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This study investigated an efficient procedure for developing an accurate behavioral model of a cage induction motor (IM) based on 
the multiport Cauer ladder network (CLN). The CLN method was applied to a cage IM with semi-closed rotor slots as a model order 
reduction technique and a method for selecting the appropriate space harmonics included in the air-gap flux density, which is necessary 
for a multiport CLN method for induction machines, was discussed. Then, the developed approach was applied to the transient analysis 
of the cage IM coupled with a control system, and its effectiveness in terms of computational accuracy and cost was investigated. 
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I. INTRODUCTION 
O EFFICIENTLY design a control system for electric 
machines, an accurate motor model, which enables circuit 

simulation with consideration to nonlinear magnetic properties 
and the change of a magnetic circuit caused by the rotation of 
the rotor under speed/torque control with acceptable 
computational cost, is required. Because the direct coupling of 
the finite-element method (FEM) with circuit simulation 
generally needs enormous computational costs, various model 
order reduction (MOR) techniques [1], [2] are frequently 
adopted to develop a current- and position-dependent motor 
model. The Cauer circuit has been reported as one of the MOR 
methods for eddy-current fields [3]-[5]. This approach is called 
the Cauer ladder network (CLN) method and has been extended 
to multiport problems [6] and nonlinear eddy-current fields [7]. 

 Recently, the MOR approach based on the multiport CLN 
method for a cage induction motor (IM) has been proposed [6]. 
In this approach, first, the Cauer circuit representations for the 
stator and rotor domains are separately constructed. Then, the 
Cauer circuit corresponding to each domain is connected based 
on the boundary conditions for the space harmonics (SHs) of an 
air-gap flux density waveform. The MOR for cage IMs is 
inherently not straightforward even if linear magnetic 
properties are assumed in the rotor and stator because we should 
consider the electromotive force due to traveling waves at the 
airgap whose phase velocities in the rotor coordinate depend on 
the slip and on the space and time orders of SHs. This is why 
magnetostatic-based modeling is not effective to IMs and the 
choice of appropriate SHs is crucial to reconstruct torque 
waveforms including ripples. Although the multiport CLN 
approach in [6] accurately represents the numerical results 

obtained by the FEM with consideration to a sufficient number 
of SHs included in the air-gap flux density waveform, the 
excessive increase in the number of SHs leads to unacceptable 
computational cost. In addition, the treatment of nonlinear 
magnetic properties should be considered especially for cage 
IMs with closed rotor slots. Since skewed slots are usually 
adopted in general cage IMs, a modelling of it is also required. 
Among the issues to be solved in applying the multiport CLN 
method to practical cage IMs, the development of a method for 
selecting the dominant SHs is the most essential regardless of 
whether nonlinear magnetic properties and skewed rotor slots 
are considered or not because the number of SHs directly 
influences computational accuracy and efficiency. 

With this background, this paper proposes a method for 
selecting the appropriate number of SHs included in the air-gap 
flux density waveform based on time and space harmonic 
analysis [8]. Furthermore, by considering the circuit connection 
of the rotor bars, a novel procedure was developed to derive the 
circuit parameters in the Cauer circuit, which satisfy the 
condition of the sum of the bar currents in the rotor domain 
always being zero [9]. Finally, the developed cage IM model 
was applied to a circuit simulation under speed control. The 
computational accuracy and cost of the FEM and multiport 
CLN method were compared to demonstrate the effectiveness 
of the proposed method in designing control system of cage IMs. 

II. METHOD OF ANALYSIS 

A. Multiport CLN Method for Cage Induction Motor 
Fig. 1 shows a matrix CLN corresponding to the stator and 

rotor domain in a cage IM [6], in which the air-gap flux 
densities and phase currents/voltages are considered as the 
input data. A winding resistance Rs and the inductance matrices 
Ls, Lh, and Lsh are considered in the stator domain. Here, the 3-
by-3 matrix Ls denotes the inductances of the primary windings, 
the M-by-M matrix Lh represents the inductance matrix 
corresponding to the SHs included in the air-gap flux density, 
the 3-by-M matrix Lsh represents the interactions between the 
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primary windings and the SHs, and M is the number of SHs. 
The multiport CLN method with several stages is applied to the 
rotor domain to consider the frequency characteristics of the 
eddy-current fields caused by the rotor bar currents. The 
number of stages is denoted as N. Because linear magnetic 
properties are assumed as a first step toward the practical use of 
the multiport CLN method, the cage IMs with semi-closed rotor 
slots are investigated. For reference, nonlinear MOR for cage 
IMs using the multiport CLN method is discussed in [10]. 

