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The black hole singularity plays a crucial role in formulating Hawking’s information paradox.
The global spacetime analysis may be reconciled with unitarity by imposing a final state boundary
condition on the spacelike singularity. Motivated by the final state proposal, we explore the effect of final
state projection in two dimensional conformal field theories. We calculate the time evolution under
postselection by employing the real part of pseudoentropy to estimate the amount of quantum entanglement
averaged over histories between the initial and final states. We find that this quantity possesses a Page-
curve-like behavior.
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I. INTRODUCTION

The process of postselection is useful to study dynamical
properties of quantum many-body systems and quantum
field theories (QFTs). The nonunitary dynamics of projec-
tive measurements, for instance, provides a new tool for
controlling many-body systems, giving rise to measure-
ment-induced phase transitions [1,2]. Postselection also
plays a key role in the black hole final state proposal [3],
providing a possible resolution to the black hole informa-
tion puzzle. Though the evaporation process due to
Hawking radiation [4,5] might change the initial pure state
into a mixed state [6], the final state remains pure under the
state projection imposed on the spacelike singularity, cf. the
left panel of Fig. 1. However, it has been pointed out that
the final state has to be very special to preserve information
[7]. Also a tension between the final state proposal and the
presence of a smooth horizon was discussed in [8,9], for
which a resolution was recently proposed in [10].
On the other hand, the unitarity in the black hole

evaporating process requires that the amount of quantum
entanglement between Hawking radiation and black hole

interior follows the Page curve [11,12], based on the idea
that the Bekenstein-Hawking entropy [5,13] gives the
leading term for the logarithm of the number of black
hole microstates.
It is essential to mention that studies of postselection

in QFTs have been quite limited thus far. One reason for
this may be the lack of universal and calculable quantities
that can characterize the dynamical evolution of quantum
states. For example, quantum quenches are often studied as
a typical class of time-dependent systems, and entangle-
ment entropy is important in probing how the systems
thermalize [14].
However, in the presence of postselection, the use

of entanglement entropy is limited—nevertheless, see
[15–18]—since it only depends on a single state, namely
either on the initial state or the final state. Instead, it is
desirable to consider a universal quantity reflecting histor-
ies from the initial state jψ ii at time t ¼ 0 to the final state
jψfi at t ¼ T. It is important to note that at a specific time t
we encounter two different quantum states jψ1i and jψ2i,
defined by

jψ1i ¼ e−iHtjψ ii; jψ2i ¼ eiðT−tÞHjψfi; ð1Þ

which are the evolution of the initial and final state till the
time t, respectively. Recently, one such candidate, called
pseudoentropy, has been introduced in [19]. Let us consider
two pure states jψ1i and jψ2i, and decompose the total
system into the subsystems A and B such that the entire
Hilbert space becomes factorized into Htot ¼ HA ⊗ HB.
Taking the reduced transition matrix as
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τ1j2A ¼ TrB

�jψ1ihψ2j
hψ2jψ1i

�
; ð2Þ

the pseudoentropy is given by

S1j2A ¼ −Tr½τ1j2A log τ1j2A �: ð3Þ
This quantity arises as a straightforward extension of holo-
graphic entanglement entropy [20,21] in the case ofEuclidean
time-dependent backgrounds [19]. Pseudoentropy is generi-
cally complex-valued as the transition matrix is not always
Hermitian. However, we expect that the real part of pseu-

doentropy: Re½S1j2A �, can be understood as the number of Bell
pairs averaged over histories evolving from jψ1i to jψ2i.
Indeed, for a class of interesting quantum states, we can show

explicitly that Re½S1j2A � coincides with themaximal number of
Bell pairs distilled in our postselection process as found in
[19] andmore elaborated inAppendixA, stimulated by an old
work [22]. Thus, this quantity is useful in figuring out
quantum entanglement under postselection. Furthermore, it
provides a nice quantum order parameter to distinguish
different quantumphases [23,24]. Refer to [25–28] for further
recent progress related to pseudoentropy.
The purpose of this article is to uncover the time evolution

