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A B S T R A C T   

Freezing of gait (FOG) is a gait disorder affecting patients with Parkinson’s disease (PD) and related disorders. 
The pathophysiology of FOG is unclear because of its phenomenological complexity involving motor, cognitive, 
and emotional aspects of behavior. Here we used resting-state functional MRI to retrieve functional connectivity 
(FC) correlated with the New FOG questionnaire (NFOGQ) reflecting severity of FOG in 67 patients with PD. 
NFOGQ scores were correlated with FCs in the extended basal ganglia network (BGN) involving the striatum and 
amygdala, and in the extra-cerebellum network (CBLN) involving the frontoparietal network (FPN). These FCs 
represented interactions across the emotional (amygdala), subcortical motor (BGN and CBLN), and cognitive 
networks (FPN). Using these FCs as features, we constructed statistical models that explained 40% of the inter- 
individual variances of FOG severity and that discriminated between PD patients with and without FOG. The 
amygdala, which connects to the subcortical motor (BGN and CBLN) and cognitive (FPN) networks, may have a 
pivotal role in interactions across the emotional, cognitive, and subcortical motor networks. Future refinement of 
the machine learning-based classifier using FCs may clarify the complex pathophysiology of FOG further and 
help diagnose and evaluate FOG in clinical settings.   

1. Introduction 

Freezing of gait (FOG), defined as “brief, episodic absence or marked 
reduction of forward progression of the feet despite the intention to 
walk” (Nutt et al., 2011), is a gait disorder affecting those with advanced 
Parkinson’s disease (PD) and related disorders. FOG may result in a fall, 
thereby inducing a fear of falling (Ghielen et al., 2020) and reducing the 
patient’s quality of life (Moore et al., 2007; Perez-Lloret et al., 2014). It 
is challenging to develop effective therapies partly because the phe-
nomenology and pathophysiology of FOG are complicated. 

Problems in attentional/behavioral “set-shift” (Ehgoetz Martens 
et al., 2016; Smulders et al., 2015) and cognitive/executive functions 
(Brugger et al., 2015; Naismith et al., 2010) underlie FOG in addition to 
the impaired motor basal-ganglia circuits that underlie parkinsonian 
gait (Hanakawa et al., 1999b; Hanakawa, 2006). Moreover, anxiety 
often provokes FOG (Ehgoetz Martens et al., 2014, 2015). Therefore, the 
interactions between the motor, cognitive, and emotional circuits are 
likely to be key in understanding the pathophysiology underlying FOG 
(Lewis and Barker, 2009). 

Previous task functional magnetic resonance image (fMRI) studies on 
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FOG used gait imagery (Snijders et al., 2011) or virtual reality tasks 
(Ehgoetz Martens et al., 2018; Shine et al., 2013a,b), which yielded 
somewhat different results: the activation in the supplementary motor 
area (SMA) (Snijders et al., 2011) or the mesencephalic locomotor re-
gion (Shine et al., 2013a; Snijders et al., 2011), the functional connec-
tivity between cognitive control and basal ganglia network (BGN) (Shine 
et al., 2013b), and the involvement of the emotional network (Ehgoetz 
Martens et al., 2018). In addition to brain activity, it is imperative to 
understand the brain connectivity underlying pathophysiological 
changes (Bharti et al., 2019b; Fasano et al., 2015). Resting-state func-
tional connectivity MRI (rsfcMRI) measures functional connectivity (FC) 
over a dozen resting-state networks (RSNs) (Fox et al., 2007; Smith et al., 
2009), providing useful markers to help evaluate neuropsychiatric dis-
orders (Takamura and Hanakawa, 2017). However, the findings of 
previous rsfcMRI studies on FOG were inconsistent, reporting various 
patterns of alterations of FCs in the sensorimotor network (SMN) (Canu 
et al., 2015), cerebellar network (CBLN) (Bharti et al., 2019a; Fasano 
et al., 2017), CBLN-basal basal ganglia network (BGN) (Bharti et al., 
2019a; Fasano et al., 2017), or the SMA-mesencephalic/cerebellar lo-
comotor region network (Fling et al., 2014). This inconsistency may be 
partly related to the limited sample sizes (n < 40) in the previous studies 
(Bharti et al., 2019a; Canu et al., 2015; Fling et al., 2014; Zhou et al., 
2018). Moreover, most previous studies on FOG focused only on one of 
the motor, cognitive, or emotional networks, and thus may not have 
fully characterized the system-level impairment. 

