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Abstract: To predict the stress-dependent magnetization properties of silicon steel using a multiscale magnetization model 

called assembled domain structure model, pinning field models are developed using the play model. The hysteretic 

property of pinning field is identified from measured BH loops under stress-free condition. From the unidirectional 

hysteretic property, the distribution of the play hysterons is determined via an identification method that uses scalar and 

vector play models under the assumption of 2D or 3D distribution of crystal orientations. The loss properties of non-

oriented silicon steel under compressive and tensile stresses are predicted successfully using an energy minimization 

process without parameter fitting to the stress-dependent measurement results.  
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1. INTRODUCTION 

The increased losses that occur in iron core materials as a result of mechanical stress can reduce motor efficiency 

through the shrink fitting process. To study the effects of stress, the stress-dependent loss properties have been measured 

widely in recent years [1]-[4]. These measured stress-dependent properties are then often phenomenologically modeled for 

use in magnetic field analysis of electric machines. However, performing these measurements under all the vector/tensor 

combinations of the magnetization and stress directions is impossible in practice. Therefore, a physical magnetization 

model [5]-[7] is required that can predict the stress-dependent properties from basic material constants such as the 

material’s anisotropy constant and magnetostriction constants.  

The assembled domain structure model (ADSM) [7] is an energy-based physical magnetization model that has been 

used successfully to predict the increased losses due to mechanical stress [8].  

The ADSM yields the hysteretic properties of materials using the pinning field accompanied by the domain wall motion. 

The pinning field distribution is given using a Gaussian function that was determined in a trial-and-error manner. The 

behavior of the pinning field and its dependence on the distribution is reconstructed using the stop model to impose the 

pinning field on every cell in the ADSM. In [9], a direct identification method was developed to construct a stop model 

from the measured hysteretic properties under stress-free conditions. The stop model [10] is a convenient model for 

representation of the relationship between the input magnetization M and the output magnetic field H. The play model [10], 

[11] is also an accurate hysteresis model that can represent the relationship between M and H. This study examines pinning 

field modeling when using the play model. The paper presents a method for direct identification of the pinning field 

distribution using scalar and vector play models. 

2. MULTI-DOMAIN PARTICLE MODEL  

2.1. ADSM  

The ADSM [7] is a multiscale model in which macroscopic magnetization is constructed by assembling mesoscopic 

cells on the crystal grain scale; these cells are called simplified domain structure models (SDSMs [12]). The magnetization 

state in each cell is determined to give the local minimum of the total magnetic energy, which comprises the Zeeman 

energy, the crystalline anisotropy energy, the magnetostatic energy, and the magnetoelastic energy. See the Appendix A 

for a brief explanation of the ADSM. 

The pinning field hpn accompanied by the domain wall motion of domain i can be represented by the stop model as 

follows [8]: 

 

 hpn = S(2ri−1)           (1) 
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where S is a hysteretic function that is described by the scalar stop model and ri is the volume ratio of domain i. In a 

previous study, the distribution of the pinning field was first assumed to take the form of a Gaussian function. Then, based 

on the resulting hysteretic properties, the stop model was identified to constitute S in (1). From a physical viewpoint, the 

distribution can be determined using the density of the impurities contained in the material and the geometry of the crystal 

grains; however, these properties are difficult to determine. Reference [9] used a hysteretic property that was measured 

under stress-free conditions to identify the stop model directly.  

2.2. Pinning Field Represented by Play Model 

Use of the stop model is a natural choice to represent the hysteretic function from the input of the normalized 

magnetization m to the output of the normalized magnetic field h. However, the play model can also represent the 

hysteretic function from m to h. In addition, the play model can describe the hysteretic function from the input magnetic 

flux density to the output magnetic field in silicon steel more accurately than the stop model [10].  

This paper examines the play model for use in pinning field modeling. The stop model in (1) is replaced by the play 

model as follows.  

If a single crystal of a magnetic material has a two-domain state with a 180° domain wall, the volume ratios of the two 

domains ri and 1−ri give the normalized magnetization m = 2ri−1. Therefore, the applied field along the magnetization 

direction yields the pinning field that can be represented by the scalar play model having an input m and an output hpn as  

 

 hpn = P(2ri−1) .           (2) 

 

Therein P is a hysteretic function described by the scalar play model P1 [11]:   
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where mS = 1 is the normalized saturation magnetization, f1 is a shape function, and F1(m) is a reversible component of 

P1(m). The play hysteron pζ, which has a width of ζ, is defined as  

 

 pζ(m) = max(min(pζ
0, m+ζ), m−ζ)         (4) 

 

where pζ
0 represents the values of pζ at the previous time point. 

