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Abstract　　Sudden deterioration of condition in patients with various diseases, such as cardiopulmonary ar-
rest, may result in poor outcome even after resuscitation. Early detection of deterioration is important in medi-
cal and long-term care settings, regardless of the acute or chronic phase of disease. Early detection and appro-
priate interventions are essential before resuscitating measures are required. Among the vital signs that indicate 
the general condition of a patient, respiratory rate has a greater ability to predict serious events such as throm-
boembolism and sepsis than heart rate and blood pressure, even in early stages. Despite its importance, howev-
er, respiratory rate is frequently overlooked and not measured, making it a neglected vital sign. To facilitate the 
measurement of respiratory rate, a non-invasive method of detecting respiratory sounds was developed based 
on deep learning technology, using a built-in microphone in a smartphone. Smartphones attached to the bed 
headboards of 20 participants undergoing polysomnography (PSG) at Kyoto University Hospital recorded re-
spiratory sounds. Sound data were synchronized with overnight respiratory information. After excluding peri-
ods of abnormal breathing on the PSG report, sound data were processed for each 1-minute period. Expiration 
sound was determined using the pressure �ow sensor signal on PSG. Finally, a model to identify the expiration 
section from the sound information was created using a deep learning algorithm from the convolutional Long 
Short Term Memory network. The accuracy of the learning model in identifying the expiratory section was 
0.791, indicating that respiratory rate can be determined using the microphone in a smartphone. By collecting 
data from more patients and improving the accuracy of this method, respiratory rates could be more easily mon-
itored in all situations, both inside and outside the hospital.
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1.　  Introduction

Sudden deterioration of condition in patients with vari-
ous diseases, such as cardiopulmonary arrest, may result 
in poor outcome even after resuscitation. These patients 
may therefore require additional medical resources for 
treatment. Detecting the deterioration of patients at an 
early stage is essential in medical and long-term care set-
tings, regardless of the acute or chronic phase, as it en-
ables appropriate interventions before resuscitating mea-
sures are required [1, 2].

One vital sign that indicates the general condition of 
a patient is respiratory rate, which can better predict se-
vere events such as thromboembolism and sepsis than 
heart rate and blood pressure from the early stages of the 
underlying condition [3, 4]. Respiratory rate, however, is 
frequently not measured, making it a neglected vital 
sign [5].

The major mechanism for continuous monitoring of 
respiratory rate requires sensors in contact with the sur-
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face of the body [6]. A few systems, however, are capa-
ble of monitoring respiratory rate without contact be-
tween sensors and the body. Respiratory rate monitoring 
using wearable or specialized non-contact devices is not 
suf�ciently widespread to cover the entire population, 
and is not suitable for long-term health monitoring for all 
patients at risk.

Smartphones are among the most popular electronic 
devices used worldwide, with several sensors for general 
purposes. In 2021, 3.8 billion people, or 48.33% of the 
world population, were estimated to own smart-
phones [7]. The ability of smartphones to monitor respi-
ratory rate could allow widespread and continuous mon-
itoring for many patients at risk. Methods of monitoring 
respiratory rate with smartphones include placing smart-
phones on the face and placing smartphones that emit 
ultrasonic waves in front of the patient to detect move-
ment of the thorax. These methods are not suitable for 
continuous monitoring of patients’ respiratory rates in 
hospitals and long-term care settings [8, 9].