A previous fMRI study with a virtual reality task showed the asso-
ciation of task-induced FCs across motor, cognitive, and emotional re-
gions with the “freezing index” integrating motor, cognitive, and 
emotional neuropsychological scores (Ehgoetz Martens et al., 2018). A 
previous rsfcMRI study with a volume-of-interest (VOI)-based approach 
showed abnormal FC between the emotional network (amygdala VOI) 
and the putaminal VOI, and between the amygdala VOI and the cogni-
tive/attentional frontoparietal network (FPN) in patients with FOG 
(Gilat et al., 2018). However, this study focused on the influence of 
emotional networks on the motor or cognitive networks. Therefore, the 
role of interactions across the motor, cognitive, and emotional networks 
in FOG is yet to be shown using rsfcMRI data. Moreover, it would 
enhance our system-level understanding of FOG pathophysiology if a 
statistical model based on rsfcMRI and machine learning technology was 
developed to predict the severity of FOG. 

The primary research objective was to build a computational model 
that can predict FOG severity from rsfcMRI to help understand the in-
teractions across the motor, cognitive, and emotional networks under-
lying FOG. Such a model was expected to characterize the system-level 
impairment underlying FOG and to improve our understanding of its 
pathophysiology. To this end, we first analyzed rsfcMRI data from PD 
patients and healthy controls to retrieve reliable sets of RSNs. Using a 
dual regression approach that elucidated intra- and extra-network con-
nectivities, we then analyzed the gait-related RSNs (BGN, CBLN, and 
SMN), assuming altered FC within the gait-related motor RSNs as well as 
across the motor, emotional, and cognitive RSNs. These findings enabled 
us to construct a statistical model that explained the inter-individual 
variability of FOG severity based on that of FCs across motor, cogni-
tive, and emotional RSNs. 

2. Material and methods 

2.1. Participants 

Seventy-one people with PD (mean age: 68.4 years, standard devi-
ation: 8.0 years, 43 males/28 females) were recruited. Each participant 
provided written informed consent to participate in the study. The in-
clusion criteria were defined according to the UK Parkinson’s Disease 
Society Brain Bank clinical diagnostic criteria (Hughes et al., 1992). The 
exclusion criteria were: (1) contraindications to MRI and (2) local brain 
lesions (e.g., brain tumor or cerebral infarction) incidentally identified 

on MRI. Data from 57 age-matched healthy controls (HC) (mean age: 
69.5 years, standard deviation: 6.5 years, 36 males/21 females) from the 
institute’s rsfcMRI database were also used. MRI scans of PDs and HCs 
were acquired using the same scanner and imaging protocol. The study 
protocol was approved by the Ethics Committee of the National Center 
of Neurology and Psychiatry, Tokyo, Japan (A2019-126). 

2.2. Data acquisition 

2.2.1. Clinical and neuropsychological assessment 
The severity of FOG was evaluated using the new freezing of gait 

questionnaire (NFOGQ), with scores ranging from 0 to 28 (high scores 
indicated more severe FOG) (Nieuwboer et al., 2009). The NFOGQ was 
provided to participants within 2 weeks before or after the MRI acqui-
sition. The Movement Disorder Society-sponsored revision of the Unified 
Parkinson’s Disease Rating Scale Part III (MDS-UPDRS-III) and Mini- 
Mental State Examination score (MMSE) were acquired by neurolo-
gists. All evaluation data were collected at the medication-on status. The 
levodopa equivalent daily dose (LED) was calculated (Tomlinson et al., 
2010). 

