free scalar CFT on torus

In the ZN cyclic orbifold, the twist operators are expressed by (3.21) in terms of scalar
fields. Therefore to calculate the two-point function of twist operators (4.1), we need to
know the two-point functions of scalar fields on a torus.

Consider a massless free scalar field on a torus with the moduli τ = τ1 + iτ2. It obeys
the twisted boundary condition compactified at radius R:

ϕ(z + 1, z̄ + 1) = ϕ(z, z̄) + 2πRw + 2πR k

N
l,

ϕ(z + τ, z̄ + τ̄) = ϕ(z, z̄) + 2πRw′ + 2πR k

N
l′, (4.2)

where w,w′ ∈ Z and l, l′ = 0, 1, 2, · · · , N − 1. Later we will set R = 2. In this case, we find
eiϕL → e2πi k

N
leiϕL and eiϕR → e2πi k

N
leiϕR , which fits nicely with the ZN transformation

of ψ̃(k)
L,R. In this interpretation, l and l′ are the labels of twisted sectors and projections,

respectively. Therefore, we will later fix the value of l, l′, and k and sum over w and w′ in
order to focus on the contribution from a single scalar ϕ̃(k)

p .
Below we follow the computations in section 12.6 of the textbook [56] and generalize

it to the twisted boundary condition shown above. We consider the two-point function
〈Oe,mO−e,−m〉 on a torus, where

Oe,m = eipLϕL+ipRϕR ,

pL = e

R
+ mR

2 , pR = e

R
− mR

2 . (4.3)

This has the conformal dimension

he,m = 1
2

(
e

R
+ mR

2

)2
, h̄e,m = 1

2

(
e

R
− mR

2

)2
. (4.4)
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We have

Tr(k,l)
[
gl
′ ·Oe,m(z1, z̄1)O−e,−m(z2, z̄2)qH q̄H̄

]
= Z(l,l′,k) · 〈Oe,m(z1, z̄1)O−e,−m(z2, z̄2)〉(l,l′,k), (4.5)

where Z(l,l′,k) is the vacuum partition function with the twisted boundary condition (4.2).
We also introduce x12 + iy12 = z12 ≡ z1 − z2. We define q = e2πiτ as usual.

This is evaluated in our setup as follows:

Z(l,l′,k) · 〈Oe,m(z1, z̄1)O−e,−m(z2, z̄2)〉(l,l′,k)

= R√
2τ2|η(τ)|2 ·

[
∂zθ1(0|τ)
θ1(z12|τ)

]2he,m [∂z̄θ1(0|τ̄)
θ1(z̄12|τ)

]2h̄e,m

×
∑

w,w′∈Z
e
−πR

2
2τ2

[
(w′−wτ1+ k

N
(l′−lτ1))2+(w+ k

N
l)2
τ2
2

]
· e

2π
R2τ2

(
ey12−imR2

2 x12

)2

× e

(
2πie
τ2

y12+πmR2
τ1

x12

)
(w′+ k

N
l′) · e

[
2πie
τ2

(x12τ2−y12τ1)−πmR
2

τ2
(y12τ2+x12τ1)

]
(w+ k

N
l)
. (4.6)

In the above, the first factor R√
2τ2|η(τ)|2 arises from the non-zero modes of the free scalar.

By performing the Poisson resummation
∑
w′

e−πaw
′2+2πibw′ = 1√

a

∑
w̃

e−
π
a

(w̃−b)2
, (4.7)

we can rewrite (4.6) as follows:

Z(l,l′,k) · 〈Oe,m(z1, z̄1)O−e,−m(z2, z̄2)〉(l,l′,k)

= 1
|η(τ)|2 ·

[
∂zθ1(0|τ)
θ1(z12|τ)

]2he,m [∂z̄θ1(0|τ̄)
θ1(z̄12|τ)

]2h̄e,m

×
∑
w,w̃

e−
2πτ2
R2 w̃2−πR

2τ2
2 (w+ k

N
l)2+2πiw̃(wτ1− k

N
(l′−lτ1))

× e2πi
(

2ie
R2 y12+x12m

)
w̃+(2πiex12−πmR2y12)(w+ k

N
l). (4.8)

In particular, if we set e = m = 0 and R = 2 (free fermion radius), we obtain2

Z(l,l′,k) = 1
|η(τ)|2

∑
w,w̃

e−
πτ2

2 w̃2+2πiw̃(wτ1− k
N

(l′−lτ1)) · e−2π(w+ k
N
l)2
τ2

=
∑
w,w̃

q
1
2 (w+w̃/2)2

q̄
1
2 (w−w̃/2)2

· e−2πiw̃ k
N

(l′−lτ1) · e−4π k
N
lwτ2−2π k

2l2
N2 τ2 . (4.9)

When w̃ is even, we introduce the integers r = w + w̃/2 and s = w − w̃/2. When w̃ is
odd, we introduce the integers r + 1

2 = w + w̃/2 and s− 1
2 = w − w̃/2. In both cases, we

2As we expect from the T-duality, we can get the same result for R = 1. In this case, we need to rescale
k → 2k in order to fit the definition of twisted boundary condition.
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find that (r, s) are any integers that satisfy the constraint r − s ≡ 0 (mod 2). This leads to
the decomposition into three sectors:

Z(l,l′,k) = e−2π k
2l2
N2 τ2

2|η(τ)2|

[
|Z3|2 + |Z4|2 + |Z2|2

]
, (4.10)

where

Z3 =
∑
r∈Z

qr
2/2e−2πi k

N
rl′e2πi k

N
lrτ = θ3

(
− k

N
l′ + k

N
lτ |τ

)
,

Z4 =
∑
r∈Z

(−1)rqr2/2e−2πi k
N
rl′e2πi k

N
lrτ = θ4

(
− k

N
l′ + k

N
lτ |τ

)
,

Z2 =
∑
r∈Z

q(r+1/2)2/2e−2πi k
N
l′(r+1/2)e2πi k

N
l(r+1/2)τ = θ2

(
− k

N
l′ + k

N
lτ |τ

)
. (4.11)

Since we can flip the sign l′ → −l′, the above result reproduces the vacuum partition
function (3.19) as

ZNS
N,Z = 1

N

N−1∑
l,l′=0

N−1∏
k=0

ZNS
(l,l′,k)

= 1
N

N−1∑
l,l′=0

N−1∏
k=0

e−2π k
2l2
N2 τ2

|θ3
(
k
N l
′ + k

N lτ |τ
)
|2

|η(τ)|2 , (4.12)

where we restrict to the NS sector trace TrNS[1].

4.1.2 Two-point function of twist operators in diagonal sectors

Now we would like to turn to the calculation of entanglement entropy. For this purpose we
need to calculate the two-point function of the twist operators (3.21). We can realize the
twist operator σ̃n in terms of Oe,m as

σn =
(n−1)/2∏

p=−(n−1)/2

N−1∏
k=0

O
(k)
0, p
n
,

O
(k)
0, p
n

= ei
p
n

(ϕ̃(k)
L,p−ϕ̃

(k)
R,p), (4.13)

for each sector (l, l′). We chose z1 = L and z2 = 0 for the subsystem A.
In this subsection, we focus on the diagonal sectors i.e. the fermions for any k respect

the same boundary condition (l, l′). This is simply because the non-diagonal sectors are too
complicated, though we will work out the full expression for N = n = 2 in subsection 4.3.

By using the result (4.8), for fixed values of (l, l′) and the free fermion radius R = 2,
picking up the NS sector result, we obtain(

ZNS
(l,l′)

)n
· 〈σn(L)σ̄n(0)〉(l,l′)

=
(n−1)/2∏

p=−(n−1)/2

N−1∏
k=0

e−2π k
2l2
N2 τ2

|η(τ)2|

∣∣∣∣∣2πη(τ)3

θ1(L|τ)

∣∣∣∣∣
4hp
·
∣∣∣∣θ3

(
− k

N
l′ + k

N
lτ + p

n
L|τ

)∣∣∣∣2 , (4.14)

where we introduced hp = p2

2n2 and ZNS
(l,l′) = ∏N−1

k=0 ZNS
(l,l′,k).
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4.1.3 Renyi entropy in diagonal sectors

Now let us calculate the entanglement entropy for a fixed diagonal sector. The n-th Renyi
entropy S(n)

A(l,l′) is written as

S
(n)
A(l,l′) = 1

1− n
[
log〈σn(L)σ̄n(0)〉(l,l′)

]
≡ S(n)1

A(l,l′) + S
(n)2
A(l,l′). (4.15)

Here, we defined the first term S
(n)1
A(l,l′) as the θ1 contribution:

S
(n)1
A(l,l′) = N

6

(
1 + 1

n

)
log

∣∣∣∣ θ1(L|τ)
2πδη(τ)3

∣∣∣∣ , (4.16)

where the central charge is given by c = N and we inserted the UV cut-off δ. The second
contribution is from the other terms:

S
(n)2
A(l,l′)

= 1
1−n

(n−1)/2∑
p=−(n−1)/2

N−1∑
k=0

log

e−2π k
2l2
N2 τ2

|η(τ)2|
·
∣∣∣∣θ3

(
− k

N
l′+ k

N
lτ+ p

n
L|τ

)∣∣∣∣2
− n

1−n log
[
ZNS

(l,l′)

]
.

(4.17)
We are interested in the difference between the Renyi entropy for the total system L = 1−σ
and that for the infinitesimally small subsystem L = σ with the limit σ → 0:

lim
σ→0

[
S

(n)
A(l,l′)(1− σ)− S(n)

A(l,l′)(σ)
]

= lim
σ→0

[
S

(n)2
A(l,l′)(1− σ)− S(n)2

A(l,l′)(σ)
]

= 1
1− n

(n−1)/2∑
p=−(n−1)/2

N−1∑
k=0

log

e−2π k
2l2
N2 τ2

|η(τ)2|
·
∣∣∣∣θ3

(
− k

N
l′ + k

N
lτ + p

n
|τ
)∣∣∣∣2


− 1
1− n

(n−1)/2∑
p=−(n−1)/2

N−1∑
k=0

log

e−2π k
2l2
N2 τ2

|η(τ)2|
·
∣∣∣∣θ3

(
− k

N
l′ + k

N
lτ |τ

)∣∣∣∣2
 . (4.18)

We would like to argue

lim
σ→0

[
S

(n)
A(l,l′)(1− σ)− S(n)

A(l,l′)(σ)
]

= 1
1− n log

ZNS
(l,nl′)(nτ)
ZNS

(l,l′)(τ)n
, (4.19)

where ZNS
(l,l′)(τ) is

ZNS
(l,l′)(τ) = Tr(l)

[
gl
′
qHL q̄HR

]
=

N−1∏
k=0

e−2π k
2l2
N2 τ2

|η(τ)2|
·
∣∣∣∣θ3

(
− k

N
l′ + k

N
lτ |τ

)∣∣∣∣2 , (4.20)

ZNS
(l,nl′)(nτ) = Tr(l)

[
gnl
′
qnHL q̄nHR

]
=

N−1∏
k=0

e−2π k
2l2
N2 nτ2

|η(nτ)2|
·
∣∣∣∣θ3

(
− k

N
nl′ + k

N
lnτ |nτ

)∣∣∣∣2 . (4.21)
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We can show (4.19) by employing the formula (A.19) to perform the sum over p. Note that
when considering ZNS

(l,nl′)(nτ), not only τ but also the ZN action gl′ get multiplied by n.
We can extend this procedure to the full diagonal Renyi entropy S

(n)
A,diag. The first

contribution is universal and thus is the same as the one in the fixed diagonal sector:

S
(n)
A,diag = 1

1− n [log〈σn(L)σ̄n(0)〉]

≡ S(n)1
A,diag + S

(n)2
A,diag, (4.22)

S
(n)1
A,diag = S

(n)1
A(l,l′) = N

6

(
1 + 1

n

)
log

∣∣∣∣ θ1(L|τ)
2πδη(τ)3

∣∣∣∣ . (4.23)

The second contribution is from the other terms:

S
(n)2
A,diag = 1

1− n log

 1
N

N−1∑
l,l′=0

(n−1)/2∏
p=−(n−1)/2

N−1∏
k=0

e−2π k
2l2
N2 τ2

|η(τ)2|
·
∣∣∣∣θ3

(
− k

N
l′ + k

N
lτ + p

n
L|τ

)∣∣∣∣2


− n

1− n log

 1
N

N−1∑
l,l′=0

N−1∏
k=0

e−2π k
2l2
N2 τ2

|η(τ)2|
·
∣∣∣∣θ3

(
− k

N
l′ + k

N
lτ |τ

)∣∣∣∣2
 . (4.24)

Although this equality is somewhat complicated, the following quantity is relatively under-
standable:

lim
σ→0

[
S

(n)
A,diag(1− σ)− S(n)

A,diag(σ)
]

= 1
1− n log

 1
N

N−1∑
l,l′=0

(n−1)/2∏
p=−(n−1)/2

N−1∏
k=0

e−2π k
2l2
N2 τ2

|η(τ)2|
·
∣∣∣∣θ3

(
− k

N
l′ + k

N
lτ + p

n
|τ
)∣∣∣∣2


− 1
1− n log

 1
N

N−1∑
l,l′=0

(n−1)/2∏
p=−(n−1)/2

N−1∏
k=0

e−2π k
2l2
N2 τ2

|η(τ)2|
·
∣∣∣∣θ3

(
− k

N
l′ + k

N
lτ |τ

)∣∣∣∣2


= 1
1− n log

 1
N

∑N−1
l,l′=0 Z

NS
(l,nl′)(nτ)

1
N

∑N−1
l,l′=0

(
ZNS

(l,l′)(τ)
)n
 . (4.25)

We employ the formula (A.19) again to perform the product over p. As we can see, only
the first terms of S(n)2

A,diag(1− σ) and S(n)2
A,diag(σ) contribute.