The pinning field given in (2) is generated by every domain i (i = 1, …, 6), even when ri = 0 and when domain i makes 

no contribution to the cell magnetization. This paper modifies the pinning model accordingly as  

 

 hpn = ri P(2ri−1)           (5) 

 

which means that the pinning field in a cell is weighted by the volume ratios of the domains. This is called a weighted 

pinning field model, whereas the pinning model given by (2) is called an unweighted model. 

The polycrystalline magnetic material with random crystal orientations is represented using the ADSM, which consists 

of cells with uniformly distributed crystal orientations. If the crystal orientation is uniformly distributed two-dimensionally, 

it is then assumed that the total pinning field is represented approximately by a 2D isotropic vector play model constructed 

via the superposition of scalar play models [11] 
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where e is the unit vector along the -direction and P2(m) is a scalar play model that is given using the same form as (3). 

For a three-dimensional distribution, a 3D isotropic vector play model [13] is used as follows: 
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where P3(m) is a scalar play model and eθ, is the unit vector along the (θ, )-direction.  

The scalar paly models P2 and P3 are then identified using a measured unidirectional property. For identification, the 

following function Tk (where k =1, 2, 3) is defined. 
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In (8), Fk and fk denote the reversible component and the shape function of Pk, respectively. In order for the vector play 

models (6) and (7) to have unidirectional properties that are the same as the scalar hysteretic property given by the scalar 

play model P1, T2 and T3 should satisfy [11][13] 
π/2
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The integral equations (9) (10) for T2 and T3 are solved as: 
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The functions fk and Fk (k = 2, 3) are then obtained from Tk as: 

  Fk(p) = Tk(0, p) ,  
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First, the anhysteretic property is removed from the measured hysteretic properties to extract the pinning field component, 

from which the scalar play model P1 can then be identified. After obtaining the shape functions f1 and F1 of P1, T1 is found 

from (8) and is used to determine the shape functions fk and Fk from Tk (k = 2, 3) using (11)–(13) for the 2D and 3D 

models.    

3. NUMERICAL RESULTS  

The stress-dependent magnetic properties of a nonoriented steel sheet (JIS: 50A470) were measured using a stress-

loading single-sheet tester [14], where a strip sample was attached with a glass epoxy plate to prevent buckling; one end of 

the sample was fixed and the other end was pushed/pulled mechanically. From the catalogue data for the mass density, the 

silicon weight ratio in this steel is estimated to be approximately 3%, which gives an anisotropy constant for the cubic 

anisotropy of K = 4.2×104 J/m3, while the magnetostriction constants are λ100 = 2.4×10−5, λ111 = −9.5×10−6 and μ0MS = 2.07 

T [15]-[17]. From the hysteretic properties that were measured under stress-free conditions, the scalar play models Pk (k = 

1, 2, 3) can be identified. The pinning fields that are represented by these play models are shown in Fig. 1. However, the 

cell assembly is not equivalent to the superpositions in (6) or (7). Therefore, depending on the pinning model, each shape 

function pair (fk, Fk) is multiplied by a constant to adjust the pinning field strength under stress-free conditions.  

The magnetization process is simulated using 64 cells with uniformly distributed crystal orientations.  

 

. 

Fig. 1. Pinning fields represented by play models P1, P2, and P3. 

 

The hysteresis loss per cycle with and without the compressive stress is plotted in Fig. 2, where the pinning field hpn in 

the ADSM is determined by the scalar play model P = P1, P2 or P3. The increased loss caused by the compressive stress is 

predicted accurately by both the weighted model (2) and unweighted model (5). The simulated BH loops are drawn in Fig. 



 

 

4 

3. The loops under compressive stress of 40 MPa are predicted roughly without parameter fitting to the measured data 

under the mechanical stress. There are no major differences between the unweighted and weighted pinning field models. 

Despite the pinning field distribution differences shown in Fig. 1, the three scalar play models yield approximately the 

same properties. 

The stress dependence of the hysteresis loss per cycle with an amplitude of 1.48 T is reconstructed in Fig. 4, in which a 

large increase in loss under compressive stress and a small decrease in loss under tensile stress are predicted. The weighted 

pinning field model provides slightly more accurate loss prediction than the unweighted model. 

A comparison with the stop model is discussed in Appendix B. 
 

   
Fig. 2. Hysteresis losses per cycle with and without compressive stress of 40 MPa using the (a) unweighted and (b) weighted pinning field models, where the 
scaler play model P is given by P1, P2 or P3. 

 

     
Fig. 3. BH loops simulated using the scalar play model P for pinning field distribution with unweighted model (2) and weighted model (5): (a) P = P1, (b) P = P2, 

and (c) P = P3. 

 

(a)   (b)  
Fig. 4. Stress dependence of the hysteresis loss when using (a) unweighted and (b) weighted pinning field models with P = P1, P2, and P3. 
 