2.2.2. MRI data acquisition 
All patients were scanned at the medication-on state. The rsfcMRI 

data were acquired on a 3-T MRI scanner (Siemens, MAGNETOM Verio 
Dot) using a 32-channel phased-array head coil. Foam cushions and 
earplugs were used to limit head motion and reduce scanner noise, 
respectively. RsfcMRI scans were acquired using a gradient-echo, echo- 
planar imaging sequence with a repetition time (TR) of 2500 ms, echo 
time (TE) of 30 ms, a flip angle of 80◦, and 49 axial slices with the 
posterior-anterior phase encoding direction, which yielded a 3.3 × 3.3 
× 4.0 (0.8-mm interslice gaps) mm3 voxel size. All participants under-
went a 10-min rsfcMRI scan with their eyes open and fixating on a 
crosshair; they were instructed to remain awake and not to think of 
anything specific. Field map MRI was acquired with a double-echo 
spoiled gradient-echo sequence (TR = 488.0 ms, TE = 4.92/7.38 ms, 
voxel size = 3.3 × 3.3 × 4.0 (0.8-mm gaps) mm3, flip angle = 60◦), and 
whole-brain three-dimensional T1-weighted MRI was performed with a 
magnetization prepared rapid gradient echo (MP-RAGE) sequence (TR 
= 1900 ms, TE = 2.52 ms, inversion time (TI) = 900 ms, flip angle = 9◦, 
192 sagittal slices, and voxel size = 1.00 × 0.98 × 0.98 mm3). 

2.3. Imaging data preprocessing 

Non-brain tissues and cerebrospinal fluid were removed from 
structural MRI, using the SPM12 software (https://www.fil.ion.ucl.ac. 
uk/spm/software/spm12/). After deleting the first three volumes, 
rsfcMRI data were preprocessed using FSL (FMRIB’s Software Library, 
https://www.fmrib.ox.ac.uk/fsl), including field-map distortion 
correction (Togo et al., 2017) and motion correction. We performed an 
initial data quality check (especially in terms of head motion) separately 
for translation and rotation parameters using the following formula: 

1
M − 1

∑M

i=2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|xi − xi− 1|
2
+ |yi − yi− 1|

2
+ |zi − zi− 1|

2
√

where M is the total number of time points, and xi, yi, and zi are 
translations or rotations in the three axes at time point i, calculated with 
FEAT in the preprocessing step. Four subjects were excluded from 
further analysis because of excessive head motion (i.e., translation > 0.3 
mm or rotation > 0.3◦) (Liu et al., 2008). Finally, we analyzed data from 
67 people with PD. Non-brain tissue removal of the rsfcMRI data were 
followed by spatial smoothing (6-mm full-width-at-half-maximum 
Gaussian kernel), and high-pass temporal filtering with a cutoff fre-
quency of 0.01 Hz. Single-session independent component analysis 
(ICA) was performed using Multivariate Exploratory Linear Optimized 
Decomposition into Independent Components. Autoclassification of 
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artifactual ICA spatial components was performed using the ICA-based 
Xnoiseifier (Salimi-khorshidi et al., 2014); the noise components were 
regressed out from the data. The noise-cleaned rsfcMRI data were 
registered to the individual structural images using boundary-based 
registration (Greve and Fischl, 2009) and then to the Montreal Neuro-
logical Institute template using nonlinear registration with FMRIB’s 
Nonlinear Image Registration Tool, before being resampled to 4-mm 
isovoxels. 

2.4. Component identification and statistics 

Group-spatial ICA was conducted on the rsfcMRI data from the 67 
PDs and 57 HCs to detect the general and pathophysiological RSNs 
(Griffanti et al., 2016). The concatenated rsfcMRI volumes were 
decomposed into 40 spatial components. We visually investigated all 
ICA components and identified the three ICA components of interest 

according to the previous literature BGN (Shine et al., 2013b; Szewczyk- 
Krolikowski et al., 2014), CBLN (Fasano et al., 2017; Fling et al., 2014; 
Jahn et al., 2008), and SMN (Shine et al., 2013b) (Fig. 1). We also 
performed group-spatial ICA on the rsfcMRI data only from the 67 PDs 
for a reference (Supplementary Fig. 1). 

2.5. Dual regression analysis 

In the PD patients, all 40 spatial maps from the group ICA were used 
to generate participant-specific versions of the spatial maps and asso-
ciated time series using the dual regression approach (Filippini et al., 
2009; Nickerson et al., 2017). First, the RSN template extracted by 
group-ICA was used as the first regressor, and time-series data for each 
subject were extracted from the rs-fMRI data. Next, using this time-series 
data as the regressor, we extracted a spatial map (RSNs) for each subject. 
We then performed a linear regression analysis to investigate the 

Fig. 1. Three resting-state networks of interest (green). A) Basal ganglia network (BGN), B) cerebellar network (CBLN), and C) sensorimotor network (SMN). The 
color bar indicates z-values thresholded at the default value (z > 3). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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correlation between the NFOGQ scores and FC related to the three RSNs 
of interest, using Permutation Analysis of Linear Models (PALM). PALM 
provided nonparametric familywise error (FWE) correction over the 
multiple voxels and the number of RSNs of interest simultaneously 
(Winkler et al., 2014, 2016). We ran a permutation 5000 times in PALM. 
We also performed the FC analysis including the age and sex as cova-
riates, resulting in similar clusters (see Supplementary Materials). 