We should notice again that the above calculation is for the diagonal sectors. It is
necessary to consider off-diagonal sectors — applying different twist-boundary conditions
(labeled by (l, l′)) for different replica sheets. Summing over all possible boundary condition
will yield the complete Renyi entropy. However, naive construction of replica-twist operators
cannot formulate the different boundary conditions for arbitrary N and n. If we could
calculate the complete Renyi entropy S(n)

A including contributions from both diagonal and
off-diagonal sectors, then we expect instead of (4.19)

lim
σ→0

[
S

(n)
A (1− σ)− S(n)

A (σ)
]

= 1
1− n log Z(nτ)

Z(τ)n , (4.26)
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where Z(τ) is the full partition function of any given two-dimensional CFT, including both
the cyclic and symmetric orbifolds. Later we will explicitly confirm this relation (4.26) for
N = n = 2.

For reference, we perform here the high-temperature expansion of S(n)
A(l,l′). By performing

the modular S transformation to S(n)1
A(l,l′), we obtain (we set τ = iβ)

S
(n)1
A(l,l′) = N

6

(
1+ 1

n

)
log

 βπδ e−πL
2

β sinh
(
πL

β

) ∞∏
m=1

(
1−e

2πL
β e
− 2π
β
m
)(

1−e−
2πL
β e
− 2π
β
m
)

(1−e−
2π
β
m)2

 .
(4.27)

To evaluate S(n)2
A(l,l′), we employ the following formula:

∣∣∣∣θ3

(
− k

N
l′ + k

N
lτ + p

n
L

∣∣∣∣τ)∣∣∣∣2

= β · e
− 2π
β

(
kl′
N

+ pL
n

)2

· e2πβ k
2l2
N2

∣∣∣∣θ3

(
− k

Nτ
l′ + k

N
l + p

nτ
L

∣∣∣∣−1
τ

)∣∣∣∣2 . (4.28)

This leads to

S
(n)2
A(l,l′) = 1

1− n

(n−1)/2∑
p=−(n−1)/2

(
−2πN

β

)
p2L2

n2 + S̃
(n)2
A(l,l′)

= πN

6β

(
1 + 1

n

)
L2 + S̃

(n)2
A(l,l′), (4.29)

where the contribution S̃(n)2
A(l,l′) is evaluated as follows

S̃
(n)2
A(l,l′) = 1

1−n

(n−1)/2∑
p=−(n−1)/2

N−1∑
k=0

log

e− 2πk2l′2
N2β e

− 4πkpl′L
Nnβ

|η(τ)|2
∣∣∣∣θ3

(
k

N
l+i k

Nβ
l′−i pL

nβ

∣∣∣∣ iβ
)∣∣∣∣2


− n

1−n

N−1∑
k=0

log

e− 2πk2l′2
N2β

|η(τ)|2
∣∣∣∣θ3

(
k

N
l+i k

Nβ
l′
∣∣∣∣ iβ
)∣∣∣∣2


= 1
1−n

(n−1)/2∑
p=−(n−1)/2

N−1∑
k=0

log
[∣∣∣∣θ3

(
k

N
l+i k

Nβ
l′−i pL

nβ

∣∣∣∣ iβ
)∣∣∣∣2 ·∣∣∣∣θ3

(
k

N
l+i k

Nβ
l′
∣∣∣∣ iβ
)∣∣∣∣−2]

.

(4.30)

4.1.4 Von-Neumann entanglement entropy in diagonal sectors

Next, we compute the entanglement entropy by taking the von-Neumann limit n = 1 in the
replica method. We again focus on the diagonal sectors. The part of the Renyi entropy
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S̃
(n)2
A(l,l′) can be explicitly written as

S̃
(n)2
A(l,l′) = 1

1− n

(n−1)/2∑
p=−(n−1)/2

N−1∑
k=0

log |Fk,p|2,

Fk,p ≡
∞∏
m=1

(
1 + e

2πikl
N e

−2π kl
′

Nβ e
2π pL

nβ e
− 2π
β

(m−1/2)
)(

1 + e
−2πikl
N e

2π kl
′

Nβ e
−2π pL

nβ e
2π
β

(m−1/2)
)

(
1 + e

2πikl
N e

−2π kl′
Nβ e

− 2π
β

(m−1/2)
)(

1 + e−
2πikl
N e

2π kl′
Nβ e

2π
β

(m−1/2)
) .

(4.31)

Then we can expand the logarithm as follows

S̃
(n)2
A(l,l′) = 1

1− n

(n−1)/2∑
p=−(n−1)/2

N−1∑
k=0

∞∑
m=1

∞∑
s=1

(−1)s−1

s
e
−2π(m− 1

2) sβ [Gs,m,p,k −Gs,m,0,k] ,

Gs,m,p,k ≡ e
2π
(
i lks
N
− l
′ks
Nβ

+Lps
nβ

)
+ e

2π
(
−i lks

N
− l
′ks
Nβ

+Lps
nβ

)
+ e

2π
(
i lks
N

+ l′ks
Nβ
−Lps
nβ

)
+ e

2π
(
−i lks

N
+ l′ks
Nβ
−Lps
nβ

)
. (4.32)

By performing the summation over m, we obtain

S̃
(n)2
A(l,l′) = 1

1− n

(n−1)/2∑
p=−(n−1)/2

∞∑
s=1

(−1)s−1

s · sinh
(
πs
β

) ·
sinh

(
πLs
β

)
sinh

(
πLs
nβ

) − n


×

sinh
[
N
(
πi lsN −

πl′s
Nβ

)]
sinh

[
πi lsN −

πl′s
Nβ

] +
sinh

[
N
(
πi lsN + πl′s

Nβ

)]
sinh

[
πi lsN + πl′s

Nβ

]
 .

By taking the von-Neumann limit n→ 1, we find

S̃
(1)2
A(l,l′) =

∞∑
s=1

(−1)s

s · sinh
(
πs
β

) · [πLs
β

coth
(
πsL

β

)
− 1

]

×

sinh
[
N
(
πi lsN −

πl′s
Nβ

)]
sinh

[
πi lsN −

πl′s
Nβ

] +
sinh

[
N
(
πi lsN + πl′s

Nβ

)]
sinh

[
πi lsN + πl′s

Nβ

]
 .

The final expression of the entanglement entropy for the (l, l′) sector is given by

S
(1)
A(l,l′) = N

3 log
[
β

πδ
sinh

(
πL

β

)]
+N

3

∞∑
m=1

log


(

1−e
2πL
β e
− 2π
β
m
)(

1−e−
2πL
β e
− 2π
β
m
)

(
1−e−

2π
β
m
)2

+S̃(1)2
A(l,l′).

(4.33)

4.2 Time-like correlation function in cyclic orbifolds

Before we proceed to study entanglement entropy further, we would like to stop here to
explore the periodicity under the time evolution in cyclic orbifolds. First note that in the
k-th fermion, l-th twisted sector is defined by the twisted boundary condition

ψ
(k)
L,R(x+ 1) = e

2πikl
N ψ(x)(k)

L,R (4.34)
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Figure 4. The replica method calculation of second Renyi entropy on a torus for a cyclic orb-
ifold CFT.

for both the left (L) and right (R) moving sectors. Then the quantized fermionic modes
look like (

ψ
(k)
L

)
−n+ kl

N

,
(
ψ

(k)
R

)
−n− kl

N

, (n ∈ Z). (4.35)

Now we set
O(z, z̄) = ψ

(k)
L (z)ψ̄(k)

R (z̄) = eiϕ
(k)
L (z)−iϕ(k)

R (z̄), (4.36)

which has a non-trivial phase under the time translation as

ei2πHt
[(
ψ

(k)
L

)
−n+ kl

N

(
ψ̄

(k)
R

)
−m+ kl

N

]
e−2πiHt = e2πi(n+m− 2kl

N )t
[(
ψ

(k)
L

)
−n+ kl

N

(
ψ̄

(k)
R

)
−m+ kl

N

]
.

(4.37)

We would like to evaluate the two-point function 〈O(z, z̄)O(0, 0)〉, by choosing the
time-like separation: (z, z̄) = (T,−T ). Or if we set z12 = x12 + iy12 we set y12 = iT . By
plugging this and (e,m) = (0, 1) into (4.6), we obtain

Z(l,l′) · 〈O(T,−T )O(0, 0)〉(l,l′)

= Z(l,l′) e
−4πi klT

N

∣∣∣∣∣ 2πη3

θ1(T |τ)

∣∣∣∣∣
2
θ3(klτ−kl′N − T |τ)θ3(klτ−kl′N + T |τ)∣∣∣θ3(klτ−kl′N |τ)

∣∣∣2 . (4.38)

The phase factor e−4πiT kl
N is consistent with (4.37). Summation over (l, l′) gives the two-

point function Z · 〈O(T,−T )O(0, 0)〉. This shows that the periodicity in the time direction
is T ∼ T +N for odd N and T ∼ T +N/2 for even N .

4.3 Second Renyi entropy at N = 2

To fully evaluate the Renyi entropy including both the diagonal and non-diagonal sectors,
here we analyze the second Renyi entropy in the Z2 cyclic orbifold or equally the S2
symmetric orbifold, i.e. N = n = 2, as shown in figure 4. In this case, the twisted operators
are found as (3.27). We again write the full partition function at finite temperature β to be
Z(β). When we fully sum over all sectors, the Trρ2

A is written in the form

Z(β) · 〈σ2(L)σ̄2(0)〉 = Zk=0(L, τ) · Zk=1(L, τ), (4.39)
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where we find the k = 0 contributions from our previous calculation as follows:

Zk=0(L, τ) = 1
|η(τ)|4 ·

∣∣∣∣∣2πη(τ)3

θ1(L|τ)

∣∣∣∣∣
1/4

·
∣∣∣∣θ3

(
L

4 |τ
)∣∣∣∣4 . (4.40)

We can decompose the final part as follows

Zk=1(L, τ) = 1
4

1∑
l1,l′1=0

1∑
l2,l′2=0

Z
(l2,l′2)
(l1,l′1) (L, τ), (4.41)

where (l1, l′1) and (l2, l′2) describe the first and second sheets of replicated partition functions.
The sectors with (l1, l2) 6= (l2, l′2) are off-diagonal.