of pseudoentropy in conformal field theories (CFTs) under
postselection, mainly motivated by the black hole final state
proposal, as depicted in Fig. 1. An initial state jψ ii at time
t ¼ 0 evolves under the HamiltonianH until t ¼ T when we
perform the postselection to the final state jψfi. At time t, the
initial state evolves into jψ1i ¼ e−iHtjψ ii, while the final
state is reverted to jψ2i ¼ eiðT−tÞHjψfi. In this setup,
sketched in the right panel of Fig. 1, we can define the
pseudoentropy (3), which will be studied in this article. Note
that if we apply the replica method by assuming a cut along
the subsystem A, the familiar quantity given by− ∂

∂n log
Zn

ðZ1Þn,
whereZn is the partition function on the n-sheeted geometry,
actually coincides with the pseudoentropy, but not with
entanglement entropy for either jψ1i or jψ2i. This quantity
reduces to the entanglement entropy onlywhen jψ1i ¼ jψ2i.

Below, we often assume that our CFT has a classical gravity
dual in order to obtain analytical results. Such a CFT, i.e., a
so-called holographic CFT, is strongly coupled and has a
large central charge c [29,30]. For this class of CFTs, we can
evaluate correlation functions by employing the large c
factorization such that they can be computed by Wick
contractions.

II. HOMOGENEOUS POSTSELECTION
AND GRAVITY DUAL

Consider the simplest model where we perform a
postselection homogeneously. A tractable class of post-
selection can be defined by using the boundary state jBi (or
Cardy state [31]) and considering the following two pure
states in a given CFT

jψ1i ¼ N e−iHte−δHjBi;
jψ2i ¼ N eiHðT−tÞe−δHjBi; ð4Þ

where the parameter δ denotes a UV regularization of the
boundary state andN is the normalization factor. Note that
jψ1i and jψ2i are obtained by evolving the initial and final
state jψ ii ¼ jψfi ¼ N e−δHjBi until the time t, follow-
ing Eq. (1).
The inner product hψ1jψ2i defines a path-integral on

the strip with the width L ¼ 2δþ iT. This is described as
0 ≤ Imw ≤ L by taking ðw; w̄Þ as a complex coordinate.
The conformal transformation, i.e., z ¼ e

πw
L maps this strip

into an upper half-plane Im z > 0. We set the two endpoints
w1, w2 of the interval A as ðwi; w̄iÞ ¼ ðxi þ iðδþ itÞ;
xi − iðδþ itÞÞ with i ¼ 1, 2. The n-sheeted partition
function Zn can be computed by inserting the twist operator
σn at the two endpoints of A as in the usual field theory
computation of entanglement entropy [32]. In holographic
CFTs, this two-point function has two different saddle
point contributions, namely, (i) the Wick contraction of two
twist operators and (ii) the Wick contraction of each twist
operator with their mirror images. Since the candidates of
pseudoentropy computed from (i) and (ii) are dual to the
length of the connected and disconnected geodesic, we
write them as SconA and SdisA , respectively.
More generally, if we consider a conformal map from the

originalw coordinate to the upper half-plane in z coordinate
via a holomorphic map z ¼ fðwÞ, the two distinct con-
tributions to pseudoentropy are given by

SconA ¼ c
6
log

jfðw1Þ − fðw2Þj2
ϵ2jf0ðw1Þjjf0ðw2Þj

; ð5Þ

SdisA ¼ c
6
log

jfðw1Þ − f̄ðw̄1Þjjfðw2Þ − f̄ðw̄2Þj
ϵ2jf0ðw1Þjjf0ðw2Þj

þ 2Sbdy; ð6Þ

where Sbdy is referred to as the boundary entropy [33] and ϵ
is a UV cutoff. This field-theoretic result perfectly agrees