2.6. Statistics and prediction model 

We conducted Spearman’s tests to test the correlations between 
NFOGQ scores and MDS-UPDRS-III, disease duration, LED, or MMSE at a 
threshold of p < 0.05. In the PALM analysis of FC, we used a threshold of 
p < 0.05 corrected for FWE using threshold-free cluster enhancement 
(Smith and Nichols, 2009). 

We also constructed a statistical model that explained NFOGQ scores 
from FC, using least absolute shrinkage and selection operator (LASSO). 
First, we extracted signal time-courses from volumes-of-interest (VOIs) 
placed in the rsfcMRI data. According to the results from the dual 
regression analysis below, we extracted noise-cleaned signal time- 
courses from two RSNs (BGN and CBLN), four BGN-related intra- 
network VOIs (right amygdala, left inferior and superior striatum, and 
right striatum) and seven CBLN-related extra-network VOIs (left middle 
frontal gyrus (MFG), left inferior frontal gyrus (IFG), left orbitofrontal 
cortical region (OFC), right anterior cingulate cortex (ACC), right 
angular gyrus (AG), right supramarginal gyrus (SMG), and planum 
temporale (PT)). Pairwise correlations among the extracted time- 
courses yielded 77 feature values, which were fed to the LASSO 
models for predicting NFOGQ scores. A feature value (right amygdala- 
right striatum FC), which was correlated with LED, was excluded from 
the LASSO models. We performed the feature extraction through sta-
bility selection and LASSO linear regression using the following formula. 

β̂
λ
= argmin

{

‖Y − Xβ‖2
2 + λ

∑p

k=1

|βk|

sk

}

(sk [α, 1], 0 < α < 1)

We used five-fold nested cross validation to tune the hyper- 
parameter (λ) and to estimate R2 values and root mean squared error 
(RMSE) of the model for predicting the FOGQ scores. We repeated the 
cross validation fifty times and averaged the R2 values and the RMSE to 
evaluate the model precision. The FCs that selected>50 % of the repe-
titions were adopted as relevant features. We also constructed a sparse 
logistic regression model using the feature values selected by the LASSO 
to discriminate between patients with FOG and those without FOG. 
Again, we used stratified fivefold nested cross validation to tune the 
hyper-parameter (λ) and to estimate the balanced accuracy (the average 
of the sensitivity and specificity), and the sensitivity and specificity of 
the model (the proportion of the positive cases were maintained). For 
operational binary classification, patients with an NFOGQ score >
0 were defined as FOG positive (FOG+) and those with a null NFOGQ 
score were defined as FOG negative (FOG− ). Using these criteria, the 
patients were divided into 47 cases with FOG (FOG+) and 20 cases 
without FOG (FOG− ). We simulated a binomial distribution of the same 
number of subjects (n = 67) to obtain a statistical inference of the 
estimated balanced accuracy, and the sensitivity and specificity of the 
model (p < 0.05). Also, we calculated the area under the curve (AUC). 

3. Results 

3.1. Demographics 

The NFOGQ scores were correlated with MDS-UPDRS-III and LED 
(Table 1). Twenty-nine patients had higher MDS- UPDRS-III scores on 
the left side and 21 patients on the right side. In the remaining 10 pa-
tients, there was no asymmetry or the information was missing. 

3.2. Functional connectivity 

We tested the correlation of the NFOGQ scores with the intra- and 
extra-FC attached to the three RSNs (BGN, CBLN, and SMN). The 
NFOGQ scores were positively correlated with the clusters associated 
with the BGN and CBLN (Fig. 2). The NFOGQ-correlated BGN clusters 
were found within the BGN mask (intra-RSN), including the caudate 
nucleus, putamen, and amygdala. The NFOGQ-correlated CBLN clusters 
were found outside the CBLN mask (extra-RSN) including the left MFG, 
left OFC, parts of the FPN (left IFG, right AG, and right SMG), and right 
ACC. The SMN did not reveal any clusters correlated with the NFOGQ 
scores. These findings were replicated with and without using age and 
sex as covariates (supplementary Fig. 2). However, we failed to find 
clusters correlated with the NFOGQ scores when we used the three RSNs 
of interest created from the group ICA of the 67 PDs only. 