It is useful to extract the factor related to θ1(L|τ) as

Z(β) · 〈σ2(L)σ̄2(0)〉 = 1
|η(τ)|4 ·

∣∣∣∣∣2πη(τ)3

θ1(L|τ)

∣∣∣∣∣
1/2

·
∣∣∣∣θ3

(
L

4 |τ
)∣∣∣∣4 · Z̃k=1(L, τ), (4.42)

in order to remove the singular behavior in the L→ 0 limit.
We can again decompose the final part as follows

Z̃k=1(L, τ) = 1
4

1∑
l1,l′1=0

1∑
l2,l′2=0

Z̃
(l2,l′2)
(l1,l′1) (L, τ). (4.43)

The second Renyi entropy is computed from the two-point function

S
(2)
A = − log〈σ2(L)σ̄2(0)〉. (4.44)

Thus we find the difference SA − SAc in the limit where A approaches the total space reads

S
(2)
A (L = 1)− S(2)

A (L = 0) = − log
[
Z(0)(2τ)
Z(0)(τ)2

]
− log

[
Z̃k=1(1, τ)
Z̃k=1(0, τ)

]
, (4.45)

where Z(0)(τ) is the vacuum partition function of k = 0 part (i.e. a single Dirac fermion)

Z(0)(τ) = |θ3(τ)|2
|η(τ)|2 . (4.46)

Indeed, the first term in the right-hand side of (4.45) is equal to the 2nd Renyi thermal
entropy of the k = 0 part of the N = 2 cyclic orbifold CFT, which is identical to the single
Dirac fermion CFT. We would like to argue that the second term coincides with the 2nd
Renyi thermal entropy of the k = 1 part as follows:

Z̃k=1(1, τ)
Z̃k=1(0, τ)

= Z(1)(2τ)
Z(1)(τ)2 , (4.47)

where Z(1)(τ) is the vacuum partition function of k = 1 part (i.e. a Z2 orbifolded fermion)

Z(1)(τ) = |θ3(τ)|2 + |θ2(τ)|2 + |θ4(τ)|2
2|η(τ)|2 . (4.48)

This relation between the difference of the Renyi entropy and the thermal entropy is
physically obvious as L = 1 means that the subsystem A coincides with the total system.
However, its explicit derivation is non-trivial as we will present below.
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4.3.1 Diagonal parts

We already computed the diagonal case i.e. l1 = l2(= l) and l′1 = l′2(= l′), which leads to

Z̃
(l,l′)
(l,l′) (L, τ) = e−πl

2τ2

∣∣∣θ3
(
− l′

2 + τl
2 + L

4

)∣∣∣2 ∣∣∣θ3
(
− l′

2 + τl
2 −

L
4

)∣∣∣2
|η(τ)|4 . (4.49)

In the limit L→ 0, we obtain

Z̃
(0,0)
(0,0) (0, τ) = |θ3(τ)|4

|η(τ)|4 , Z̃
(0,1)
(0,1) (0, τ) = |θ4(τ)|4

|η(τ)|4 ,

Z̃
(1,0)
(1,0) (0, τ) = |θ2(τ)|4

|η(τ)|4 , Z̃
(1,1)
(1,1) (0, τ) = 0. (4.50)

In the limit L→ 1, we obtain

Z̃
(0,0)
(0,0) (1, τ) = Z̃

(0,1)
(0,1) (1, τ) = |θ3(2τ)|2

|η(2τ)|2 ,

Z̃
(1,0)
(1,0) (1, τ) = |θ2(2τ)|2

|η(2τ)|2 , Z̃
(1,1)
(1,1) (1, τ) = 0. (4.51)

4.3.2 Off-diagonal parts

The off-diagonal partition functions are new. First, note the symmetry

Z
(a,b)
(c,d) (L, τ) = Z

(c,d)
(a,b)(L, τ). (4.52)

Let us start with (l1, l′1) = (0, 0) and (l2, l′2) = (1, 0). In this case, the fermion follows
the boundary condition in the real z-direction:

ψ̃
(0)
± (z + 1) = ψ̃

(0)
± (z),

ψ̃
(1)
± (z + 1) = ψ̃

(1)
∓ (z). (4.53)

Therefore, in the k = 1 sector, the periodicity in the Rez direction gets doubled as
ψ̃

(1)
± (z + 2) = ψ̃

(1)
± (z), which makes the moduli of the torus halved i.e. τ

2 . Therefore
Z̃

(0,0)
(1,0)(L, τ) is computed by the four-point function rather than a square of two-point

functions:

Z
(1,0)
(0,0) (L, τ) = 〈e

i
4 ϕ̃

(−)
+ (L)e−

i
4 ϕ̃

(−)
− (L)e

i
4 ϕ̃

(−)
+ (0)e−

i
4 ϕ̃

(−)
− (0)〉

= 〈e
i
4 ϕ̃

(−)
+ (L)e−

i
4 ϕ̃

(−)
+ (L+1)e

i
4 ϕ̃

(−)
+ (0)e−

i
4 ϕ̃

(−)
+ (1)〉. (4.54)

This is evaluated as follows

Z
(1,0)
(0,0) (L, τ) = 1

|η
(
τ
2
)
|2

∣∣∣∣∣∣ 2πη
(
τ
2
)3

θ1
(
L
2 |
τ
2

)
∣∣∣∣∣∣

1
4
∣∣∣∣∣∣ 2πη

(
τ
2
)3

θ1
(
L+1

2 |
τ
2

)
∣∣∣∣∣∣
− 1

4
∣∣∣∣∣∣2πη

(
τ
2
)3

θ1
(

1
2 |
τ
2

)
∣∣∣∣∣∣

1
4 ∣∣∣∣θ2

(
τ

2

)∣∣∣∣2 . (4.55)

Here the final factor
∣∣θ2
(
τ
2
)∣∣2 comes from the winding mode summation.
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This leads to

Z̃
(1,0)
(0,0) (L, τ) = 1

|η(τ)|4
∣∣∣∣θ2

(
τ

2

)∣∣∣∣ 72 ∣∣∣∣θ2

(
L

2 |
τ

2

)∣∣∣∣ 12 . (4.56)

By adding the diagonal projection l′1 = l′2 = 1 to the above result, we obtain

Z̃
(1,1)
(0,1) (L, τ) = 1

|η(τ)|4
∣∣∣∣θ1

(
τ

2

)∣∣∣∣ 72 ∣∣∣∣θ1

(
L

2 |
τ

2

)∣∣∣∣ 12 = 0. (4.57)

Next consider the asymmetric projection case (l1, l′1) = (0, 0) and (l2, l′2) = (0, 1). In
this case, the imaginary direction Imz gets doubled due to the twisted boundary condition

ψ̃
(0)
± (z + τ) = ψ̃

(0)
± (z),

ψ̃
(1)
± (z + τ) = ψ̃

(1)
∓ (z). (4.58)

Therefore the moduli of the torus is given by 2τ .

Z
(0,1)
(0,0) (L, τ) = 1

|η (2τ) |2

∣∣∣∣∣2πη (2τ)3

θ1 (L|2τ)

∣∣∣∣∣
1
4
∣∣∣∣∣ 2πη (2τ)3

θ1 (L+ τ |2τ)

∣∣∣∣∣
− 1

4
∣∣∣∣∣2πη (2τ)3

θ1 (τ |2τ)

∣∣∣∣∣
1
4

|θ4 (2τ)|2 . (4.59)

This leads to

Z̃
(0,1)
(0,0) (L, τ) = 1

|η(τ)|4 |θ4 (2τ)|
7
2

∣∣∣∣θ4

(
L

2 |2τ
)∣∣∣∣ 12 ,

Z̃
(1,1)
(1,0) (L, τ) = 1

|η(τ)|4 |θ2 (2τ)|
7
2

∣∣∣∣θ2

(
L

2 |2τ
)∣∣∣∣ 12 , (4.60)

where in the latter we added a diagonal twist in Rez direction.
Finally we consider the case (l1, l′1) = (1, 0) and (l2, l′2) = (0, 1). In this case, the both

Rez and Imz for k = 1 are twisted as

ψ̃
(1)
± (z + 1) = ψ̃

(0)
∓ (z),

ψ̃
(1)
± (z + τ) = ψ̃

(1)
∓ (z). (4.61)

Since ψ̃(1)
± (z + τ + 1) = ψ̃

(1)
± (z), we can regard the torus as defined by the identification

z ∼ z + 2 and z ∼ z + τ + 1. Therefore the moduli is given by τ+1
2 . This is evaluated as

follows

Z
(0,1)
(1,0) (L, τ) = 1

|η
(
τ+1

2

)
|2

∣∣∣∣∣∣∣
2πη

(
τ+1

2

)3

θ1
(
L
2 |
τ+1

2

)
∣∣∣∣∣∣∣

1
4
∣∣∣∣∣∣∣

2πη
(
τ+1

2

)3

θ1
(
L+1

2 |
τ+1

2

)
∣∣∣∣∣∣∣
− 1

4
∣∣∣∣∣∣∣
2πη

(
τ+1

2

)3

θ1
(

1
2 |
τ+1

2

)
∣∣∣∣∣∣∣

1
4 ∣∣∣∣θ2

(
τ + 1

2

)∣∣∣∣2 .
(4.62)

This leads to

Z̃
(1,1)
(0,0) (L, τ) = 1

|η(τ)|4
∣∣∣∣θ1

(
τ + 1

2

)∣∣∣∣ 72 ∣∣∣∣θ1

(
L

2 |
τ + 1

2

)∣∣∣∣ 12 = 0,

Z̃
(0,1)
(1,0) (L, τ) = 1

|η(τ)|4
∣∣∣∣θ2

(
τ + 1

2

)∣∣∣∣ 72 ∣∣∣∣θ2

(
L

2 |
τ + 1

2

)∣∣∣∣ 12 . (4.63)
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If we take the limit L→ 0, we obtain

Z̃
(1,0)
(0,0) (0, τ) = |θ2(τ)θ3(τ)|2

|η(τ)|4 , Z̃
(0,1)
(0,0) (0, τ) = |θ3(τ)θ4(τ)|2

|η(τ)|4 ,

Z̃
(1,1)
(0,1) (0, τ) = Z̃

(1,1)
(1,0) (0, τ) = Z̃

(1,1)
(0,0) (0, τ) = 0, Z̃

(0,1)
(1,0) (0, τ) = |θ2(τ)θ4(τ)|2

|η(τ)|4 . (4.64)

In the limit L→ 1, we obtain

Z̃
(1,0)
(0,0) (1, τ) = Z̃

(1,1)
(0,1) (1, τ) = 0, Z̃

(0,1)
(0,0) (1, τ) = |θ4(2τ)|2

|η(2τ)|2 ,

Z̃
(1,1)
(1,0) (1, τ) = Z̃

(1,1)
(0,0) (1, τ) = Z̃

(0,1)
(1,0) (1, τ) = 0. (4.65)

These results (4.50), (4.64), (4.51), and (4.65) confirm the identity (4.47) we wanted
to show.

5 Entanglement entropy in cyclic orbifold CFTs under quantum quenches

An excited state produced by a global quantum quench can be modeled by a regularized
boundary state [41]:

|Ψ(t)〉 = N e−iHte−εH |B〉, (5.1)

where |B〉 is a boundary state (or Cardy state) in a given CFT. In this section, we would
like to study the evolution of entanglement entropy for such excited states in the cyclic
orbifold CFT on a circle. At N = 1 i.e. the c = 1 Dirac fermion CFT, this was studied
in [40] and we will closely follow the convention in that paper below. We write the complex
coordinate of the cylinder by (y, ȳ) = (τ + iσ, τ − iσ), where the spacial coordinate σ is
compactified as σ ∼ σ + 2π. We choose subsystem A to be an interval with length σ at the
real-time t as depicted in figure 5. The endpoints of A, denoted by (y1, ȳ1) and (y2, ȳ2), are
given by

(y1, ȳ1) = (ε+ it, ε+ it), (y2, ȳ2) = (ε+ it+ iσ, ε+ it− iσ). (5.2)

The entanglement entropy can be computed from the partition function of n sheeted
cylinder

Zcyl
n = 〈Bn|σn(y1, ȳ1)σ̄n(y2, ȳ2)|Bn〉, (5.3)

where |Bn〉 is the boundary state of the n folded CFT.

5.1 Boundary state of a single fermion CFT

Consider the N = 1 case, i.e. the c = 1 free Dirac fermion. We can bosonize the fermion
into a scalar and this leads to the following expression of boundary state

|B〉N=1 = N1 · e−
∑∞

n=1
1
n
αL,−nαR,−n

∑
w∈Z
|w〉, (5.4)

where αL,n and αR,n are the left and right-moving parts of the oscillators in the scalar field
ϕ̃ = ϕ̃L(y) + ϕ̃R(ȳ). They satisfy the familiar commutation relation

[αL,n, αL,m] = [αR,n, αR,m] = nδn+m,0. (5.5)
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Figure 5. A sketch of the calculation of entanglement entropy on a cylinder.