FIG. 1. Final state projection in an evaporating black hole (left)
and its field theory simplification (right).
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with the holographic entanglement entropy in AdS/BCFT
(anti-de Sitter/boundary CFT) [34–36].
Using the conformal map z ¼ e

πw
L for the present model,

we obtain

SconA ¼ c
3
log

�
2T
πϵ

sin

�
πðx2 − x1Þ

2T

��
;

SdisA ¼ c
3
log

�
2T
πϵ

sin

�
πt
T

��
þ i

πc
6
þ 2Sbdy; ð7Þ

by taking the limit δ → 0. The correct pseudoentropy is
given by the one with a smaller real part among the two.
Note that Re½SdisA � vanishes at t ¼ ϵ=2, which we regard as
the initial time with a regularization. Then it increases
logarithmically, reaching the maximum at the middle time
t ¼ T=2. It again decreases and vanishes at the final time
t ¼ T − ϵ=2 as the boundary state does not have any real
space entanglement [37]. However, Re½SconA � is time-
independent and is identical to the vacuum entanglement
entropy. Taking the minimization, the disconnected con-
tribution Re½SdisA � dominates at early and late times.
Depending on the value of Sbdy, Re½SconA � dominates for
a finite period t� < t < T − t�.
The holographic analysis [38] based on AdS/BCFT

suggests that a spacelike boundary in a Lorentzian
BCFT has a complex-valued boundary entropy, namely

Sbdy ¼
c
6
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT j − 1

jT j þ 1

s
− i

πc
12

; ð8Þ

where T is the tension of the end-of-the-world (EOW)
brane dual to the boundary of the BCFT. This takes values
in the range T < −1. The imaginary part of (8) exactly
cancels that of the pseudoentropy SdisA .
For our setup (4), we can further construct its gravity

dual as follows. Considering a global AdS3, i.e.,

ds2 ¼ −
T2

π2
cosh2 ρdt2 þ dρ2 þ T2

π2
sinh2 ρdx2; ð9Þ

we introduce an EOW brane Q defined by

cosh ρ sin
πt
T

¼ cosh η0; ð10Þ

that describes two-dimensional de Sitter spacetime. Here η0
is related to the brane tension as T ¼ − coth η0. Finally, the
gravity dual of the present CFT setup is given by the region
surrounded by the AdS asymptotic boundary ρ → ∞ and
the EOW brane Q, as illustrated in Fig. 2. Similar to
holographic entanglement entropy [20,21], the holographic
pseudoentropy [19] is given by the geodesic length LA in
the corresponding Lorentzian gravity dual. In our case,
due to the presence of Q, the geodesic connecting two

endpoints of the interval A can end on Q, as shown in
Fig. 2. Thus, we can have contributions from disconnected
geodesics, denoted by Ldis

A , in addition to those resulting
from a connected geodesic Lcon

A . Accordingly, the real part
of holographic pseudoentropy is taken to be the minimum
as before,

Re½S1j2A � ¼ min

�
Re

�
Lcon
A

4GN

�
;Re

�
Ldis
A

4GN

��
: ð11Þ

Obviously, the connected contribution is the same as the
holographic entanglement entropy in global AdS3 and thus
coincides with Eq. (5). Moreover, a straightforward com-
putation for the sum of two geodesic lengths reproduces the
disconnected contribution SdisA . Thus, we can reproduce the
CFT results from the gravity dual [39].