3.3. Statistical model using FCs to predict NFOGQ scores and the presence 
of FOG 

To construct a statistical model explaining NFOGQ with FCs, we 
investigated 77 FCs derived from all NFOGQ-correlated nodes and the 
three RSNs of original interest. Among them, the FC between the right 
amygdala and right striatal nodes was removed from the following 
model because it also correlated with LED, making the interpretation 
difficult (Tahmasian et al., 2015). We found that the LASSO model 
consisted of 19 FCs (Table 2) that best predicted the NFOGQ scores 
(estimated R2; mean: 0.407, standard deviation: 0.25, RMSE; mean: 
6.295, standard deviation: 0.92; Fig. 3). Four nodes were associated with 
the BGNs and seven nodes with the CBLNs. The nodes included the 
emotional network (amygdala and left OFC), subcortical motor network 
(superior and inferior striatal regions and CBLN), and cognitive network 
(left IFG, right AG, right SMG, and right PT). Notably, 6 out of 19 FCs 
included the amygdala, which connects to the subcortical motor (BGN 
and CBLN) and cognitive (FPN) networks. Other FCs included the intra- 
BGN, striatum-FPN (four FCs), striatum-OFC, intra-FPN (four FCs), FPN- 
OFC (two FCs), and the CBLN-FPN. 

Finally, we constructed a logistic model that discriminated between 
FOG+ and FOG− patients, by using the same FCs selected by the 
correlational LASSO model. The logistic model yielded moderate (AUC 
= 0.64 ± 0.12) yet statistically significant performance with balanced 
accuracy (0.63 ± 0.12) and sensitivity (0.67 ± 0.16), using a binomial 
test (p < 0.05). However, the specificity (0.61 ± 0.20) did not reach 
statistical significance. 

4. Discussion 

We examined resting-state FCs that correlated with an index of FOG 
in 67 patients with PD. The results supported the previous proposal that 
the links across the emotional, cognitive, and motor networks underlie 
the pathophysiology of FOG (Ehgoetz Martens et al., 2018; Gilat et al., 

Table 1 
Demographic information of study participants.    

Correlation coefficient 

NFOGQ 10.3 (8.6)  
Sex (M/F) 40/27  
Age (years) 68.5 (8.2)  
Disease duration (years) 7.5 (4.7) 0.165 
MDS-UPDRS-III (n = 60)§ 26.8 (14.5) 0.2582** 
LED (mg/day) 631.7 (422.1) 0.308* 
MMSE 27.6 (3.2) − 0.140 

* p < 0.05, ** p < 0.01 by Spearman’s rank order correlation. LED = levodopa 
equivalent daily dose, MMSE = mini-mental state examination score, MDS- 
UPDRS-III = The Movement Disorder Society-sponsored revision of the Unified 
Parkinson’s Disease Rating Scale Part III, M = male, F = female. 
§MDS-UPDRS-III was not available for seven patients. 
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2018). The NFOGQ scores were correlated with FC in the intra-BGN 
clusters and extra-CBLN clusters involving the FPN. We identified the 
amygdala in the exploratory (regionally unbiased) dual regression 
analysis whereas previous studies correlated the amygdala with FOG in 
hypothesis-driven VOI analyses (Gilat et al., 2018). Moreover, we con-
structed a statistical model using FCs that explained nearly 40 % of the 
inter-individual variance of FOG and that discriminated between pa-
tients with FOG or those without FOG. This model used information 

from the emotional network (amygdala and OFC), subcortical motor 
network (striatum and CBLN), and cognitive network (FPN). Impor-
tantly, the amygdala was the only node connecting to the subcortical 
motor and cortical cognitive networks in the present analysis. The 
amygdala has direct anatomical connections with the striatum and 
cognitive cortical regions including the prefrontal cortex (Fudge et al., 
2002; Liu et al., 2013; Mcdonald, 1998; Russchen et al., 1985). These 
results suggest that the amygdala may have a pivotal role in the in-
teractions across the emotional, cognitive-attentional, and subcortical 
motor networks, indicating it the involvement of the amygdala in the 
system-level impairment underlying FOG. 