The two-point functions of typical primary fields can be computed as follows (note that
we set τ = 2iε

π and that we have kR = −kL for winding modes) [40]:

〈B|e−2εHeikL(ϕ̃L(y1)−ϕ̃R(ȳ1))e−ikL(ϕ̃L(y2)−ϕ̃R(ȳ2))|B〉

=
∑
w

e−
R2
2 εw2 · 1

η(τ) ·

 η(τ)6θ1
(
y1+ȳ2

2πi

)
θ1
(
y2+ȳ1

2πi

)
θ1
(
y2−y1

2πi

)
θ1
(
ȳ2−ȳ1

2πi

)
θ1
(
y1+ȳ1

2πi

)
θ1
(
y2+ȳ2

2πi

)
k

2
L

. (5.6)

We choose the free fermion radius i.e. R = 2 as before. Then the summation over w leads
to the NS sector partition function∑

w

e−
R2
2 εw2 = θ3(τ). (5.7)

To calculate Tr(ρA)n, we choose kL = p
n and take the product as follows

Tr[(ρA)n] =
n−1

2∏
p=−n−1

2

〈Bn|e−2εHei
p
n

(ϕ̃L(y1)−ϕ̃R(ȳ1))e−i
p
n

(ϕ̃L(y2)−ϕ̃R(ȳ2))|Bn〉. (5.8)

Since we have ∑n−1
2

p=−n−1
2

p2

n2 = 1
12

(
n− 1

n

)
, we find the n-th Renyi entropy is given by [47]:

S
(n)
A = − ∂

∂n
logTr[(ρA)n]

= 1
12

(
1 + 1

n

)
log

∣∣θ1
(
σ
2π |τ

)∣∣2 ∣∣∣θ1
(
ε+it
πi |τ

)∣∣∣2∣∣∣η (2iε
π

)∣∣∣6 ∣∣∣θ1
(
ε+it
πi + σ

2π |τ
)∣∣∣ ∣∣∣θ1

(
ε+it
πi −

σ
2π |τ

)∣∣∣ δ2
, (5.9)

where we inserted the infinitesimally small parameter δ as the UV cut-off, which is a
standard prescription in the CFT calculation of entanglement entropy (e.g. see [34]). This
time evolution of entanglement entropy has the periodicity by π as

S
(n)
A (t+ π, σ) = S

(n)
A (t, σ). (5.10)
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Figure 6. The plot of entanglement entropy as a function of time t for the c = 1 Dirac fermion
CFT under quantum quenches. We set n = 2 (2nd Renyi entropy), ε = 0.2 and δ = 1. The blue
(bottom), orange, green, and red (top) curves describe the entanglement entropy for σ = π

4 ,
π
2 ,

3π
4

and π, respectively.

Refer to the numerical plot shown in figure 6. We find the linear growth until t = σ
2 and

then the plateau later until t = π − σ
2 as the usual evolution of entanglement entropy

in quantum quenches [41], which can be explained by the propagation of entangled pairs
created by the quench at t = 0.

5.2 Entanglement entropy in cyclic orbifold CFTs

Next, we calculate entanglement entropy in the cyclic orbifolds using the boundary state
formalism. The boundary state in the ZN cyclic orbifold can be written in the form

|B(α)〉N = N ′
N−1∑
l=0

N−1∏
k=0

e
2πiαl
N |B(k)(l)〉, (5.11)

where α = 0, 1, · · · , N − 1 labels the type of the boundary state, so-called the fractional
branes [57–61]. Also, the state |B(k)(l)〉 is the boundary state for the fermion ψ̃

(k)
L,R and

˜̃ψ(k)
L,R in the l-th twisted sector in terms of their bosonized scalar fields.

To find the entanglement entropy we need to compute the replicated partition function
which is written in terms of a two-point function of twist operators on a cylinder (5.3).
For example, when we consider the second Renyi entropy n = 2, this is given by a
summation over the twisted sectors of the boundary states as depicted in figure 7. For
general N , it looks quite difficult to calculate each contribution and perform the summation.
However, it is straightforward to calculate the entanglement entropy for the diagonal sectors
l1 = m1 = l2 = m2 = · · · = ln = mn(≡ l) as we did in the finite temperature case. In this
case, the zero mode of the winding mode is shifted by w → w + lk

N . Since the winding
mode summation just gives an overall factor that does not depend on t and σ, the final
entanglement entropy is simply N times that of the single fermion result (5.9) i.e.

S
(n)
A |diagonal = N

12

(
1 + 1

n

)
log

∣∣θ1
(
σ
2π |τ

)∣∣2 ∣∣∣θ1
(
ε+it
πi |τ

)∣∣∣2∣∣∣η (2iε
π

)∣∣∣6 ∣∣∣θ1
(
ε+it
πi + σ

2π |τ
)∣∣∣ ∣∣∣θ1

(
ε+it
πi −

σ
2π |τ

)∣∣∣ δ2
. (5.12)
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Figure 7. The replica method calculation of second Renyi entropy on a cylinder for the ZN
orbifold CFT.

Note that this is again periodic under the time translation with the same periodicity, given
by (5.10). Its profile is identical to figure 6.

However, if we add all sectors including off-diagonal ones, we expect that the periodicity
gets N times longer such that SA(t + Nπ) = SA(t). This is because the twisted sector,
which describes long strings, is equivalent to an N folded string i.e. the spatial coordinate
has a larger periodicity: σ ∼ σ + 2πN . In the next subsection, we will confirm this in the
N = 2 case by an explicit calculation.

5.3 Full analysis in N = n = 2 case

We can explicitly evaluate the replicated partition function (5.3) for the second Renyi
entropy of N = 2 cyclic orbifold. In this N = n = 2 case, the two-point function of twist
operators is written as follows

〈B(α)|e−2εHσ2(y1, ȳ1)σ̄2(y2, ȳ2)|B(α)〉 = 1
4

1∑
l1,l2,m1,m2=0

C
(l2,m2)
(l1,m1) (σ, t). (5.13)

First, we note the symmetry which exchanges the two replicas:

C
(l2,m2)
(l1,m1) (σ, t) = C

(l1,m1)
(l2,m2) (σ, t). (5.14)

The k = 0 fermion ψ̃(0)
p follows the untwisted boundary condition. Thus for any values

of (l1,m1) and (l2,m2) of the summation depicted in figure 7, the k = 0 partition function is
simply given by

∣∣∣ θ3(τ)
η(τ)

∣∣∣2. The k = 1 fermion ψ̃(1)
p follows the Z2 twisted boundary condition

in the l = 1 sector, while it is untwisted in the l = 0 sector.
Let us start with the diagonal cases. When (l1,m1) = (l2,m2) = (0, 0), the partition

function can be computed as the square of (5.6):

C
(0,0)
(0,0) (σ, t) =

∣∣∣∣θ3(τ)
η(τ)

∣∣∣∣4 ·

∣∣∣η (2iε

π

)∣∣∣6 ∣∣∣θ1
(
ε+it
πi + σ

2π |τ
)∣∣∣ ∣∣∣θ1

(
ε+it
πi −

σ
2π |τ

)∣∣∣∣∣θ1
(
σ
2π |τ

)∣∣2 ∣∣∣θ1
(
ε+it
πi |τ

)∣∣∣2


1
4

. (5.15)

When (l1,m1) = (l2,m2) = (1, 1), the k = 1 sector is twisted leading to the k = 1 partition
function

∣∣∣ θ2(τ)
η(τ)

∣∣∣2. By combining with the k = 0 part we obtain

C
(1,1)
(1,1) (σ, t) =

∣∣∣∣θ3(τ)
η(τ)

∣∣∣∣2 ·∣∣∣∣θ2(τ)
η(τ)

∣∣∣∣2 ·

∣∣∣η (2iε

π

)∣∣∣6 ∣∣∣θ1
(
ε+it
πi + σ

2π |τ
)∣∣∣ ∣∣∣θ1

(
ε+it
πi −

σ
2π |τ

)∣∣∣∣∣θ1
(
σ
2π |τ

)∣∣2 ∣∣∣θ1
(
ε+it
πi |τ

)∣∣∣2


1
4

. (5.16)
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In the off-diagonal case (l1,m1) = (0, 0) and (l2,m2) = (1, 1), the periodicity of the Imy
direction gets doubled y ∼ y + 4πi due to the twisted boundary condition ψ̃(1)

± (y + 2πi) =
ψ̃

(1)
∓ (y). Therefore the two-point function should be regarded as a four-point function on a

cylinder as we have already seen in (4.54). In the end, we obtain the following expression

C
(1,1)
(0,0) (σ, t) =

∣∣∣∣∣θ3(τ)3θ2(τ)
η(τ)4

∣∣∣∣∣ ·
 |η (τ)|6

∣∣∣θ1
(
ε+it
πi + σ

2π |τ
)∣∣∣ ∣∣∣θ1

(
ε+it
πi −

σ
2π |τ

)∣∣∣∣∣θ1
(
σ
2π |τ

)∣∣2 ∣∣∣θ1
(
ε+it
πi |τ

)∣∣∣2


1
8

×

∣∣∣∣∣∣∣
η( τ2 )6 θ2

(
σ
4π |

τ
2
)2
θ2
(
ε+it
2πi |

τ
2

)2
θ1
(
ε+it
2πi + σ

4π |
τ
2

)
θ1
(
ε+it
2πi −

σ
4π |

τ
2

)
4θ1

(
σ
4π |

τ
2
)2
θ2
(
0| τ2
)2
θ1
(
ε+it
2πi |

τ
2

)2
θ2
(
ε+it
2πi + σ

4π |
τ
2

)
θ2
(
ε+it
2πi −

σ
4π |

τ
2

)
∣∣∣∣∣∣∣

1
8

.

(5.17)

We can also obtain the result for (l1,m1) = (1, 0) and (l2,m2) = (0, 1) by performing
transformation σ → 2π − σ

C
(0,1)
(1,0) (σ, t) = C

(1,1)
(0,0) (2π − σ, t). (5.18)

All other components of C(l2,m2)
(l1,m1) (σ, t) are vanishing.

The total partition function takes the form

〈B(α)|e−2εHσ2(y1, ȳ1)σ̄2(y2, ȳ2)|B(α)〉

= 1
4
[
C

(0,0)
(0,0) (σ, t) + C

(1,1)
(1,1) (σ, t) + 2C(1,1)

(0,0) (σ, t) + 2C(0,1)
(1,0) (σ, t)

]
. (5.19)

It is easy to confirm

lim
σ→0

C
(0,0)
(0,0) (σ, t) = lim

σ→2π
C

(0,0)
(0,0) (σ, t) =

∣∣∣∣∣θ3(τ)4

η(τ)4

∣∣∣∣∣ ·
∣∣∣∣∣ η(τ)3

θ1
(
σ
2π |τ

) ∣∣∣∣∣
1
2

,

lim
σ→0

C
(1,1)
(1,1) (σ, t) = lim

σ→2π
C

(1,1)
(1,1) (σ, t) =

∣∣∣∣∣θ3(τ)2θ2(τ)2

η(τ)4

∣∣∣∣∣ ·
∣∣∣∣∣ η(τ)3

θ1
(
σ
2π |τ

) ∣∣∣∣∣
1
2

,

lim
σ→0

C
(1,1)
(0,0) (σ, t) =

∣∣∣∣∣θ3(τ)3θ2(τ)
η(τ)4

∣∣∣∣∣ ·
∣∣∣∣∣ η(τ)3

θ1
(
σ
2π |τ

) ∣∣∣∣∣
1
2

,

lim
σ→2π

C
(1,1)
(0,0) (σ, t) = lim

σ→0
C

(0,1)
(1,0) (σ, t) = 0,

lim
σ→2π

C
(0,1)
(1,0) (σ, t) =

∣∣∣∣∣θ3(τ)2θ2(τ)
η(τ)4

∣∣∣∣∣ ·
∣∣∣∣∣ η(τ)3

θ1
(
σ
2π |τ

) ∣∣∣∣∣
1
2

, (5.20)

where we employed the identities in appendix A. Thus we obtain

lim
σ→0
〈B(α)|e−2εHσ2(y1, ȳ1)σ̄2(y2, ȳ2)|B(α)〉

= lim
σ→2π

〈B(α)|e−2εHσ2(y1, ȳ1)σ̄2(y2, ȳ2)|B(α)〉

=
∣∣∣∣∣ η(τ)3

θ1
(
σ
2π |τ

) ∣∣∣∣∣
1
2

·
∣∣∣∣∣θ3(τ)2

η(τ)2

∣∣∣∣∣ ·
∣∣∣∣θ3(τ) + θ2(τ)

2η(τ)

∣∣∣∣2 . (5.21)
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This result is consistent with the fact that the partition function should be factorized into
the product of two cylinder partition functions in the limit σ → 0 and σ → 2π. Indeed, the
final term is a square of cylinder amplitudes of the N = 2 cyclic orbifold CFT in the NS
sector:

ZN=2
cyl (τ) =

∣∣∣∣θ3(τ)
η(τ)

∣∣∣∣ · ∣∣∣∣θ3(τ) + θ2(τ)
2η(τ)

∣∣∣∣ . (5.22)

Thus the final expression of the second Renyi entropy reads

S
(2)
A (σ, t) = − log 〈B(α)|e−2εHσ2(y1, ȳ1)σ̄2(y2, ȳ2)|B(α)〉 · δ 1

2

ZN=2
cyl (τ)2 , (5.23)

where we again inserted the UV cut-off δ dependence. It is clear that the periodicity in the
time direction is now doubled:

S
(2)
A (σ, t+ 2π) = S

(2)
A (σ, t), (5.24)

as we argued in the last subsection. We can also confirm the pure state identity

S
(2)
A (σ, t) = S

(2)
A (2π − σ, t). (5.25)

In the small σ limit, we reproduced the well-known behavior [34] (at the central charge
c = N = 2)

S
(2)
A (σ, t) ' 1

2 log σ
δ
. (5.26)

Refer to figure 8 for numerical plots.
For general N , we cannot explicitly evaluate the entanglement entropy because the

detailed form the twist operator σ2 is not available for N > 2. However, it is quite natural
to expect that the periodicity of the time evolution of the entanglement entropy becomes
Nπ i.e.