III. INHOMOGENEOUS POSTSELECTION
AND PSEUDOENTROPY

Next, we focus on an example of inhomogeneous
postselection models motivated by the black hole final
state projection. Namely, at t ¼ 0 we project the left part
x < 0 and right part x > 0 to a boundary state jBix<0 and
the CFT vacuum j0ix>0 [40], respectively. This is realized
by the (Euclidean) path-integral on the w-sheet as depicted
in the left of Fig. 3. We regard the projection on x < 0 as
the black hole final state [41]. Although the boundary state
is based on a local boundary condition and does not have
any real space entanglement [37], we expect that the time
evolution eiðT−tÞH may lead the state to a random chaotic
one. We also qualitatively mimic the creation of entangled

FIG. 2. The gravity dual of the Lorentzian BCFT. The blue
surface describes the EOW brane defined in Eq. (10). For a
subsystem A (red curve) located on the asymptotic boundary, the
black and green curves denote the corresponding disconnected
geodesics and the connected geodesic, respectively.
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pairs due to Hawking radiation during the time evolution
of the initial boundary state as similar to quantum
quenches [14].
Taking the initial state as the quantum quench state

e−δHjBi, and fixing the final state as e−δHjBix<0 ⊗ j0ix>0,
we can calculate the pseudoentropy from the general
formulas (5) and (6). We choose the subsystem A as an
interval between two points ðw1; w̄1Þ and ðw2; w̄2Þ. More
explicitly, one can find (i ¼ 1, 2)

wi ¼ xi þ ið−δ − iðT − tÞÞ;
w̄i ¼ xi − ið−δ − iðT − tÞÞ: ð12Þ

We can also map the w-sheet to an upper half-plane
(z-plane) via

w ¼ ffiffiffi
z

p
−
a
2
log

�
1þ

ffiffi
z

p
affiffi

z
p
a − 1

�
−
a
2
πi;

w̄ ¼ ffiffiffī
z

p
−
a
2
log

�
1þ

ffiffī
z

p
affiffī

z
p
a − 1

�
þ a

2
πi; ð13Þ

by choosing a ¼ 2
π ð2δþ iTÞ.

For simplicity, we first examine the simple cases with
jxj ≫ T to obtain some analytical results.We can evaluate the
pseudoentropy in the following three regions: (a) x1; x2 ≫ T,
(b) x2 ≫ T; x1 ≪ −T, and (c) x1; x2 ≪ −T by setting δ ¼ 0
and noting that t < T ≪ jx1;2j.
In the case (a), x1; x2 ≫ T, we obtain

Re½SconA � ≃ c
6
log

�ðx1 − x2Þ2ðx1 þ x2Þ2
4x1x2ϵ2

�
;

Re½SdisA � ≃ c
3
log

�
2t
ϵ

�
þ 2S̃bdy; ð14Þ

where S̃bdy is the real part of the boundary entropy Sbdy for
spacelike surface. At t ¼ 0, the disconnected one is favored
and we have Re½SdisA � ¼ 0. As time evolves, it grows
logarithmically as Re½SdisA � ≃ c

3
log 2t

ϵ and eventually

Re½SconA � becomes dominant. We can intuitively understand
this phase transition behavior as follows. The state jψ ii ¼
e−itHe−δHjBi has quantum entanglement for the length
scale l < 2t due to causal propagation. Thus, if
jx1 − x2j < 2t, both the initial state and final states have
the corresponding quantum entanglement. However, if
jx1 − x2j > 2t, the initial state does not have the entangle-
ment at the length scale jx1 − x2j.
In the case (b), x2 ≫ T and x1 ≪ −T, we obtain

Re½SconA � ≃ c
6
log

�
π2x32
32Tϵ2

�
;

Re½SdisA � ≃ c
6
log

�
4Tt sinðπtT Þ

πϵ2

�
þ 2S̃bdy: ð15Þ

Since we assume x2 ≫ T > t, the disconnected one is
favored at any time. It starts with Re½SdisA � ¼ 0 as in the
previous case and grows logarithmically as Re½SdisA � ≃
c
3
log 2t

ϵ initially. Then it reaches a maximum and starts
decreasing. At the final time t ≃ T, it is reduced to
Re½SdisA � ≃ c