The amygdala is a core structure related to feelings of fear and 
anxiety (Adhikari et al., 2015; Butler et al., 2007; Duvarci and Pare, 
2014; Phelps et al., 2001) and emotional response for negative visual 
stimuli (i.e. fearful face) (Kragel et al., 2021; Pessoa, 2017). Patients 
with FOG have higher anxiety than those without FOG (Ehgoetz Martens 
et al., 2016). Our results suggest that the increased FC in the amygdala 
and the putamen may reflect the anxiety state associated with FOG. A 
previous rsfcMRI study consistently showed increased positive FC be-
tween the amygdala and putamen along with enhanced anti-correlation 
between the amygdala and FPN in patients with FOG (Gilat et al., 2018). 
The role of the medial PFC and FPN in regulating the amygdala provide 
top-down control over attention/cognition and emotional responses 
(Kragel et al., 2021; Ochsner et al., 2012; Pessoa, 2017, 2008). The fact 
that the FC between the amygdala and cognitive network (FPN) was 
chosen by our statistical model may suggest a lack of top-down control 
of the FPN over the amygdala as a mechanism of FOG. Moreover, the 
amygdala function was implicated in subtypes of PD, one of which is 
closely related to FOG. Therefore, PD patients can be classified into 
postural instability/gait difficulty and tremor-dominant subtypes 
(Stebbins et al., 2013). FOG is more frequently observed in the postural 

Fig. 2. The hot color scaled areas indicate a correlation of freezing severity with functional connectivity of the basal ganglia network (top) and cerebellar network 
(bottom) (corrected p < 0.05). 

Table 2 
Combinations of FCs used in the model to predict NFOGQ scores. 
estimated R2; mean: 0.407, standard deviation: 0.25. 
FCs = functional connectivities.  

Combinations of FC beta value 

Right amygdala - basal ganglia network (BGN) − 2.3 ± 2.8 
Right amygdala - cerebellum network (CBLN) − 5.1 ± 1.9 
Right amygdala - Left inferior striatum 11.9 ± 5.1 
Right amygdala - Left superior striatum 23.8 ± 2.4 
Right amygdala - Left middle frontal gyrus (MFG) − 18.0 ± 3.1 
Right_amygdala - Right supramarginal gyrus (SMG) 3.1 ± 2.7 
Left inferior striatum - Left superior striatum 9.6 ± 1.2 
Left inferior striatum - Right planum temporale (PT) − 10.4 ± 3.5 
Left superior striatum - Right PT 11.2 ± 5.3 
Left superior striatum - Left orbitofrontal cortex (OFC) 12.0 ± 3.0 
Left superior striatum - Left MFG 13.5 ± 1.0 
Left superior striatum - Right anterior cingulate cortex (ACC) − 30.3 ± 1.9 
Left MFG - Left inferior frontal gyrus (IFG) − 4.3 ± 2.1 
Right PT - Left MFG − 12.2 ± 2.2 
Right PT - Left IFG − 3.9 ± 2.8 
Right angular gyrus (AG) - Right SMG 1.8 ± 1.7 
Left OFC - Right PT 18.6 ± 2.4 
Left OFC - Right ACC − 10.4 ± 3.5 
CBLN - Left MFG 13.9 ± 1.8  
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instability/gait difficulty subtype, which has a lower amygdala volume 
compared with the tremor-dominant subtype (Forsaa et al., 2015; 
Rosenberg-Katz et al., 2016). Thus, converging evidence suggests a 
pivotal role of the amygdala in the emotional aspects of FOG. The role of 
the amygdala in FOG may be mediated by the periaqueductal gray 
matter (PAG) matter in the brainstem. Aspects of FOG resemble loco-
motor arrest, which occurs in response to external threats in rodents 
(defensive arrest). The neural circuits underlying defensive arrest 
include the amygdala, PAG, and medullary reticular formation. The 
pathway from the central amygdala to the ventrolateral PAG, disinhibits 
glutamatergic output from the ventrolateral PAG to the medullary 
reticular formation and is especially important in defensive arrest 
(Pernía-Andrade et al., 2021). Thus, the amygdala and PAG may be 
central to the provocation of FOG; unfortunately, the FC of a small 
structure such as the PAG could not be assessed using the method used in 
the current study. 