S
(2)
A (σ, t+Nπ) = S

(2)
A (σ, t), (5.27)

for the ZN cyclic orbifold CFT, due to the non-diagonal contributions.

6 Connection to symmetric orbifold CFTs

In this section, we examine the extension of results in cyclic orbifolds to symmetric orbifolds.
We start with re-analyzing their partition functions, in terms of Hecke operators. By
introducing deformed Hecke operators (we named square-free Hecke operators), we can
relate these partition functions. In addition to the connection in partition functions, by
studying the structure of twisted sectors in detail, we can calculate quantities in symmetric
orbifold CFTs through cyclic ones.

6.1 Cyclic orbifold CFT revisited: connection to symmetric orbifold

Recall that the N -th symmetric orbifold CFT CN,S has a partition function of the following
form

ZN,S(τ) =
∑

partition of N

N∏
k=1

1
(Nk)!

(TkZ(τ))Nk , (6.1)
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Figure 8. The plot of entanglement entropy as a function of time t for the N = 2 orbifolded
Dirac fermion CFT under quantum quenches. We set n = 2 (2nd Renyi entropy), ε = 0.2 and
δ = 1. The blue (bottom), orange, green, and red (top) curves describe the entanglement entropy
for σ = π

4 ,
π
2 ,

3π
4 and π, respectively.

where the partition of N runs over (N1, . . . , NN ) s.t.
N∑
k=1

kNk = N and Tk is the Hecke

operator,

TkZ (τ) = 1
k

∑
i|k

i−1∑
j=0

Z

(
kτ

i2
+ j

i

)
. (6.2)

In this subsection, we focus on these Hecke operators in detail. By introducing deformed
Hecke operators (we named square-free Hecke operators), we can relate these partition
functions.

6.1.1 Hecke operators and square-free Hecke operators

Firstly we study Hecke operators. Hecke operators, which map modular forms into them-
selves,3 are used in mathematics, especially in number theories. For some modular invariant
function Z (τ), the k-th Hecke operator Tk is defined to be (i runs over the divisors of k),

TkZ (τ) ≡ 1
k

∑
i|k

i−1∑
j=0

Z

(
kτ

i2
+ j

i

)
. (6.3)

For the case k is prime (k = p), this definition can be simplified into

TpZ (τ) = 1
p

Z(pτ) +
p−1∑
i=0

Z

(
τ + i

p

) . (6.4)

In order to write down the cyclic orbifold partition function in terms of Hecke operators,
we need to introduce a new type of Hecke operator, which we call square-free Hecke operators.
As one can observe in appendix B, if k has some square divisors (we take a2 for example),

3In this paper we focus on only modular forms with weight zero.

– 29 –



J
H
E
P
1
2
(
2
0
2
2
)
0
0
4

the k-th Hecke operator includes terms that constitute 1
a2 times k

a2 -th Hecke operator.4
This suggests that a generic Hecke operator is not minimally modular invariant, in other
words, we can divide a Hecke operator into multiple parts which are independently modular
invariant. Since it is useful for our purpose to specify the minimally modular invariant
part(s) in each Hecke operator, we introduce the k-th square-free Hecke operator T sf

k as the
minimally modular invariant part of Tk. We can write down the definition recursively:

T sf
k Z(τ) = TkZ(τ)−

∑
a∈Z>1
a2|k

1
a2T

sf
k
a2
Z(τ). (6.5)

This definition coincides with the ordinary Hecke operator (6.3) if k has no square factors.
One can explicitly check that some specific term, 1

kZ(kτ) for example, runs every term
in T sf

k Z(τ) by acting modular-S and/or T transformations and accordingly T sf
k Z(τ) is

minimally modular invariant.
Hecke operators are used in mathematics, especially in number theories. These operators

are helpful for us to organize symmetric/cyclic orbifold CFT partition functions, and to
reveal the connection between them. We prepare some examples in appendix B.

6.1.2 Cyclic orbifold partition function with Hecke operators

Recall that the N -th cyclic orbifold partition function is, G = ZN version of (2.4),

ZN,Z(τ) =
N−1∑
l=0

Tr(l)

(∑N
l′=1 g

l′

N
qHL q̄HR

)

= 1
N

∑
l,l′

Tr(l)
(
gl
′
qHL q̄HR

)
,

where g is one of the generators of ZN and l labels the (un)twisted sectors as we have
seen in 2.3. We newly derived the representation of this partition function in terms of
(square-free) Hecke operators. The N -th cyclic orbifold partition function ZN,Z(τ) can be

4Actually we can check this fact explicitly: in the definition of the k-th Hecke operator, if we restrict i in
the summation to be a times divisors of k/a2 and j to be multiple of a, we get

TkZ (τ) = 1
k

∑
i|k

i−1∑
j=0

Z
(
k

i2
τ + j

i

)

⊃ 1
k

∑
i′| k

a2

i′−1∑
j′=0

Z

(
k

(ai′)2 τ + aj′

ai′

)

= 1
a2 ·

1
k/a2

∑
i′| k

a2

i′−1∑
j′=0

Z

(
k/a2

i′2
τ + j′

i′

)

where we set (i, j) = (ai′, aj′). The last line is exactly the k/a2-th Hecke operator multiplied by 1/a2.
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written in terms of square-free Hecke operators,5

ZN,Z(τ) =
N∑
k=1

1
gcd(N, k)T

sf
N

gcd(N,k)

(
Z(τ)gcd(N,k)

)
=
∑
d|N

(#k (1 ≤ k ≤ N) s.t. gcd(N, k) = d)
d

T sf
N
d

(
Z(τ)d

)

=
∑
d|N

φ(N/d)
d

T sf
N
d

(
Z(τ)d

)
, (6.6)

where φ is the Euler function. We provide the proof of this construction in appendix C.
N = 8 case for example, the number of k (k = 1, . . . , 8) which satisfies

• gcd(8, k) = 8 is 1 (k = 8),

• gcd(8, k) = 4 is 1 (k = 4),

• gcd(8, k) = 2 is 2 (k = 2, 6),

• gcd(8, k) = 1 is 4 (k = 1, 3, 5, 7).

Thus we get

Z8,Z(τ) = 1
8T

sf
1

(
Z(τ)8

)
+ 1

4T
sf
2

(
Z(τ)4

)
+ 2

2T
sf
4

(
Z(τ)2

)
+ 4

1T
sf
8

(
Z(τ)1

)
. (6.7)

More examples are provided in appendix B. If N is a prime number, this function becomes
as follows (for prime N the N -th square-free Hecke operator is the same as the normal
Hecke operator);

ZN,Z(τ) = 1
N
Z(τ)N + (N − 1)TNZ(τ). (6.8)

This prime N case is indicated in [52].

6.2 Detailed investigation of the Dirac fermion symmetric orbifold CFT

We consider Dirac fermion symmetric orbifold CFT in this section. Let us analyze the
partition function and proceed to calculate the diagonal Renyi entropy. (Full Renyi entropy
is too complicated to determine: N = n = 2 case is already considered in 4.3. Note that for
N = 2 the cyclic orbifold is identical to the symmetric orbifold.)

5We can compare this equation (6.6) to the result discussed in [51] (we already referred to in 2.3). By
equating each expression of ZN,Z, fixing d, and restricting the range of r and s to be (N, r, s) = d, we get

(# of k ≤ N s.t. gcd(N, k) = d)
d

T sf
N
d

(
Z(τ)d

)
= 1
N

∑
r,s=1,...,N
(N,r,s)=d

Z

(
(N, r)
N

(
(N, r)
d

τ + κ(r, s)
))d

.

One can explicitly verify this equation for a small N case.
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6.2.1 Partition function

For the case of Dirac fermion, the i-th cyclic orbifold partition function is of the form

Zi,Z(τ) = 1
i

i−1∑
l,l′=0

i−1∏
k=0

∑
a=2,3,4

eiπ
k2l2
i2

(τ−τ̄)

2

∣∣∣∣∣∣
θa
(
kl′

i + kl
i τ |τ

)
η(τ)

∣∣∣∣∣∣
2

(6.9)

= 1
i

i∑
l,l′=1

i−1∏
k=0

∑
a=2,3,4

eiπ
k2l2
i2

(τ−τ̄)

2

∣∣∣∣∣∣
θa
(
kl′

i + kl
i τ |τ

)
η(τ)

∣∣∣∣∣∣
2

. (6.10)

Especially its NS sector partition function is

ZNS
i,Z (τ) = 1

i

i∑
l,l′=1

i−1∏
k=0

eiπ
k2l2
i2

(τ−τ̄)

∣∣∣∣∣∣
θ3
(
kl′

i + kl
i τ |τ

)
η(τ)

∣∣∣∣∣∣
2

, (6.11)

which was explained in section 4. By comparing these two equations, we can identify each
sector:

φ(i/d)
d

T sf
i
d

(
Z(τ)d

)
= 1
i

i∑
l,l′=1

(i,l,l′)=d

i−1∏
k=0

∑
a=2,3,4

ei
πk2
i2
l2(τ−τ̄)

2

∣∣∣∣∣∣
θa
(
kl′

i + kl
i τ |τ

)
η(τ)

∣∣∣∣∣∣
2

. (6.12)

In this subsection, what we want to do is to write down the NS partition function of
the Dirac fermion symmetric orbifold CFT in terms of theta functions. Recall that the
partition function of the N -th symmetric theory can be written in terms of the normal
Hecke operators,

ZN,S(τ) =
∑

partition of N

N∏
i=1

1
(Ni)!

(TiZ(τ))Ni . (6.13)

Here, by definition, we can reconstruct the normal Hecke operator by square-free ones,

TiZ(τ) = T sf
i Z(τ) +

∑
a∈Z>1
a2|i

1
a2T

sf
i/a2Z(τ) (6.14)

=
∑

a∈Z>0
a2|i

1
a2T

sf
i/a2Z(τ). (6.15)

a = 1 case. As we see above, we can identify the NS sector of T sf
i Z(τ),

(
T sf
i Z(τ)

)NS
to be

(
T sf
i Z(τ)

)NS
= 1
iφ(i)

∑
l,l′=1,...,i
(l,l′,i)=1

i−1∏
k=0

eiπ
k2l2
i2

(τ−τ̄)

∣∣∣∣∣∣
θ3
(
kl′

i + kl
i τ |τ

)
η(τ)

∣∣∣∣∣∣
2

. (6.16)

This identification is from the i-th cyclic orbifold, d = 1 case of (6.12).

– 32 –



J
H
E
P
1
2
(
2
0
2
2
)
0
0
4

a > 1 case. If i has some square-factors, we must add T sf
i/a2Z(τ) to reconstruct TiZ(τ).