4. CONCLUSIONS 

The pinning field is modeled for the ADSM using the scalar play model, where the play model is directly identified from 

BH loops measured unidirectionally under stress-free conditions using the theory of the vector play model. The proposed 

model predicts the stress-dependent magnetization properties successfully without any parameter fitting to previously 

measured data under mechanical stress, where not only a large increase in iron-loss under compressive stress but also a 

small decrease in loss under tensile stress are estimated. The BH loops under compressive stress are also roughly 

reconstructed regardless of the choice of identification method for scalar or vector play model.  
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APPENDICES 

A. ADSM 

A.1 ADSM  

Fig. 5(a) illustrates a mesoscopic cell called simplified domain structure model (SDSM) [12], which has six domains 

corresponding to the three easy axes of cubic anisotropy. The ADSM [7] is constructed by assembling the SDSMs (Fig. 

5(b)). The magnetization state in each cell (SDSM) is represented by the volume ratios ri and the magnetization vectors mi 

= (sinθicosϕi, sinθisinϕi, cosθi) (i = 1 … 6) of the six domains. These states are determined so as to locally minimize the 

total magnetic energy e, which consists of the Zeeman energy, crystalline anisotropy energy, magnetostatic energy, and 

magnetoelastic energy. The magnetomechanical interaction is caused by the magnetoelastic energy.  

Local minimization of e is achieved by solving the ordinary differential equations given as 

 

dX/dt = Y, dY/dt = − ∂e/∂X − βY           (15) 

 

where X = (X1, X2, …) represents the state variable vector, Xj consists of (θj,1, …, θj,6, ϕj,1, …, ϕj,6, rj,1, …, r j,5) in cell j, Y is 

an intermediate variable vector, and β is the dissipation factor. A local energy minimum is obtained by integrating (15) 

numerically until an equilibrium point at which dX/dt = dY/dt = 0 is reached.  

 The magnetostatic energy is the most time-consuming of the components of e to compute. The demagnetizing field Hst 

in cell j due to the magnetostatic energy is given as 

 

Hst(j) = − MS ∑j’N(j−j’)m(j’) ,          (16) 

 

where m(j’) is the average magnetization in cell j’, N is the demagnetizing coefficient matrix, MS is the magnitude of the 

spontaneous magnetization, and j and j’ are cell indices. To avoid the convolution in (16) due to the dipole-dipole 

interaction, the demagnetizing field is assumed to be determined predominantly by thin-sheet geometry, which derives an 

independent-particle approximation [9] as:  

 

Hst(j) = −MSN’m(j).          (17) 

 

Therein N’ = ∑j”N(j”) is the macroscopic demagnetizing coefficient matrix. This paper uses (17) for simplicity in the 

magnetostatic computation. 

(a)  (b)  

Fig. 5. Schematics of ADSM: (a) mesoscopic six-domain particle (SDSM) and (b) ADSM consisting of assembly of mesoscopic particles. 

 

A.2 Pinning field   

The macroscopic relationship between the normalized magnetization m and the applied field h in a cell is assumed to be 

represented as 

  ah pn( ) ( )h h m h m= + ,                                   (18) 

where hah(m) represents the anhysteretic magnetization property and hpn(m) is the pinning field. The anhysteretic field is 

determined by the Zeeman energy, crystalline anisotropic energy, magnetostatic energy, and magnetoelastic energy. In the 

previous studies, the hysteretic property of hpn is represented by the scalar stop model as mentioned in Subsection 2.1. In the 

ADSM, hpn appears as a component of ∂e/∂Xj with respect of rj,i as  

  pn , pn ,/ 2 (2 1)j i j ie r h r  = − .            (19) 

where epn is the pinning energy. Note that epn itself is not necessary to give the pinning field.  
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B. COMPARISON WITH STOP MODEL 

The unweighted pinning field model of (1) based on the stop model does not always give accurate results without some 

adjustments. Therefore, the stop-based model with the weighted pinning model similar to that given in (3) is compared with the 

play-based model, where the scalar play model P is replaced by the scalar stop model S. In a manner similar to the play model 

version, the scalar stop models S1, S2 and S3 are identified from BH loops that are measured unidirectionally under stress-free 

conditions [9]. The BH loops that were calculated using S1, S2 and S3 are plotted in Fig. 6. The loops that were yielded by the 

play model shown in Fig. 3 are smoother than those shown in Fig. 6. Figure 7 shows the stress dependence of the hysteresis loss 

per cycle given by the stop model, which is as accurate as the play model for compressive stress but is not very accurate for 

tensile stress. 

 
 

 
Fig. 6. BH loops simulated using scalar stop models for pinning field representation. 

 

 
Fig. 7. Stress dependence of hysteresis loss simulated using stop models S1, S2 and S3 for pinning field representation. 
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