To facilitate the measurement of respiratory rate, we 
developed a non-invasive method of detecting respirato-
ry sounds using a microphone built into a smartphone 
and placing the latter at the headboard of the patient’s 
bed. It was dif�cult to correctly identify breathing sounds 
from the sound data recorded by a smartphone. Respira-
tory sounds, excluding snoring, are very faint and easily 
masked by sounds of body movements, bruxism, and 
footsteps. Breathing itself is a periodic phenomenon, but 
the cycle is not constant and the sounds produced by 
breathing are not uniform among patients. To accurately 
determine the subtle sounds of breathing recorded by a 
smartphone, information from other synchronized sen-
sors that can accurately identify breathing is required. 
We therefore record sounds simultaneously in patients 
undergoing polysomnography (PSG) examination to ob-
tain highly accurate respiratory information, and syn-
chronize the audio data with this respiratory information. 
This has led to the development of a model that identi�es 
breath sounds using the recorded sound data and respira-
tory information. By improving the method of identify-
ing respiratory sounds recorded by smartphones, it 
should be possible to continuously monitor respiratory 
rates in various settings including hospitalized patients, 
clients of care facilities, and outpatients.

2.　  Methods

The methods used to obtain sound data synchronized 
with respiration information, to create a model to identi-
fy respiration, and to evaluate the performance of the 
model are described below. The work�ow of the proce-
dure is shown in Fig. 1.

2.1　  Measurements
To obtain sound data from a microphone built into a 
smartphone and synchronize the sounds with respiratory 
information, we recorded sounds on smartphones in 20 
patients with sleep apnea undergoing PSG examination 
using Alice 6 (Philips) in a single room at Kyoto Univer-
sity Hospital. The measurement is outlined in Fig. 2. To 
verify whether respiratory rate can be measured via 
smartphone in various individuals, the 20 patients in-
cluded both men and women, who varied widely in age 
and severity of sleep apnea.

This study was reviewed and approved by the Ethics 
Committee of Kyoto University Hospital (R2614). Writ-
ten informed consent was obtained from each adult par-
ticipant and parents of children.

Equipment needed for PSG examinations included a 
barometric pressure �ow sensor, a temperature sensor 
worn under the nose, and a snoring sensor, along with 
other sensors. The barometric pressure �ow sensor 
(P-Flow), which corresponds to the nasal pressure sensor 
in the American Academy of Sleep Medicine guidelines 
for scoring of sleep and associated events [10], detects 
pressure changes due to inspiration and expiration 
through the cannula of the nostrils by guiding it to the 
pressure transducer. The temperature sensor (T-Flow), 
which corresponds to the air�ow sensor in the guide-
lines, detects the temperature changes around the nose 
using a thermistor. The snoring sensor (SNOR), which 
corresponds to the snoring sound sensor in the guide-
lines, uses the piezo effect to detect vibrations at the skin 

Fig. 1　Outline of the experiment.
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due to snoring. Along with signal information over time, 
information on the period during which abnormal respi-
ration occurs can be obtained as a report.

During this measurement, six smartphones (two  
iPhones, Galaxy phones, and Xperia phones) were lined 
up on the headboard, and data were recorded overnight. 
The six smartphones were inserted into the �xtures 
placed on the head side of the bed fence in a �xed order 
(Fig. 2), with the microphones facing upward and the 
displays facing away from the patient. The distance be-
tween the microphone of each smartphone and the pa-
tient’s nose was within approximately 50 cm at the be-
ginning of PSG.

Six smartphones were used to avoid data loss from 
measurement error and to avoid creating a model opti-
mized for one smartphone model and OS. Sound was 
recorded by iPhones using the “Voice memo” app and by 
Android phones using the “Easy Voice Recorder  
(DIGIPOM)” app. PSG data were interpreted by consul-
tation with a pulmonologist.

2.2　  Data synchronization
We generated a mark using the snoring sensor of the PSG 
system and an arti�cial sound output from a Bluetooth 
speaker at the beginning of data collection to synchro-
nize breathing information obtained by PSG with the 
data recorded by the smartphones. The marking and syn-
chronization p is outlined in Fig. 3. Any time discrepan-
cy between these data was corrected by the rate for PSG.

2.3　  Data extraction
The data used for learning were extracted from the re-
corded and PSG data. PSG data were collected from the 
time the ward light was switched off at night to the time 
it was turned on in the morning. The period that included 
sounds from televisions and radios was excluded, as 
were periods of abnormal breathing such as PSG-de�ned 
obstructive apnea, central apnea, and respiratory effort- 
related arousal responses. This process reduces the data 
usage in cases of severe sleep apnea.