6
log 2T

ϵ . This result can be explained by noting
that the entanglement in the part x1 < x < 0 of region A
becomes trivial at the final time due to postselection.
In the case (c), x1; x2 ≪ −T, we simply reproduce our

previous results (5) and (6). This can be easily understood if
we note that for x ≪ −T, the space looks like a strip having
width T, identical to the homogeneous postselection
model (4).
Next, we shall choose the subsystem to be A ¼ ½0; y�

with y > 0 to model the radiation subsystem for the
evaporating black hole, where the black hole final state
is imposed on x < 0 at t ¼ T. We numerically plot the real
part of pseudoentropy in Fig. 4. In particular, when we
choose y ¼ ∞, where only the disconnected geodesic is
available, it looks like a Page curve, i.e., starting from
Re½SA� ¼ 0 and ending up with Re½SA� ¼ 0. Indeed, since
we have w ≃ − z3=2

3a2 when z ≃ 0, we can estimate the value at
t ≃ T as follows

Re½SdisA � ∼ c
12

log
jwj2
ϵ2

≃
c
6
log

ðT − tÞ2 þ δ2

ϵ2
: ð16Þ

FIG. 3. A sketch of Euclidean path-integral on the w-sheet for
inhomogeneous postselection and its conformal transformation to
the upper half-plane in terms of the z coordinate. For x < 0, the
path-integral is terminated at Imw ¼ 0 describing the projection
to jBix<0, while for x > 0 it extends to Imw ¼ ∞, corresponding
to the projection to the vacuum state j0ix>0 on the right half.
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FIG. 4. The plot for the real part of pseudoentropy Re½SA� for
subsystems A ¼ ½0;∞� (left) and A ¼ ½0; 5� (right) as a function
of time t. We choose T ¼ 5, δ ¼ ϵ ¼ 0.01 and S̃bdy ¼ 0.
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At t ¼ T, this is of the same order as at the initial time
t ¼ 0. Therefore, we can conclude that the pseudoentropy
vanishes at t ¼ T by choosing δ ¼ OðϵÞ.

IV. PARTIAL POSTSELECTION
AND PSEUDOENTROPY

Although the inhomogeneous postselection model stud-
ied before mimics a black hole spacetime with a spacelike
singularity, there is a crucial difference with the black hole
final state proposal [3]. In the latter, the postselection is
only imposed on the singularity, while no operation is
performed to the compliment part.
To model this feature, we shall consider partial post-

selection in a two-dimensional CFT, where we make a
projection only for the left half x < 0. We again choose a
global quench state e−δHjBi at t ¼ 0 as the initial state and
consider its time evolution until the partial postselection is
imposed at t ¼ T. We take the postselected state as a
boundary state jBix<0, while keeping the right half x > 0
free. Therefore, right after the postselection at t ¼ T,
the quantum state associated with the whole system turns
out to be

jBix<0 ⊗ ½hBjx<0ðe−iTHe−δHjBiÞ�x>0
¼ ðjBihBjx<0 ⊗ Ix>0Þ · e−iTHe−δHjBi; ð17Þ

where Ix<0 is the identity matrix for the left half.
Next, we focus on the pseudoentropy at immediate time

0 < t < T. In this case, the two pure states for evaluating
the pseudoentropy are given by

jψ1i ¼ N 1e−itHe−δHjBi;
jψ2i ¼ N 2e−iðt−TÞHðjBihBjx<0 ⊗ Ix>0Þ · e−iTHe−δHjBi;

ð18Þ

where N 1;2 are normalization factors. Taking subsystem A
to be an interval, the pseudoentropy (3) in this setup can be
computed via the Euclidean path-integral shown in the left
panel of Fig. 5. Using the conformal map

wðzÞ ¼ f−1ðzÞ ¼ α logð1 − zÞ þ αβ log
�
zþ β

β

�
; ð19Þ

we can map the strip geometry with a slit to the upper half-
plane as shown in the right of Fig. 5. The parameters α and
β are fixed by πα ¼ δþ iT and παβ ¼ δ − iT, respectively.
For the subsystem A ¼ ½0; y�, with y > 0, we plot the real
part of pseudoentropy in Fig. 6. This again shows a Page-
curve-like behavior.