The number of rotor bars is not frequently divisible by the 
number of poles in a practical cage IM. In this case, when 
deriving appropriate circuit parameters in the Cauer ladder 
circuit, it is necessary to satisfy the condition of the sum of the 
rotor bar currents per pole-pair always being zero. To achieve 
this condition strictly by considering the circuit connection of 
the rotor bars, a novel procedure using the CLN method based 
on the A-φ formulation [9] is proposed, where A is the magnetic 
vector potential and φ is the electric scalar potential. The 
resistance matrix R2n and inductance matrix L2n+1 in the matrix 
Cauer circuit for the rotor domain can be determined as follows: 

( )T
2 1 2 1 2 2n n n nν σ+ −− =C M C A A M E R , (1) 
T T

2 1 2 1 2 1n n nν+ + +=L A C M CA , (2) 
1

2 2 2 2 1 2 1n n n n
−

+ + +− = −E E A L , (3) 
T T

2 2 2 2n nσ σ+ += −G M GΨ G M E , (4) 
2 2 2 2 2 2n n n+ + += +E E GΨ , (5) 

1 T
2 2 2 2 2 2n n nσ

−
+ + +=R E M E , (6) 

by starting the above from E0 = 0 and A−1 = 0. Here, G is the 
discrete gradient operator, C is the discrete curl operator [11], n 
is the stage number, and R2n and L2n+1 are M-by-M matrices, 
respectively. The (i, j)-th entries of Mν and Mσ are expressed as  

f f e ed , dij i j ij i jV V
M V M Vν σν σ= ⋅ = ⋅∫ ∫N N N N , (7) 
where ν is the magnetic reluctivity, σ is the conductivity, and 
Nf

i and Ne
i are the face-element and edge-element basis 

functions, respectively. Matrices E2n, A2n+1, and Ψ 2n are  
( )2 1,2 2,2 ,2, , ,n n n M n=E e e e , (8) 

( )2 1 1,2 1 2,2 1 ,2 1, , ,n n n M n+ + + +=A a a a , (9) 

( )2 1,2 2,2 ,2, , ,n n n M n= Ψ φ φ φ , (10) 
where em,2n, am,2n+1, and ϕm,2n are the basis vectors associated 
with the line integral of electric field, line integral of magnetic 
vector potential, and electric scalar potential, respectively. The 
first subscript indicates the corresponding port number, while 
the second subscript denotes the corresponding circuit element.  

In the above procedure, (4) and (5) are novel additions to the 
existing CLN method for a cage IM described in [6] to ensure 
the condition of the sum of the bar currents always being zero 
by considering the circuit connection of the rotor bars. In the 
case where the number of rotor bars is divisible by the number 
of poles, only the odd SHs are included in the air-gap flux 
density waveform. Generally, however, the even SHs should 
also be considered in (8), (9), and (10) in the case where the 
number of the rotor bars is not divisible by the number of poles.  

Here, we consider a cage IM with an axial length La and rotor 
radius Ra. Because the circumferential component of the air-gap 

magnetic field Hθ, the axial component of the air-gap electric 
field Ez, the axial component of the air-gap magnetic vector 
potential Az, and the radial component of the air-gap flux 
density Br are periodic functions with respect to the mechanical 
angle θ, they can be represented as follows: 

[ ]c n s n( , ) ( ) cos( ) ( )sin( )m m
m

H t H t mP H t mPθ θ θ θ= +∑ , (11) 

[ ]

[ ]

c n s n

c n s n

( , ) ( ) cos( ) ( )sin( )

( , ) ( ) cos( ) ( )sin( )

z m m
m

z
m m

m

E t E t mP E t mP

A t A t mP A t mP
t t

θ θ θ

θ θ θ

= +

∂ ∂
= − = − +

∂ ∂

∑

∑
, (12) 