The present BGN, which was used as the RSN template extracted by 
group-ICA for the analysis of the FOG correlation, extended into the 
amygdala and thalamus. The pathophysiology of gait disturbance in PD 
is thought to be related to abnormalities of the basal ganglia-thalamo- 
cortical and basal ganglia-brainstem systems (Hanakawa et al., 1999b; 
Hanakawa, 2006). Although the amygdala is considered the core of the 
emotional network in the limbic system, the amygdala and basal ganglia 
share substrates (ganglionic eminence of the telencephalon) at the 
prenatal developmental stage. Indeed, the amygdala and striatum have 
direct anatomical connections (Fudge et al., 2002; Russchen et al., 
1985). Therefore, the amygdala and thalamus are closely connected to 
the basal ganglia. The BGN, amygdala, and thalamus likely constitute an 
extended BGN system, the abnormality of which is strongly implicated 
in the pathophysiology of FOG. 

The NFOGQ-correlated BGN clusters were found within the BGN 
mask (intra-RSN), including the right amygdala. The FC between the 
right amygdala and striatum was included in the network related to 
FOG, but that of the left was not (Ehgoetz Martens et al., 2018). Hence, 
there could be asymmetry in the networks underlying FOG. Indeed, a 
majority of patients in this study had higher MDS- UPDRS-III scores on 
the left side, indicating that these results are likely explained by the right 
lateralized network abnormality. 

The cerebellum, especially the vermis and fastigial nuclei, is 
important for the control of balance and locomotion (Morton and Bas-
tian, 2004), and altered cerebellar functions may be related to FOG. The 
optical activation of afferents from the cerebellar fastigial nucleus at the 
ventrolateral PAG induced freezing in mice (Vaaga et al., 2020). Pre-
viously, intra- and extra-cerebellar connectivities were shown to be 
correlated with FOG (Bharti et al., 2019a; Fasano et al., 2017; Fling 
et al., 2014). Furthermore, enhanced activity in the cerebellum, pre-
motor areas, ACC, and posterior parietal cortex was shown during 
visually-guided gait, which can often overcome FOG in PD (Hanakawa 
et al., 1999a). The fronto-parietal cognitive network was shown to have 
extra-network connectivity to the CLBN. This finding probably reflects 
the connection between the cerebellum and fronto-parietal cognitive 
network, which is essential for executive control (Miller, 2000). The 
cerebellum connects to the prefrontal cortex in non-human primates 
(Middleton and Strick, 2001) and humans (Buckner et al., 2011). Pa-
tients with FOG are characterized by cognitive dysfunctions (Brugger 
et al., 2015; Naismith et al., 2010), including impairment of attentional 
“set-shifting” (Smulders et al., 2015). Notably, a meta-analysis reported 
that Crus1, present in the CBLN, was activated during executive function 
tasks (Stoodley and Schmahmann, 2009). Thus, it is reasonable to as-
sume that the fronto-parietal cognitive network is involved, at least in 
part, in the pathophysiology of FOG in relation to the cognitive functions 
of the cerebellum. In particular, a positive correlation between the 
NFOGQ scores and cerebellar-cortical cognitive network FC may reflect 
problems in attentional switching underlying FOG. 

To our knowledge, this is the first study to construct statistical 
models to predict the severity of FOG from FCs. The employed FCs, 
which were derived from a dual regression analysis, reflected the in-
teractions across the emotional, cognitive-attentional, and subcortical 
motor networks. LASSO regression has the advantage of introducing 
sparsity using the L1 norm to reduce the dimensions of the features. 
Moreover, a logistic model using the same FCs predicted the presence of 
FOG. These two novel analyses confirmed that FCs representing the 
interactions across the emotional, cognitive, and subcortical motor 
networks reflect the system-level impairment underlying FOG. In the 
future, such statistical models using FCs may improve the diagnosis and 
evaluation of FOG in clinical settings. 