V. DISCUSSION

We have studied the time evolution of pseudoentropy
under postselection, whose real part provides an estimation
of the amount of quantum entanglement, i.e., the number of
Bell pairs averaged over histories between the initial state
and the postselected final state. In a two-dimensional CFT
setup, where postselection applies to the left region, x < 0,
the mentioned entanglement measure associated with the
region x > 0 possesses a Page-curve-like behavior. It grows
by starting from zero, reaches its maximum, decreases, and
eventually vanishes at the time of the partial postselection.
Our setups model black hole evaporation according to the
final state projection scenario.
Note that we have obtained the Page curve result for the

radiation entanglement by employing the notion of pseu-
doentropy. However, postselection is not captured by
entanglement entropy obtained from the reduced density
matrix of a single pure state. This shows the usefulness of
pseudoentropy as ameasure of quantumentanglement under
postselection.At the same time, thismotivates us to compare
the final state proposal with the island picture [42–44],
which also leads to the Page curve. Notably, in our analysis,
the unitarity-caused deviation from monotonical increase
arises due to the past evolution of the postselected final state.
This qualitatively looks similar to the island scenario
suggesting a modification of the Hilbert space structure
inside the black hole. However, state projection seems to
affect correlations already in the initial stages of evaporation.
There is no sudden appearance of a disjoint entanglement
region on aCauchy slice residing in the interior right after the
Page time.
Considerations that seem to indicate a tension between

the final state proposal and the presence of a smooth

0 1 2 3 4 5 6
0.0
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0.2

0.3

0.4

0.5

0 1 2 3 4 5 6

0

5

10

15

FIG. 6. The plot for the real part of pseudoentropy Re½SA� for
subsystems A ¼ ½0;∞� (left) and A ¼ ½0; 5π� (right) as a function
of time t. We choose the parameters T ¼ 2π, δ ¼ ε ¼ 0.05π.

FIG. 5. A sketch of the path-integral description of partial
postselection (left) and its conformal map to the upper
half-plane (right).
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horizon have been discussed in [8,9], where a resolution to
the puzzle raised in [9] has been proposed in [10].
Nevertheless, starting from the arguments in [45], we shall
emphasize that indications of a drama for infalling observ-
ers are merely an artifact of the factorizable Hilbert space
within the improper semiclassical treatment. On the other
hand, the notion of a classical singularity may already have
to be given up when the black hole is young, following the
arguments by Page [46]. This motivates considering
sequential projective measurements scanning through a
smeared interior patch. It might be possible that associated
correlations responsible for the Page curve make it to the
exterior near-horizon region, namely in a nontrivially
protected form [47]. A correct treatment of the singularity
might thus have imprints not only behind the horizon. We
want to return to some of these aspects in the near future.
Another interesting direction is studying state projection in
moving mirrors [48] by employing their holographic
formulation [49,50].
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APPENDIX A: PSEUDOENTROPY
AND POSTSELECTION

In the following, we present an argument suggesting that
the real part of pseudoentropy can measure quantum
entanglement when we take an average over the evolution
from the initial state to the final state under postselection.
Let us consider the decoherence function [22] for the

projective measurement
P

k Πk ¼ 1 defined by

Dk;l ¼
1

Tr½ρ1ρ2�
Tr½ρ2Πkρ1Πl�; ðA1Þ

where ρ1 and ρ2 denote the initial and final density matrix,
respectively. This quantity measures the inference of

probability of k-event and l-event. When the decoherence
function is diagonal, the histories completely decohere. If
we set ρ2 ¼ I, the above quantity is reduced to the ordinary
probability distribution