Considering the i/a2-th cyclic orbifold, d = a2 case of (6.12), we can evaluate T sf
i/a2Z(τ) to be

(
T sf
i/a2Z(τ)

)NS
= a2

iφ(i/a2)
∑

l,l′=1,...,i/a2

(l,l′,i)=1

i/a2−1∏
k=0

eiπ
a2k2l2
i2

(τ−τ̄)

∣∣∣∣∣∣
θ3
(
a2kl′

i + a2kl
i τ |τ

)
η(τ)

∣∣∣∣∣∣
2

. (6.17)

This form seems to include only i/a2 fermions. However, by applying the identity (A.21),
this product can be interpreted as the product of i twisted Dirac fermions in NS sector.6
Substituting the following equation

eiπ
a2k2l2
i2

(τ−τ̄)

∣∣∣∣∣∣
θ3
(
a2kl′

i + a2kl
i τ |τ

)
η(τ)

∣∣∣∣∣∣
2

=
a−1

2∏
κ=−a−1

2

a−1
2∏

λ=−a−1
2

eiπ(
λ
a

+akl
i )2(τ−τ̄)

∣∣∣∣∣∣
θ3
(
κ
a + akl′

i +
(
λ
a + akl

i

)
τ |τ
)

η(τ)

∣∣∣∣∣∣
2

,

we get(
T sf
i/a2Z(τ)

)NS

= a2

iφ(i/a2)
∑

l,l′=1,...,i/a2

(l,l′,i/a2)=1

i/a2−1∏
k=0

a−1
2∏

κ=−a−1
2

a−1
2∏

λ=−a−1
2

eiπ(
λ
a

+akl
i )2(τ−τ̄)

∣∣∣∣∣∣
θ3
(
κ
a+ akl′

i +
(
λ
a+ akl

i

)
τ |τ
)

η(τ)

∣∣∣∣∣∣
2

.

(6.18)

If we set a = 1, this equation reproduces the result in the previous paragraph.
Combining (6.16) and (6.18), we obtain

(TiZ(τ))NS = 1
i

∑
a∈Z>0
a2|i

1
φ(i/a2)

∑
l,l′=1,...,i/a2

(l,l′,i/a2)=1

i/a2−1∏
k=0

a−1
2∏

κ=−a−1
2

a−1
2∏

λ=−a−1
2

× eiπ(
λ
a

+akl
i )2(τ−τ̄)

∣∣∣∣∣∣
θ3
(
κ
a + akl′

i +
(
λ
a + akl

i

)
τ |τ
)

η(τ)

∣∣∣∣∣∣
2

. (6.19)

This contains i twisted Dirac fermions in each twisted sector. By summing this TNS
i over

the partition of N , we obtain the NS partition function of the symmetric orbifold.

6.2.2 Diagonal Renyi entropy

Now we can extend our calculation to the diagonal Renyi entropy in the NS sector of Dirac
fermion symmetric orbifold CFT.

6Obviously, if we want to calculate only the partition function, the equation (6.17) is sufficient and there
is no need to apply the identity (A.21) and interpret each θ to be a2 fermions. We will use this interpretation
in the next subsubsection.
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As we have seen in (4.14), the bosonization and replica method changes each twisted
fermion as

eiπβ
2(τ−τ̄)

∣∣∣∣θ3 (α+ βτ |τ)
η(τ)

∣∣∣∣2

→
(n−1)/2∏

p=−(n−1)/2
eiπβ

2(τ−τ̄)
∣∣∣∣∣2πη(τ)3

θ1(L|τ)

∣∣∣∣∣
4hp
·
∣∣∣∣∣θ3

(
α+ βτ + p

nL|τ
)

|η(τ)2|

∣∣∣∣∣
2

(6.20)

where hp = p2

2n2 . Now let us calculate the entanglement entropy for a fixed diagonal sector.
As we expected, the universal θ1 part factorizes:

ZNS
N,S〈σn(L)σ̄n(0)〉 =

 (n−1)/2∏
p=−(n−1)/2

∣∣∣∣∣2πη(τ)3

θ1(L|τ)

∣∣∣∣∣
4hp
N

×

 ∑
partition of N

N∏
i=1

1
(Ni)!

〈〈σn(L)σ̄n(0)〉〉Nii

 (6.21)

where

〈〈σn(L)σ̄n(0)〉〉i = 1
i

∑
a∈Z>0
a2|i

1
φ(i/a2)

∑
l,l′=1,...,i/a2

(l,l′,i)=1

i/a2−1∏
k=0

a−1
2∏

κ=−a−1
2

a−1
2∏

λ=−a−1
2

n−1
2∏

p=−n−1
2

× eiπ(
λ
a

+akl
i )2(τ−τ̄)

∣∣∣∣∣∣
θ3
(
κ
a + akl′

i +
(
λ
a + akl

i

)
τ + p

nL|τ
)

η(τ)

∣∣∣∣∣∣
2

. (6.22)

By iterating the procedure in 4.1.3, we can calculate the diagonal Renyi entropy S(n)
A,diag.

For example, we can derive an equation similar to (4.25), thermal diagonal Renyi entropy:

lim
δ→0

[
S

(n)
A,diag(1− δ)− S(n)

A,diag(δ)
]

= 1
1− n log


∑

partition of N
∏N
i=1

1
(Ni)!

1
i

∑
a∈Z>0
a2|i

1
φ(i/a2)

∑
l,l′=1,...,i/a2

(l,l′,i)=1
ZNS

(i,a,l,nl′)(nτ)

Ni

∑
partition of N

∏N
i=1

1
(Ni)!

1
i

∑
a∈Z>0
a2|i

1
φ(i/a2)

∑
l,l′=1,...,i/a2

(l,l′,i)=1
ZNS

(i,a,l,l′)(τ)n
Ni


,

(6.23)

where we introduced ZNS
(i,a,l,l′) for shorthand:

ZNS
(i,a,l,l′)(τ) =

i/a2−1∏
k=0

a−1
2∏

κ=−a−1
2

a−1
2∏

λ=−a−1
2

eiπ(
λ
a

+akl
i )2(τ−τ̄)

∣∣∣∣∣∣
θ3
(
κ
a+ akl′

i +
(
λ
a+ akl

i

)
τ |τ
)

η(τ)

∣∣∣∣∣∣
2

ZNS
(i,a,l,nl′)(nτ) =

i/a2−1∏
k=0

a−1
2∏

κ=−a−1
2

a−1
2∏

λ=−a−1
2

eiπ(
λ
a

+akl
i )2(nτ−nτ̄)

∣∣∣∣∣∣
θ3
(
nκ
a + aknl′

i +
(
λ
a+ akl

i

)
nτ |nτ

)
η(nτ)

∣∣∣∣∣∣
2

(6.24)
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Note that when considering ZNS
(i,a,l,nl′)(nτ), not only τ but also l′ and κ get multiplied by n.

Calculating the full Renyi entropy is one of the future problems.

7 Towards holographic CFTs: periodicity and BTZ black hole

Our results of two-point functions in the Zi cyclic orbifold presented in section 4.2 and those
of the Renyi entropy for Z2 cyclic orbifold in section 5.3, strongly imply that the real-time
periodicity of the Zi orbifold CFT based on the free Dirac fermions is i times that of the
seed CFT i.e. c = 1 free Dirac fermion CFT. Recall that the SN symmetric orbifold theory
includes the Zi orbifolded sector (or Ti sector) for all 1 ≤ i ≤ N . One way to understand
this behavior is the fact that the twisted sector describes the long string where the spacial
coordinate gets folded by i times [62, 63]. This suggests that the real-time periodicity in
symmetric orbifold CFT under the time evolution is LCM[1, . . . , N ] times that of the seed
CFT. Here, LCM[a, b, · · · ] denotes the least common multiple of a, b, · · · .

It is well-known in number theory that LCM[1, . . . , N ] grows as expN in the limit
N →∞. This result can be found in several references, e.g. theorem 3.8 of [64].7 This fact
mainly follows from the celebrated Prime number theorem, which says that the number of
primes less than or equal to n, is approximately given by π(n) ∼ n

logn .
Thus, the recurrence time for the symmetric orbifold CFT is estimated as eSorb ∼ ecorb ,

where Sorb is the thermal entropy. Note that the central charge corb of the SN orbifold
of the free Dirac fermion is N . Interestingly, this qualitatively agrees with the Poincare
recurrence time of holographic two-dimensional CFTs at finite temperature.

8 Conlusions and discussions

In this paper, we developed the methods of calculations in cyclic/symmetric orbifold CFTs
with the Dirac fermion as a seed theory. We started with a bosonization of the Dirac
fermion cyclic theory and constructed replica-twist operators. For the twist operators for
the second Renyi entropy, we confirmed that their four-point functions correctly reproduce
the torus partition function for the Z2 cyclic orbifold CFT, which can also be regarded as
the S2 symmetric orbifold CFT. In this analysis, we found that we need to modify the
replica-twist operator to calculate the contributions from twisted sectors of the orbifold.

Using these twisted operators, we evaluated the entanglement entropy in the orbifold
CFTs on a torus which describes CFT states at finite temperature in a finite size system. For
general ZN cyclic orbifolds, we calculated the diagonal contributions to the entanglement
entropy and confirmed that their difference (4.19) reproduces a part of thermal entropy.
However, a naive extension of the standard replica method for un-orbifolded fermions does
not yield the complete Renyi entropy: we must take into account different twist-boundary
conditions for different replica sheets. Even though the replica method is difficult for
arbitrary N and n, we succeeded to construct the method to calculate full second Renyi
entropy in the Z2 cyclic / S2 symmetric orbifold theory on torus and cylinder. As a result,

7In this reference ψ(n) is set to be ln[LCM[1, . . . , n]]. Theorem 3.8 of [64] says that ψ(n) ∼ n at large n.
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we found that the difference of the second thermal Renyi entropy on a torus perfectly agrees
with the expected form − log[Z(2τ)/Z(τ)2], which is the thermal Renyi entropy.

We also studied the time evolution of entanglement entropy under quantum quenches.
This can be computed by evaluating the two-point functions of twist operators on a cylinder.
As in the torus case, we evaluated this for ZN cyclic orbifolds with respect to the diagonal
sectors. Moreover, we found a full expression for N = 2 case, summing over both the
diagonal and non-diagonal sectors. This shows that the real-time periodicity gets doubled,
compared with the c = 1 Dirac fermion CFT. For general N , we expect that the periodicity
will be N times longer, though we did not explicitly show this due to a technical difficulty.

Apart from the calculations in Dirac fermion, we explicitly constructed the expression of
cyclic orbifold partition functions in terms of Hecke operators. Although the identification
of T sf

k and theta function is specific to Dirac fermion orbifold theory, Hecke operators will
enable us to deal with the problems in more general symmetric orbifold theory from a cyclic
orbifold point of view.8

In the SN symmetric orbifold, by combining our results, we argued that the real-time
periodicity of generic correlation functions and entanglement entropy is exponential as
∼ expN in the large N limit. This result looks qualitatively consistent with the expected
Poincare recurrence of holographic CFTs with the central charge c = N .

To conclude this paper, we clarify some future tasks and open problems.

• Developing the replica method. As we indicated iteratively, the naive replica method
excludes contributions from off-diagonal parts. To be precise, the off-diagonal contri-
butions can be evaluated in principle by applying different twist-boundary conditions
for different replica sheets. This problem can be rephrased: orbifold-twist (not replica-
twist) operators should also be replicated as ordinary excitation e.g. ψ(z). Hence,
the key to developing the methods of calculating the off-diagonal parts might be to
consider orbifold-twist operator correlations for arbitrary n.

• Extension to symmetric orbifolds on cylinder. By using the result of the recent research
on boundary states in symmetric orbifolds [26], we can extend our calculations to
arbitrary N symmetric orbifolds on a cylinder. This extension will be one of the
concrete approaches to AdS/BCFT.

• Application to general symmetric orbifold CFTs. We hope to extend our observation
to the case with other seed CFTs. The most straightforward and beneficial extension
will be the orbifold theory with T 4 (rectangular, R = 2) SCFT as a seed CFT. This
T 4 orbifold theory is much closer to real holographic CFT than the Dirac fermion
orbifold theory. Marginal deformations to eliminate higher-spin modes and matching
the spectrum to classical supergravity dual should be revisited.

• Heavy operators that contribute to the BTZ black hole. In the Dirac fermion cyclic
orbifolds, we found examples of correlation functions that have a long periodicity.