Data extracted for learning were divided into 1- 
minute periods, with 60% of the data used for training, 
20% for testing, and 20% for validation.

Based on the barometric pressure �ow sensor signal, 
which sensitively detects exhaled breath, a period of 1.5 
seconds starting 0.75 seconds before and ending 0.75 
seconds after the local minimum barometric pressure 
was de�ned as one exhaled breath. Periods that were not 
apnea but could not be detected by the barometric pres-
sure �ow sensor, such as mouth breathing, were exclud-
ed from the training and test data.

2.4　  Feature generation
The following processing was performed to input each 
60-second period of 44.1 khz monaural sound data la-
beled with expiration span into the machine learning 
model. The sound data were transformed by a short-time 
Fourier series to generate the power spectrum. After re-
ducing noise with a Gaussian �lter of kernel size 25 ×  25, 

Fig. 2　  Outline of measurements.  
SNOR (blue line): signal from the piezo snoring sensor that detects vibrations due to snoring.  
FlowP (orange line): signal from the pressure �ow sensor that detects changes in barometric pressure under the patient’s 
nostrils.  
FlowT (green line): signal from the temperature sensor that detects changes in temperature under the patient’s nose.
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the average of each frequency component was calculat-
ed, and this parameter was subtracted for each frequency.

Because coarse noise and snoring frequently appear 
as high-frequency components, the part of the subtracted 
spectrum matrix at frequencies ≥   16537.5 kHz was �l-
tered. A two-dimensional array of 769 frequency compo-
nents and 5168 time components was used as input. The 
�owchart is shown in Fig. 4.

2.5　  Convolutional LSTM network
Signal segmentation was performed using a Convolu-
tional Long Short-Term Memory (ConvLSTM) neural 
network as a machine learning model to detect exhaled 
sounds within each 1-minute sound recording. The struc-
ture of the model was determined with reference to the 
model used in a study on the segmentation of an electro-
cardiogram waveform [11].

ConvLSTM is a model commonly used to illustrate 
sequence information by showing imaging features in-
cluding sound [12–14]. The convolution layer extracts 
image-like features of a two-dimensional matrix derived 
from the power spectrum for the frequency axis and 
compresses the features into a dense vector from 769 to 
128. The LSTM layer captures changes in the features 
sent from the convolution layer over time. The Dense 
and Softmax layer without width for time series process-
es sequentially 5168 inputs and outputs 5168 pieces of 

classi�cation data. The outline of the model is shown in 
Fig. 5 and Supplemental Document S1. Detailed train-
ing conditions are shown in Table 1.

2.6　  Validation
To evaluate the performance of the proposed method, the 
ability to detect breath sounds was evaluated by compar-
ing with the pressure �ow sensor. The exhaled breath de-
tection status was veri�ed based on the respiratory infor-
mation for validation. Participants with a breath detection 
frequency ≤  9 per minute despite the PSG chart showing 
normal respiration were regarded as detection failures.

Accuracy of respiration detection using the sound 
data was evaluated by comparing with the exhaled air 
detected by the pressure air �ow sensor. Data in which 

Fig. 4　Flowchart of processing input data.

Fig. 3　  Schema of data synchronization.  
a: The arti�cial sound signals for synchronization. Red arrow shows the peak to detect.  
b: The power spectrum of the arti�cial sound. The sound was created by mixing sinusoidal waves of multiple frequen-
cies.  
c: Schema of marking. Green arrow: The piezo snoring sensor of PSG system. Yellow arrow: Bluetooth speaker to output 
the sound.  
d: The head of synchronized PSG data and sound.
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both the pressure �ow sensor and the model failed to de-
tect respiration were regarded as non-evaluable and ex-
cluded from the accuracy assessment. Because the length 
of expiratory sound was about 1 second, the range to de-
tect the expiration peak from sound data was set from 0.5 
seconds before to 0.5 seconds after the minimum value 
of the pressure �ow sensor suggesting that expiration 

was observed. Accuracy was calculated by assuming that 
a correct result was obtained when this peak of  
expiration-like output was within the range. The outline 
of the model validation is shown in Fig. 6. Accuracy for 
case i, validation segment j, device k, and expiration in-
dex from PFlow l when detection times for expiration 
from PFlow and sound were represented as x and y, re-