Fig. 3. A chord diagram of the 19 FCs used to predict 
NFOGQ scores. The circles indicate the 12 nodes 
(brain regions and RSNs): blue represents emotional 
regions (right amygdala and OFC), orange represents 
the basal ganglia network (BGN) and related clusters, 
red represents the cerebellar network (CBLN), and 
green represents cognitive regions. The lines indicate 
the edges: blue represents connectivity involving the 
amygdala, orange represents connectivity involving 
BGN, red represents connectivity involving the CBLN, 
and green represents connectivity across the cognitive 
regions. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web 
version of this article.)   
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This study had some limitations. First, we obtained fMRI data only in 
the medication “on” state. Acquiring fMRI from PD patients under 
medication has practical merits; PD patients are easier to study when on 
medication because they have fewer involuntary movements (e.g. 
tremor). By contrast, dopaminergic treatment potentially influences FC, 
and this confounding effect can make the interpretation of FC difficult 
(Tahmasian et al., 2015). Second, we obtained resting-state fMRI data 
only, not task-fMRI. Task-fMRI studies should allow us to examine brain 
activity during the appearance of FOG-related phenomena whereas 
resting-state fMRI does not. However, both task-fMRI (Ehgoetz Martens 
et al., 2018) and resting-state fMRI (Gilat et al., 2018) study showed 
similar motor, emotional, and cognitive network associations. In view of 
these points, a future study comparing task fMRI and resting-state fMRI 
data in both ’’on’’ and ’’off’’ states should provide more comprehensive 
understanding of the mechanisms underlying FOG. Third, the present 
study was based on a single cohort. The inclusion of more participants 
from independent cohorts would help create a machine learning model 
using FCs. Moreover, we included both FOG+ and FOG− patients in the 
model building stage; especially when the NFOGQ score was 0, the 
distribution of NFOGQ score could be skewed. Future studies should 
include>100 participants, especially freezers, to create a prediction 
model, which can be generalized to a validation cohort. 

5. Conclusions 

We confirmed the links across the emotional, cognitive-attentional, 
and subcortical motor networks underlying the pathophysiology of 
FOG, by combining rsfMRI data and machine learning-based statistical 
models. Particularly, the amygdala emerged as a key node that con-
nected the subcortical motor (BGN and CBLN) and cognitive (FPN) 
networks. Future refinement of the machine learning methodology 
based on the emotional, cognitive-attentional, and subcortical motor 
networks FCs may improve the diagnosis and evaluation of FOG in 
clinical settings. 
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Kragel, P.A., Čeko, M., Theriault, J., Chen, D., Satpute, A.B., Wald, L.W., Lindquist, M.A., 
Feldman Barrett, L., Wager, T.D., 2021. A human colliculus-pulvinar-amygdala 
pathway encodes negative emotion. Neuron 109, 2404–2412.e5. https://doi.org/ 
10.1016/j.neuron.2021.06.001. 

Lewis, S.J.G., Barker, R.A., 2009. A pathophysiological model of freezing of gait in 
Parkinson’s disease. Parkinsonism Relat. Disord. 15, 333–338. https://doi.org/ 
10.1016/j.parkreldis.2008.08.006. 

Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T., 
2008. Disrupted small-world networks in schizophrenia. Brain 131, 945–961. 
https://doi.org/10.1093/brain/awn018. 

Liu, H., Qin, W., Li, W., Fan, L., Wang, J., Jiang, T., Yu, C., 2013. Connectivity-Based 
Parcellation of the Human Frontal Pole with Diffusion Tensor Imaging. J. Neurosci. 
33, 6782–6790. https://doi.org/10.1523/JNEUROSCI.4882-12.2013. 

Mcdonald, A.J., 1998. Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 
55, 257–332. https://doi.org/10.1016/S0301-0082(98)00003-3. 

Middleton, F.A., Strick, P.L., 2001. Cerebellar Projections to the Prefrontal Cortex of the 
Primate. J. Neurosci. 21, 700–712. https://doi.org/10.1523/JNEUROSCI.21-02- 
00700.2001. 

Miller, E.K., 2000. The prefontral cortex and cognitive control. Nat Rev Neurosci 1 (1), 
59–65. 

Moore, O., Peretz, C., Giladi, N., 2007. Freezing of gait affects quality of life of peoples 
with Parkinson’s disease beyond its relationships with mobility and gait. Mov. 
Disord. 22, 2192–2195. https://doi.org/10.1002/mds.21659. 

Morton, S.M., Bastian, A.J., 2004. Cerebellar control of balance and locomotion. 
Neuroscientist 10 (3), 247–259. 

Naismith, S.L., Shine, J.M., Lewis, S.J.G., 2010. The specific contributions of set-shifting 
to freezing of gait in Parkinson’s disease. Mov. Disord. 25, 1000–1004. https://doi. 
org/10.1002/mds.23005. 
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