8The connection between symmetric group and cyclic group is obviously well-understood, but connection
between their orbifold theory has been unclear.

– 36 –



J
H
E
P
1
2
(
2
0
2
2
)
0
0
4

Although we conjectured that symmetric orbifold CFT has the periodicity expN , we
did not explicitly specify operators/correlators that show this periodicity, analogous
to the BTZ black hole entropy. Specifying such excitation will be a novel approach to
investigating the structure of black holes.
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A Theta function identities

When to consider the Dirac fermion orbifold theory partition functions, theta function
identities is useful. To share our convention, we have described this section more carefully
than necessary.

A.1 Definitions of theta and eta functions, fundamental formulas

A.1.1 Definitions

We set q ≡ e2πiτ and y ≡ e2πiz. The Dedekind eta function is

η(τ) = q
1
24

∞∏
m=1

(1− qm). (A.1)

The Jacobi theta functions have two different (but equivalent) representations. In the sum
representation,

θ1(z | τ) =
∑

r∈Z+1/2
q
r2
2 yre−πir,

θ2(z | τ) =
∑

r∈Z+1/2
q
r2
2 yr,

θ3(z | τ) =
∑
r∈Z

q
r2
2 yr,

θ4(z | τ) =
∑
r∈Z

q
r2
2 yre−πir.

(A.2)
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In the product representation,

θ1(z | τ) = 2 sin(πz)q
1
8

∞∏
m=1

(1− qm) (1− yqm)
(
1− y−1qm

)
,

θ2(z | τ) = 2 cos(πz)q
1
8

∞∏
m=1

(1− qm) (1 + yqm)
(
1 + y−1qm

)
,

θ3(z | τ) =
∞∏
m=1

(1− qm)
(
1 + yqm−

1
2
) (

1 + y−1qm−
1
2
)
,

θ4(z | τ) =
∞∏
m=1

(1− qm)
(
1− yqm−

1
2
) (

1− y−1qm−
1
2
)
.

(A.3)

We write θa(τ) shorthand for θa(0|τ).

A.1.2 Fundamental formulas
θ1 satisfies

θ1(0|τ) = θ1(τ) = 0, (A.4)
∂zθ1(z|τ)|z=0 = 2πη(τ)3. (A.5)

η satisfies

2η(τ)3 = θ2(τ)θ3(τ)θ4(τ). (A.6)

The famous Jacobi identity is

θ1(z|τ)4 − θ2(z|τ)4 + θ3(z|τ)4 − θ4(z|τ)4 = 0, (A.7)

or z = 0 version

θ3(τ)4 − θ2(τ)4 − θ4(τ)4 = 0. (A.8)

The modular-S and modular-T transformation is as follows:

η(τ + 1) = e
iπ
12 η(τ), η

(
−1
τ

)
=
√
−iτη(τ),

θ1(z|τ + 1) = e
iπ
4 θ1(z|τ), θ1

(
z

τ
| − 1

τ

)
= −i

√
−iτe

iπz2
τ θ1(z|τ),

θ2(z|τ + 1) = e
iπ
4 θ2(z|τ), θ2

(
z

τ
| − 1

τ

)
=
√
−iτe

iπz2
τ θ4(z|τ),

θ3(z|τ + 1) = θ4(z|τ), θ3

(
z

τ
| − 1

τ

)
=
√
−iτe

iπz2
τ θ3(z|τ),

θ4(z|τ + 1) = θ3(z|τ), θ4

(
z

τ
| − 1

τ

)
=
√
−iτe

iπz2
τ θ2(z|τ).

(A.9)

Theta functions satisfy the following quasi-double periodicity:

θ1(z +mτ + n|τ) =(−1)m+n q−
m2
2 y−mθ1(z|τ),

θ2(z +mτ + n|τ) = (−1)n q−
m2
2 y−mθ2(z|τ),

θ3(z +mτ + n|τ) = q−
m2
2 y−mθ3(z|τ),

θ4(z +mτ + n|τ) = (−1)m q−
m2
2 y−mθ4(z|τ),

(A.10)
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where m and n are integers. Actually, we can consider the case m and n are half-integers
by using the following relations,

θ1(z ± 1/2|τ) = ±θ2(z|τ),
θ3(z ± 1/2|τ) = θ4(z|τ),

(A.11)

θ1(z ± τ/2|τ) = ±iq−
1
8 y∓

1
2 θ4(z|τ),

θ2(z ± τ/2|τ) = q−
1
8 y∓

1
2 θ3(z|τ),

θ3(z ± τ/2|τ) = q−
1
8 y∓

1
2 θ2(z|τ),

θ4(z ± τ/2|τ) = ±iq−
1
8 y∓

1
2 θ1(z|τ).

(A.12)

A.2 “Double-angle” formulas

Since we use the “double-angle”9 formulas repeatedly in this paper, we present this special
case here. There are specific relations in the “double-angle” case, namely

θ2(2τ) =
(
θ3(τ)2 − θ4(τ)2

2

)1/2

,

θ3(2τ) =
(
θ3(τ)2 + θ4(τ)2

2

)1/2

,

θ4(2τ) = (θ3(τ)θ4(τ))1/2 ,

η(2τ) =
(
θ2(τ)η(τ)

2

)1/2
= η(τ)2 (θ3(τ)θ4(τ))−1/2 .

(A.13)

In addition, we have

θ2

(
τ

2

)
= (2θ2(τ)θ3(τ))1/2 ,

θ3

(
τ

2

)
=
(
θ3(τ)2 + θ2(τ)2

)1/2
,

θ4

(
τ

2

)
=
(
θ3(τ)2 − θ2(τ)2

)1/2
,

η

(
τ

2

)
= (θ4(τ)η(τ))1/2 = η(τ)2

( 2
θ2(τ)θ3(τ)

)1/2
,

(A.14)

θ2

(
τ + 1

2

)
= e

iπ
8 (2θ2(τ)θ4(τ))1/2 ,

θ3

(
τ + 1

2

)
=
(
θ4(τ)2 + iθ2(τ)2

)1/2
,

θ4

(
τ + 1

2

)
=
(
θ4(τ)2 − iθ2(τ)2

)1/2
,

η

(
τ + 1

2

)
= e

iπ
24 (θ3(τ)η(τ))1/2 = e

iπ
24 η(τ)2

( 2
θ2(τ)θ4(τ)

)1/2
.

(A.15)

9The reason we write with quotation marks is that ordinary double-angle (n-tuple angle) formulas in the
context of theta functions refer to 2z (nz). In this subsection and the next subsection, we mainly focus on
the case of multiple τ .
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A.3 “n-tuple-angle” formulas

In contrast to the double version, there is no clear relation between θa(nτ) and θa(τ)
generically. However, as we present in this subsection, we can rewrite “n-tuple-angle” thetas
in terms of θa(z|τ). In order to derive the “n-tuple-angle” formulas, we use the following
factorization formulas.

1− qn =
n−1∏
k=0

(
1− e2πi k

n q
)

(A.16)

1 + qn =
n−1∏
k=0

(
1− e2πi 2k+1

2n q
)

=
n−1

2∏
k=−n−1

2

(
1 + e2πi k

n q
)

(A.17)

By applying these formulas to the product representations of theta functions, we obtain the
following “n-tuple-angle” formulas:

θ2(nτ)
η(nτ) =

n−1
2∏

k=−n−1
2

θ2
(
k
n | τ

)
η(τ) ,

θ2
(
τ
n

)
η
(
τ
n

) =
n−1∏
k=0

eπi(
k
n)2

τ
θ2
(
k
nτ | τ

)
η(τ) ,

θ3(nτ)
η(nτ) =

n−1
2∏

k=−n−1
2

θ3
(
k
n | τ

)
η(τ) ,

θ3
(
τ
n

)
η
(
τ
n

) =
n−1

2∏
k=−n−1

2

eπi(
k
n)2

τ
θ3
(
k
nτ | τ

)
η(τ) ,

θ4(nτ)
η(nτ) =

n−1∏
k=0

θ4
(
k
n | τ

)
η(τ) ,

θ4
(
τ
n

)
η
(
τ
n

) =
n−1

2∏
k=−n−1

2

eπi(
k
n)2

τ
θ4
(
k
nτ | τ

)
η(τ) .

(A.18)

We can extend these formulas straightforwardly to the nonzero z case as

θ1(α|nτ)
η(nτ) =

n−1∏
k=0

θ1
(
α
n + k

n | τ
)

η(τ) , −i
θ1
(
α| τn

)
η
(
τ
n

) =
n−1∏
k=0

(−i)e2πi k
n
αeπi(

k
n)2

τ
θ1
(
α+ k

nτ | τ
)

η(τ) ,

θ2(α|nτ)
η(nτ) =

n−1
2∏

k=−n−1
2

θ2
(
α
n + k

n | τ
)

η(τ) ,
θ2
(
α| τn

)
η
(
τ
n

) =
n−1∏
k=0

e2πi k
n
αeπi(

k
n)2

τ
θ2
(
α+ k

nτ | τ
)

η(τ) ,

θ3(α|nτ)
η(nτ) =

n−1
2∏

k=−n−1
2

θ3
(
α
n + k

n | τ
)

η(τ) ,
θ3
(
α| τn

)
η
(
τ
n

) =
n−1

2∏
k=−n−1

2

e2πi k
n
αeπi(

k
n)2

τ
θ3
(
α+ k

nτ | τ
)

η(τ) ,

θ4(α|nτ)
η(nτ) =

n−1∏
k=0

θ4
(
α
n + k

n | τ
)

η(τ) ,
θ4
(
α| τn

)
η
(
τ
n

) =
n−1

2∏
k=−n−1

2

e2πi k
n
αeπi(

k
n)2

τ
θ4
(
α+ k

nτ | τ
)

η(τ) .

(A.19)
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The following enables us to change the range of k.

e2πi k
n
αeπi(

k
n)2

τθ1

(
α+ k

n
τ | τ

)
= −e2πi k+n

n
αeπi(

k+n
n )2

τθ1

(
α+ k + n

n
τ | τ

)
e2πi k

n
αeπi(

k
n)2

τθ2

(
α+ k

n
τ | τ

)
= e2πi k+n

n
αeπi(

k+n
n )2

τθ2

(
α+ k + n

n
τ | τ

)
e2πi k

n
αeπi(

k
n)2

τθ3

(
α+ k

n
τ | τ

)
= e2πi k+n

n
αeπi(

k+n
n )2

τθ3

(
α+ k + n

n
τ | τ

)
e2πi k

n
αeπi(

k
n)2

τθ4

(
α+ k

n
τ | τ

)
= −e2πi k+n

n
αeπi(

k+n
n )2

τθ4

(
α+ k + n

n
τ | τ

)
(A.20)

We can derive the ordinary n-tuple-angle formulas by substituting the right-hand side
of (A.19) to the left-hand side,

θ1(α|τ)
η(τ) = in−n

2
n−1∏
k=0

n−1∏
l=0

e2πi l
n(αn+ k

n)eπi(
l
n)2

τ
θ1
(
α
n + k

n + l
nτ | τ

)
η(τ) ,

θ2(α|τ)
η(τ) =

n−1
2∏

k=−n−1
2

n−1∏
l=0

e2πi l
n(αn+ k

n)eπi(
l
n)2

τ
θ2
(
α
n + k

n + l
nτ | τ

)
η(τ) ,

θ3(α|τ)
η(τ) =

n−1
2∏

k=−n−1
2

n−1
2∏

l=−n−1
2

e2πi l
n(αn+ k

n)eπi(
l
n)2

τ
θ3
(
α
n + k

n + l
nτ | τ

)
η(τ) ,

θ4(α|τ)
η(τ) =

n−1∏
k=0

n−1
2∏

l=−n−1
2

e2πi l
n(αn+ k

n)eπi(
l
n)2

τ
θ4
(
α
n + k

n + l
nτ | τ

)
η(τ) ,

(A.21)

which are analogous to the following trigonometric function identities,

2 sinnz =
n−1∏
k=0

2 sin
(
z + kπ

n

)
,

2 cosnz =
n−1

2∏
k=−n−1

2

2 cos
(
z + kπ

n

)
.