Fig. 5　  Schema of the ConvLSTM model.  
The input matrix is processed in the order from left to right. Locally, two-dimensional features are compressed by the 
convolution layer, and time-series information is determined by the two-stage LSTM layer. The Dense and Softmax 
layers sequentially process the time-series information output by the LSTM layer and output classi�cation information 
for each event.

Fig. 6　  Schema of model validation.  
Upper: Pressure �ow sensor signals and SNOR signals from PSG. Red circles indicate local minimum signals from 
pressure �ow sensor with numbers corresponding to the respiratory rate (the number is 12 in this case). Middle: Record-
ed sound data. Lower: Model output of likelihood of expiration. Red triangles indicate peak of likelihood of expiration 
with numbers corresponding to the respiratory rate obtained from sound data (the number is 12 in this case). The red 
arrow shows the relation of accuracy calculation. If the peak of likelihood is within 1 second of the local minimum pres-
sure �ow sensor signal, the output is assumed to be accurate.
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spectively, was mathematically de�ned as:

Acci, ji,ki, j,li, ji

=


1 for ∃m ∈ N(|xli, ji

− ymi, ji ,ki, j
| ≤ 0.5)

0 for m ∈ N(|xli, ji
− ymi, ji ,ki, j

| ≤ 0.5)

The accuracy of the entire validation was de�ned as:

Accwhole =

i, j,k,l

Acci, ji,ki, j,li, ji
/

i, j,k,l

1

The accuracy of case i was de�ned as:

Acci =

j,k,l

Acci, ji,k,li, ji
/

j,k,l

1

The detailed de�nition of accuracy is described in 

Supplemental Document S1.
The relationship between the number of exhaled 

breaths per minute detected from the pressure air �ow 
sensor and voice data was visualized.

Because of concerns that the data available for learn-
ing would decrease depending on the severity of sleep 
apnea syndrome (SAS), the relations among severity, 
data availability, and the accuracy of the model were 
evaluated.

3.　  Results

3.1　  Patient characteristics
Twenty patients, comprising 13 males and 7 females 
with median age 55 years (range, 15–77 years) were in-
cluded in this study. Their demographic and clinical 
characteristics are shown in Table 2.

Of the 20 patients, six had severe sleep apnea syn-
drome (SAS). As SAS became more severe, abnormal 
breathing and apnea increased. The amount and percent-
age of data after �ltering in each process are summarized 
in Table 3. The median length of respiratory information 
available for training, testing, and validation was 6.8 
hours.

3.2　  Results of learning
A total of 7,946 minutes of respiratory information and 
recorded data from six smartphones were obtained from 
the 20 patients. These data were divided into a training 
set of 4754 minutes, a test set of 1598 minutes, and a 
validation set of 1594 minutes. Three samples of training 
and test data were created from 1-minute measurements. 
Fig. S2 shows the learning curve. The �nal accuracy of 
the test set was 0.777.

3.3　  Detection of respiration
Table 4 shows the rates of detection of respiration by the 
pressure-�ow sensor and from sound. The pressure-�ow 
sensor was able to detect >  90% of respiration, whereas 
sound could detect only approximately 51%.

The accuracy for breath detection by the machine 
learning model was 79.1% when respiration was detect-
ed by both the pressure �ow sensor and sound. Figure 7 
shows the distribution of the estimated respiratory rate 
when respiratory was successfully detected.