Dk;l ¼ Tr½ΠkρiΠl�: ðA2Þ

When both the initial and final state are pure, we have

Dk;l ¼
hψfjΠkjψ iihψ ijΠljψfi

jhψfjψ iij2
: ðA3Þ

As in [19], let us consider two-qubit states jψ1i and jψ2i
of the following form

jψ1i ¼ c1j00iAB þ s1j11iAB;
jψ2i ¼ c2j00iAB þ s2j11iAB; ðA4Þ

where c1;2 and s1;2 can take any complex values with the
constraints jc1j2þjs1j2¼1 and jc2j2 þ js2j2 ¼ 1 imposed.
To have a better counting of Bell pairs, we take the
asymptotic limit M → ∞, by considering M copies of
the original states: jψ ii ¼ ðjψ1iÞ⊗M and jψfi ¼ ðjψ2iÞ⊗M.
The total Hilbert space now consists of 2M qubits, i.e.,
M copies of theA spin andM copies of theB spin.We call the
former Ã and the latter B̃. We choose Πk to be the projection
which acts only on theM spins in Ã such that the states with k
up spins (i.e., j1i) and M − k down spins (i.e., j0i) for
M-qubit states are selected.Πk acts on B̃ as an identity. After
the projection by Πk, we obtain a state with maximal
entanglement between Ã and B̃. Due to this projection there
remainMCk ≡ M!

k!ðM−kÞ! states. This is the sameprocedure as in

[19], where an operational interpretation of pseudoentropy
was presented for this special class of states.
We naturally define the averaged value N̄ of Bell pairs

when we fix both the initial and final state in the asymptotic
limit as follows

N̄ ¼ lim
M→∞

Nmax

M
; ðA5Þ

where

Nmax ¼
X
k;l

Dk;l

�
logðMCkÞ þ logðMClÞ

2

�
: ðA6Þ

Here, Nmax estimates the maximal number of Bell pairs,
which can be distilled by local operation and classical
communication (LOCC) in the asymptotic limit M → ∞
when we take the average over histories from the initial
state to the final state. We can explicitly write

Dk;l ¼ pkp�
l ; ðA7Þ
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with

pk ¼
hψfjΠkjψ ii
hψfjψ ii

: ðA8Þ

Note that pk take complex values in general since we allow
c1;2 and s1;2 to take complex values. Due to the identityP

k pk ¼ 1, we can rewrite Nmax as

Nmax ¼ Re

�X
k

pk logðMCkÞ
�
: ðA9Þ

As shown in [19], the quantity
P

k pk logðMCkÞ coincides
with the pseudoentropy (3) in the limitM → ∞. Therefore,
it implies that the real part of pseudoentropy can be
interpreted as the number of distillable Bell pairs averaged
over the history between the initial state and final state. In
this argument, we have assumed the specific class of initial
and final states given by (A4). They share the same basis of
spins, i.e., j00iAB and j11iAB, and we can easily fix the form
of the projection Πk. To extend this analysis to general
states, we need to pick up an appropriate projection Πk to
extract Bell pairs, which is not obvious for generic choices
of jψ1i and jψ2i. We will leave this general argument to
future work.

APPENDIX B: ANALYSIS OF
END-OF-THE-WORLD BRANES IN AdS3

We focus on the end-of-the-world (EOW) brane in global
AdS3 (9) defined by (10). This surface is described by its
world-sheet coordinates ðτ; xÞ introduced as follows

X0 ¼ cosh ρ cos
πt
T

¼ sinh τ sinh η0;

X1 ¼ sinh ρ sin
πx
T

¼ cosh τ sinh η0 sin
πx
T
;

X2 ¼ sinh ρ cos
πx
T

¼ cosh τ sinh η0 cos
πx
T
;