(A.22)

B Examples of Hecke operators and orbifold theory partition functions

B.1 Examples of Hecke operators

We repeat the definition of Hecke operators:

TkZ (τ) ≡ 1
k

∑
i|k

i−1∑
j=0

Z

(
kτ

i2
+ j

i

)
.
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For most simple case, we have

T1Z(τ) = Z(τ),

T2Z(τ) = 1
2

(
Z(2τ) + Z

(
τ

2

)
+ Z

(
τ + 1

2

))
,

T3Z(τ) = 1
3

(
Z(3τ) + Z

(
τ

3

)
+ Z

(
τ + 1

3

)
+ Z

(
τ + 2

3

))
.

For the case k is composite number, we have

T4Z(τ) = 1
4

(
Z(4τ)

+Z
(2τ

2

)
+ Z

(2τ + 1
2

)
+Z

(
τ

4

)
+ Z

(
τ + 1

4

)
+ Z

(
τ + 2

4

)
+ Z

(
τ + 3

4

))
,

T6Z(τ) = 1
6

(
Z(6τ)

+Z
(3τ

2

)
+ Z

(3τ + 1
2

)
+Z

(2τ
3

)
+ Z

(2τ + 1
3

)
+ Z

(2τ + 2
3

)
+Z

(
τ

6

)
+ Z

(
τ + 1

6

)
+ Z

(
τ + 2

6

)
+Z

(
τ + 3

6

)
+ Z

(
τ + 4

6

)
+ Z

(
τ + 5

6

))
.

We notice here that the 4-th Hecke operator includes 1
4Z(2τ

2 ) = 1
4T1Z(τ). This is because 4

has a square-factor. We can find similar situation in more complicated example,

T12Z(τ) = 1
12

(
Z(12τ) + Z

(6τ
2

)
+ Z

(6τ + 1
2

)
+Z

(4τ
3

)
+ Z

(4τ + 1
3

)
+ Z

(4τ + 2
3

)
+Z

(3τ
4

)
+ Z

(3τ + 1
4

)
+ Z

(3τ + 2
4

)
+ Z

(3τ + 3
4

)
+Z

(2τ
6

)
+ Z

(2τ + 1
6

)
+ Z

(2τ + 2
6

)
+Z

(2τ + 3
6

)
+ Z

(2τ + 4
6

)
+ Z

(2τ + 5
6

)
+Z

(
τ

12

)
+ Z

(
τ + 1

12

)
+ Z

(
τ + 2

12

)
+Z

(
τ + 3

12

)
+ Z

(
τ + 4

12

)
+ Z

(
τ + 5

12

)
+Z

(
τ + 6

12

)
+ Z

(
τ + 7

12

)
+ Z

(
τ + 8

12

)
+Z

(
τ + 9

12

)
+ Z

(
τ + 10

12

)
+ Z

(
τ + 11

12

))
,
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here we notice again that this 12-th Hecke operator includes 1
4T3Z(τ),

1
4T3Z(τ) = 1

12

(
Z

(6τ
2

)
+ Z

(2τ
6

)
+ Z

(2τ + 2
6

)
+ Z

(2τ + 4
6

))
.

B.1.1 Examples of square-free Hecke operators

Recall that we introduced square-free Hecke operators as

T sf
k Z(τ) = TkZ(τ)−

∑
a∈Z>1
a2|k

1
a2T

sf
k
a2
Z(τ),

to specify the minimally modular invariant part of the Hecke operators. As is obvious from
the definition, Tk and T sf

k coincide when k has no square-factor.

T sf
1 Z(τ) = T1Z(τ) = Z(τ)
T sf

3 Z(τ) = T3Z(τ)

T sf
4 Z(τ) = T4Z(τ)− 1

4T
sf
1 Z(τ)

= T4Z(τ)− 1
4Z(τ)

T sf
9 Z(τ) = T9Z(τ)− 1

9T
sf
1 Z(τ)

= T9Z(τ)− 1
9Z(τ)

T sf
12Z(τ) = T12Z(τ)− 1

4T
sf
3 Z(τ)

= T12Z(τ)− 1
4T3Z(τ)

T sf
36Z(τ) = T36Z(τ)− 1

4T
sf
9 Z(τ)− 1

9T
sf
4 Z(τ)− 1

36T
sf
1 Z(τ)

= T36Z(τ)− 1
4T9Z(τ)− 1

9T4Z(τ) + 1
36Z(τ)

B.1.2 Number of terms in (square-free) Hecke operators

For later convenience, we refer here the number of terms that composes k-th (square-free)
Hecke operators. We assume that k is prime-factorized as

k =
∏
i

pnii , (B.1)

where ps are prime integers and ns are positive integers. It is obvious from the definition that
the number of terms that composes the k-th Hecke operator is the sum of all divisors of k,

(# terms of Tk) =
∏
i

 ni∑
li=0

plii

 . (B.2)
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In the square-free case, T sf
k is constructed via excluding terms from Tk corresponding to

square factors of k, thus the following holds;
(
# terms of T sf

k

)
=
∏
i

(
pnii + pni−1

i

)
. (B.3)

One can explicitly confirm these statements in examples.

B.2 Examples of orbifold CFT partition functions

We present here some examples of orbifold CFT partition functions. We can check that
Z2,S = Z2,Z for example. (This is obvious because S2 ' Z2.)

B.2.1 Symmetric orbifold CFT

Recall that we have well-known formula

ZN,S(τ) =
∑

partition of N

N∏
k=1

1
(Nk)!

(TkZ(τ))Nk ,

where the partition of N runs over (N1, . . . , NN ) s.t.
N∑
k=1

kNk = N .

Z1,S(τ) = T1Z(τ) = Z(τ)

Z2,S(τ) = 1
2! (T1Z(τ))2 + T2Z(τ)

= 1
2

(
(Z(τ))2 + Z(2τ) + Z

(
τ

2

)
+ Z

(
τ + 1

2

))
Z3,S(τ) = 1

3! (T1Z(τ))3 + T1Z(τ) T2Z(τ) + T3Z(τ)

= 1
6(Z(τ))3 + Z(τ) 1

2

(
Z(2τ) + Z

(
τ

2

)
+ Z

(
τ + 1

2

))
+ 1

3

(
Z(3z) + Z

(
τ

3

)
+ Z

(
τ + 1

3

)
+ Z

(
τ + 2

3

))
Z4,S(τ) = 1

4! (T1Z(τ))4 + T1Z(τ) T3Z(τ)

+ 1
2! (T1Z(τ))2 T2Z(τ) + 1

2! (T2Z(τ))2 + T4Z(τ)

B.2.2 Cyclic orbifold CFT

We use the following formula that presented in (6.6),

ZN,Z(τ) =
∑
d|N

φ(N/d)
d

T sf
N
d

(
Z(τ)d

)
, (B.4)
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where φ is the Euler function.

Z1,Z(τ) = T sf
1 Z(τ) = Z(τ)

Z2,Z(τ) = 1
2T

sf
1

(
Z(τ)2

)
+ T sf

2 (Z(τ))

= 1
2

(
(Z(τ))2 + Z(2τ) + Z

(
τ

2

)
+ Z

(
τ + 1

2

))
Z3,Z(τ) = 1

3T
sf
1

(
Z(τ)3

)
+ 2

1T
sf
3 (Z(τ))

= 1
3

(
(Z(τ))3 + 2

(
Z(3z) + Z

(
τ

3

)
+ Z

(
τ + 1

3

)
+ Z

(
τ + 2

3

)))
Z4,Z(τ) = 1

4T
sf
1

(
Z(τ)4

)
+ 1

2T
sf
2

(
Z(τ)2

)
+ 2

1T
sf
4 (Z(τ))

= 1
4

(
Z(τ)4 + Z(2τ)2 + Z

(
τ

2

)2
+ Z

(
τ + 1

2

)2

+2
(
Z(4τ) + Z

(2τ + 1
2

)
+ Z

(
τ

4

)
+ Z

(
τ + 1

4

)
+ Z

(
τ + 2

4

)
+ Z

(
τ + 3

4

)))

As we can explicitly check in above examples, ZN,Z consists of N2 terms of Zs, multiplied
by 1/N .

C Construction of cyclic orbifold partition function

In this section, we prove the equation (6.6), which constructs the N -th cyclic orbifold
partition function in terms of square-free Hecke operators. The general construction we
have presented is,

ZN,Z(τ) =
∑
d|N

(#k (1 ≤ k ≤ N) s.t. gcd(N, k) = d)
d

T sf
N
d

(
Z(τ)d

)
. (C.1)

The proof of this equation is the goal of this section.
In the first place, we need to calculate G = ZN version of (2.4),

ZN,Z(τ) =
N−1∑
l=0

Tr(l)

(∑N
l′=1 g

l′

N
qHL q̄HR

)

= 1
N

∑
l,l′

Tr(l)
(
gl
′
qHL q̄HR

)
,

where g is one of the generators of ZN and l labels the (un)twisted sectors. The last line
shows that we need to determine N2 terms that contributes to the partition function.
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It is easy to determine N terms in the untwisted sector. They have N
d τ periods in the

τ direction if k satisfies gcd(N, k) = d. Thus the untwisted sector consists of

Z(Nτ)× (#k (1 ≤ k ≤ N) s.t. gcd(N, k) = 1),
...

Z

(
N

d
τ

)d
× (#k (1 ≤ k ≤ N) s.t. gcd(N, k) = d),

...
Z(τ)N ,

(d runs over the divisors of N). Distinguishing each Z
(
N
d τ
)d

from others, these Zs
actually give N terms. Other than Z(τ)N , these Zs are NOT modular invariant itself. The
minimally modular invariant function that includes Z

(
N
d τ
)d

is what we introduced in 6.1.1,
the square-free Hecke operator

N

d
T sf
N
d

(
Z(τ)d

)
.

This implies that we need to include N
d T

sf
N
d

(
Z(τ)d

)
for each Z

(
N
d τ
)d
.

Here, we have determined the necessary terms to construct the cyclic orbifold partition
function. In other words, we found that ZN,Z(τ) includes terms of the form

∑
d|N

(#k (1 ≤ k ≤ N) s.t. gcd(N, k) = d)
d

T sf
N
d

(
Z(τ)d

)
.

Now what remains to do is to prove that this summation is sufficient. As we will see below,
this summation actually consists of totally N2 terms, thus is sufficient.

The key to the proof is

• #k (1 ≤ k ≤ N) s.t. gcd(N, k) = d,

• # terms in N
d T

sf
N
d

(
Z(τ)d

)
.

We get the total number of terms by summing their product over all d that divides N .
Before proceeding, we set the prime factorization of N and N ’s divisor d as follows:

N =
n∏
i=1

pnii (C.2)

d =
n∏
i=1

pkii (C.3)

where ps are prime, ns are positive, and ks are non-negative integers. Of course, ks are in
the range of 0 ≤ ki ≤ ni. Firstly, let us evaluate #k (1 ≤ k ≤ N) s.t. gcd(N, k) = d. One
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can check that this quantity is φ(Nd ) where φ is the Euler function:

(#k (1 ≤ k ≤ N) s.t. gcd(N, k) = d) = φ

(
N

d

)
=

n∏
i=1

φ
(
pni−kii

)
=

n∏
i=1

pni−kii

(
1− 1− δni,ki

pi

)
. (C.4)

Next, we evaluate # terms in N
d T

sf
N
d

(
Z(τ)d

)
. Recall the formula (B.3), we find that

(
# terms in N

d
T sf
N
d

(
Z(τ)d

))
=

n∏
i=1

(
pni−kii + pni−ki−1

i (1− δni,ki)
)

=
n∏
i=1

pni−kii

(
1 + 1− δni,ki

pi

)
. (C.5)

The total number of terms is

(# total terms) =
∑
d|N

(#k (1 ≤ k ≤ N) s.t. gcd(N, k) = d)

×
(

# terms in N

d
T sf
N
d

(
Z(τ)d

))
=
∑
d|N

n∏
i=1

pni−kii

(
1− 1− δni,ki

pi

)
pni−kii

(
1 + 1− δni,ki

pi

)

=
n∏
i=1

ni∑
ki=0

p
2(ni−ki)
i

(
1− 1− δni,ki

pi

)(
1 + 1− δni,ki

pi

)

=
n∏
i=1

((
p2ni
i − p2ni−2

i

)
+
(
p2ni−2
i − p2ni−4

i

)
+ · · ·+

(
p2
i − 1

)
+ 1

)
=

n∏
i=1

pi
2ni , (C.6)

this is exactly N2. This result proves that the formula (6.6) sufficiently gives N2 terms,
thus is the N -th cyclic orbifold partition function.
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