3.4　  Relations with accuracy and SAS
As SAS became more severe, the data available for 
learning decreased due to apnea and abnormal breathing. 
We evaluated whether the ability of the model to detect 
exhaled breath was optimized for people with mild SAS 
and those without SAS. The accuracy in each case was 
not clearly associated with SAS severity. Supplemental 
Figure S3 shows the distribution of accuracy relative to 

Table 1　Training condition.

Convolution size in each layer: (3,5)

Size of the output tensor of each layer: In document S1

Activation function:

ReLu (excluding LSTM)

Hyperparameters of the LSTM:

Direction: Bidirectional

Number of hidden nodes: 64 for each direction

Activation: tanh

Recurrent activation: hard sigmoid

Dropout: 0

Recurrent dropout: 0

Return Sequence: TRUE

Initialization method of the model:

Kernel initializer: Glorot uniform

Bias initializer: Zeros

Optimization algorithms:

ADAM (with differential learning rate)

Loss value: Binary cross entropy

Batch size: 12

Learning rate:

LSTM: 1.00E-04

Dense: 1.00E-08

Conv2d: 1.00E-08

Batch normalization: 1.00E-08

Termination judgment conditions:

Stop if improvement of loss value is
less than 0.001 during 10 epochs.

Scheduled number of learning epochs: 500

Learning curve: Fig. S2

Data size:

Train: 13800 samples, 439 G

Test: 4600 samples, 147.5 G
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the severity of SAS.

4.　  Discussion

4.1　  Respiratory rate monitoring by smartphone
Placement of a smartphone with a built-in microphone 
under the nose could be used to determine the respiratory 
rate based on voice information [9]. Although the pa-

tients did not report discomfort, this method is not suited 
for long-term continuous monitoring.

Respiratory rate can also be determined by monitor-
ing the movement of the thorax following emission of 
ultrasonic waves by a microphone built into a smart-
phone [8, 15]. Because these methods involve ultrasonic 
irradiation, the smartphone must be placed in front of the 
chest, making it unsuitable for patients on a bed covered 
with a thick blanket.

Respiratory rate has also been determined from im-
age information by placing a �nger on the built-in cam-
era of a smartphone [16], and thoracic movement detect-
ed by a standard smartphone held on a person’s chest [17], 
but these methods are not suitable for long-term monitor-
ing. Earphones have been used as a microphone to detect 
breath sounds [18] and are expected to improve perfor-
mance when breath sounds are minute and dif�cult to 
determine, but this method would require additional 
equipment and evaluation of the performance of each 
earphone.

We propose a method for non-contact monitoring of 

Table 2　Clinical characteristics.

Number 20

Age (median [IQR]) 55 [36, 68]

Gender =  female/male (%) 7/13 (35.0/65.0)

BW (kg) (median [IQR]) 64.15 [53.45, 69.82]

BH (cm) (median [IQR]) 166.70 [161.38, 169.62]

BMI (median [IQR]) 23.14 [20.35, 25.43]

AHI (median [IQR]) 14.90 [6.20, 31.75]

SAS Severity

　normal (AHI <  5) 3 (15.0)

　mild (5 <=  AHI <  15) 7 (35.0)

　moderate (15 <=  AHI <  30) 4 (20.0)

　severe (30 <=  AHI) 6 (30.0)

Abbreviations: BW, body weight; BH, body height; 
BMI, body mass index; AHI, apnea hypopnea index; 
SAS, sleep apnea syndrome

Table 3　Data usage during processing.

hours(median[IQR]) %(median[IQR])

whole examinations 10.49[10.24–10.71] 100.0[100.0–100.0]

from light on/off 8.6[8.21–9.04] 82.7[79.5–84.6]

without TV or radio sound 8.58[8.21–8.98] 82.1[79.5–83.6]

without abnormal breath 7.79[7.31–8.15] 74.1[70.3–78.1]

train/test/validation 6.79[5.96–7.33] 64.2[58.2–70.1]

train 4.06[3.56–4.38] 38.5[34.8–42.0]

test 1.37[1.19–1.47] 12.9[11.7–14.0]

validation 1.37[1.2–1.47] 12.9[11.7–14.0]