X3 ¼ cosh ρ sin
πt
T

¼ cosh η0; ðB1Þ

where the original AdS3 defined by X2
0þX2

3¼X2
1þX2

2þ1

in the spacetime with line element ds2 ¼ −ðdX0Þ2 −
ðdX3Þ2 þ ðdX1Þ2 þ ðdX2Þ2. The induced metric of the
brane Q is derived as

ds2jQ ¼ sinh2 η0

�
−dτ2 þ π2

T2
cosh2 τdx2

�
; ðB2Þ

which is nothing but a two-dimensional de Sitter space.
To evaluate the geodesic length, it is useful to rewrite the

global AdS3 in terms of Poincaré coordinates, i.e.,

X0 ¼
1þ z2P þ x2P − t2P

2zP
;

X3 ¼
tP
zP
;

X1 ¼
xP

zP
;

X2 ¼
1 − z2P − x2P þ t2P

2zP
; ðB3Þ

with the metric ds2 ¼ dz2P−dt2Pþdx2P
z2P

. The surface Q mapped to

the plane is thus located at

tP
zP

¼ cosh η0: ðB4Þ

It is also useful to note that we have xP ¼ sinπxT
cosπtTþcosπxT

and

tP ¼ sinπtT
cosπtTþcosπxT

at the AdS boundary.

In Poincaré coordinates, the geodesic length between a
boundarypoint at tP and the surfaceQ is givenby log ½2tPϵ e−η0 �
(refer to e.g., [38]). As a result, we can reproduce Eq. (7). The
condition that the connected geodesic connecting two

boundary points ðtP; xð1ÞP Þ and ðtP; xð2ÞP Þ does not touch the
surface Q is given by

jxð2ÞP − xð1ÞP j < 2z�P ; ðB5Þ

where z�P denotes the value of zP at the time tP on the surface
Q, i.e., z�P ¼ tP

cosh η0
.

Now let us choose two arbitrary boundary points in
Poincaré coordinates. A half of their connected geodesic is
parametrized by

zpðsÞ ¼ zmax sinðsÞ;

tpðsÞ ¼ tð1ÞP þ ΔtPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2P − Δt2P

p zmaxð1 − cosðsÞÞ

¼ tð1ÞP þ ΔtP sin2
�
s
2

�
; ðB6Þ

where we have defined

ΔxP¼xð2ÞP −xð1ÞP ; ΔtP¼ tð2ÞP − tð1ÞP ; zmax¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2P −Δt2P

p
2

:

ðB7Þ

If the connected geodesic does not touch the brane Q, we
arrive at the following condition, i.e.,

z�PðtPðsÞÞ ≥ zpðsÞ: ðB8Þ

Substituting the geodesic solutions, one can get

PAGE CURVE UNDER FINAL STATE PROJECTION PHYS. REV. D 105, 126026 (2022)

126026-7



�
tð1ÞP þ ΔtP sin2

�
s
2

��
1

sinðsÞ ≥ zmax cosh η0; ðB9Þ

which should hold along the whole geodesic. It is straight-
forward to find the minimum of the left-hand side of the
above inequality is achieved by taking

tanðs�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tð2ÞP tð1ÞP

q
tð2ÞP − tð1ÞP

: ðB10Þ

Correspondingly, the inequality is finally given by

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tð2ÞP tð1ÞP

q
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2P − Δt2P

q
cosh η0: ðB11Þ

Of course, it simply reduces to the condition Eq. (B5)

by taking tð1ÞP ¼ tð2ÞP . For our interested case with two

boundary points on the same time slice in global coor-
dinate, we can find that the corresponding boundary points
are located at different Poincaré coordinate times, i.e.,

xðiÞP ¼ sin πxi
T

cos πtT þ cos πxiT
; tðiÞP ¼ sin πt

T

cos πtT þ cos πxiT
: ðB12Þ

The connected contribution arises only when the connected
geodesic does not touch the EOW brane Q, which leads to
the following condition

sin
πt
T

> cosh η0 · sin
πðx2 − x1Þ

2T
: ðB13Þ

It is easy to find that it is the same condition shown in
Eq. (B11) with using Eq. (B12).
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