Table 4　Detection rate (%) of respiration.

detected by 
sound

not
by sound

Total

detected by
 pressure sensor

48.8 43.2 92.0

not by
pressure sensor

1.9 6.1 8.0

total 50.7 49.3 100

Fig. 7　Estimation of respiratory rate.
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vital signs by a smartphone placed on the headboard of a 
bed. This method can be applied to various patients, in-
cluding outpatients.

4.2　  Relationship with snoring sounds
Smartphone-recorded snoring and PSG data have been 
used to verify the severity of sleep apnea [19]. Snoring is 
a very loud and characteristic waveform of breathing- 
related sounds recorded during sleep. Snoring usually 
occurs during inspiration, except in patients with severe 
SAS. Thus, to avoid designing a model that recognizes 
snoring dominantly, we designed a model that detects 
exhaled breath sound.

4.3　  Limitations
In this study, the pressure air�ow sensor was able to de-
tect >   90% of normal respirations, whereas recorded 
sound could detect only 51%. The main reason for the 
low detection rate using sound was that breath sounds 
were tranquil and were masked by white noise or could 
not be discriminated from other coarse sound sources. 
Further improvements should include the removal of 
background noise to detect minute breath sounds more 
accurately.

One of the causes of the low accuracy of detecting 
expiration is that the sounds are weak and only a part of 
them can be detected. Another cause is the presence of 
gross noise; the weak expiration sound is further attenu-
ated as a result of the process of subtracting the signal 
intensity of time-averaged frequency, and only a part of 
the expiration can be detected. In order to reduce the in-
�uence of the coarse spike-like noise, a method such as 
subtracting the moving average of a certain length in-
stead of the frequency averaged for 1 minute can be con-
sidered.

Because this study targeted sleeping patients with no 
critical or systemic diseases who were undergoing PSG 
examinations, it was not possible to record the breath 
sounds of severely ill patients with tachypnea. Breath 
sounds due to air�ow are likely to increase in patients 
with tachypnea due to the increase in ventilation volume. 
However, learning and identi�cation of breathing sounds 
without PSG that provides detailed respiratory informa-
tion is required for patients with tachypnea and severe 
sickness. Further studies are needed to develop a learn-
ing model that can differentiate tachypnea from sounds.

4.4　  Signi�cance
This study showed that breath sounds could be detected 
in data recorded by smartphones not in direct contact 
with patients. This suggests that important vital signs in-
dicative of patient deterioration could be monitored by 
general purpose devices in many patients without in-

creasing the burden on medical staff.
In the validation set, the model detected respiratory 

sounds in only one-half of the recorded data, suggesting 
that this method is inappropriate for use in intensive care 
units, where accurate monitoring is required. This meth-
od, however, has the potential to detect 50% of respira-
tion sounds during sleep, thus allowing continuous mon-
itoring of large numbers of patients at risk without the 
need for any specialized devices.

Dyspnea and tachypnea are clinical indicators of 
critically ill patients with COVID-19 infection [20, 21]. 
Objective detection of the deterioration of respiratory 
conditions may be a marker of early-stage tachypnea in 
outpatients and inpatients, allowing appropriate early in-
terventions.

5.　  Conclusion

We have proposed a method for detecting breathing 
sounds using a microphone embedded in a mobile phone. 
By simultaneous recording of sounds in patients under-
going PSG examinations, we succeeded to create a mod-
el capable of signal segmentation by deep learning. The 
created model was able to detect breath sounds in one-
half of the data in the validation set, with accuracy of 
expiration sound identi�cation of 79.1%, when correct 
detection was de�ned as the output from the model 
matching the breath detection by the pressure air �ow 
sensor of the PSG system.
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