[ ]n
s n c n

a a

1( , ) ( ) cos( ) ( )sin( )z
r m m

m

A PB t m A t mP A t mP
R R

θ θ θ
θ

∂
= = −

∂ ∑ , (13)  

where the subscript m indicates the order of the coefficient, and 
Pn is the number of pole-pairs. By substituting (11), (12), and 
(13) into the pointing vector and Maxwell stress tensor, we can 
obtain the power flowing into the rotor domain p2 and the 
instantaneous torque τ as follows: 

2

2 a a a a c c s s0
d ( )z m m m m

m
p L E H R R L E H E H

π

θ θ π= = +∑∫ , (14) 
2

a a a n a a s c c s0
d ( )r m m m m

m
R L B H R P R L m A H A H

π

θτ θ π= = −∑∫ . (15) 

The vectors Is and Vs shown in Fig. 1 are expressed as 
( ) ( )T T

S u v w S u v w, , , , ,I I I V V V= =I V , (16) 
where Iu, Iv, Iw, and Vu, Vv, Vw are the phase currents and 
voltages, respectively. V, I, and Φ in Fig. 1 are the vectors 
comprising the SHs of Hθ, Ez, and Az. They are defined as 

( )c1 s1 c2 s2 c s, , , , , ,M MH H H H H H=I  , (17) 

( )a a c1 s1 c2 s2 c s, , , , , ,M MR L E E E E E Eπ=V  , (18) 

( )a a c1 s1 c2 s2 c s, , , , , ,M MR L A A A A A Aπ=Φ  . (19) 
In this case, p2 in (14) and τ in (15) can be written as 

( )T T
2 n a a s1 c1 s c, , , , , ,M Mp P R L A A MA MAτ π= = = − −V I B I B  . (20) 

The torque and instantaneous secondary copper loss, including 
their ripples, can be evaluated based on the solutions of the CLN.  

The Cauer circuits shown in Fig. 1 are connected based on 
the boundary conditions for the air-gap flux densities. When 
solving the circuit equations, the loop current is adopted for the 
unknown variables. Here, vector I0 comprises the loop currents 
at the first stage in the rotor domain, and Φ '=L1I0. The physical 
quantities in the respective domains are connected by I0=−TI 
and Φ '=TΦ [6], where the transformation matrix T is given by 

n n
1 2

n n

cos sin
blockdiag[ , ,..., ],

sin cosM m

mP t mP t
mP t mP t

ω ω
ω ω

− 
= =  

 
T T T T T , (21) 

 
(a) 

 
(b) 

Fig. 1. Multiport CLN for cage IMs. (a) Stator domain. (b) Rotor domain. 
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where ω is the mechanical angular frequency. 
To ensure stable calculation, the backward Euler method is 

adopted as a time integration scheme in the solution of the 
circuit equations corresponding to Fig. 1. When the number of 
stages N=2, the linear system of the circuit equations, where Is, 
I, I2, and I4 are unknown variables, is given by 

T 1s
s s s sh s sh s h 1 2

1 2 2 2 3 2 4 3 4 2 4 4

d d , ( ) ( ) 0,
d d

d d d( ) ( ) 0, ( ) 0
d d d

t t

t t t

− + + = + + + =

 + + + − = − + =


I IR I L M V M I L I T L TI I

L I TI R I L I I L I I R I
.

 (22) 
Because the coefficient matrix arising from (22) is symmetric, 
the conjugate gradient method with the localized incomplete 
Cholesky preconditioning [12] is adopted as an iterative solver.  

B. Selection of SHs for Multiport CLN Method 
The remaining task in the construction of the multiport CLN 

for cage IMs is to select the dominant components of the SHs. 
Because the increase in the number of SHs leads to large 
computational cost, it is desirable to apply as few components 
as possible to the multiport CLN method. All SHs included in 
the air-gap flux density waveform are directly extracted at an 
arbitrary slip using the time and space harmonic analysis 
proposed in [8]. The important operating point for cage IMs is 
the rated condition and maximum efficiency condition. In this 
case, however, owing to the small slip, large computational cost 
is required to obtain the air-gap flux density during a period 
corresponding to the slip frequency, although it can be reduced 
by using a polyphase time-periodic condition [8]. This method 
is called “Method A-m.” When the slip s=1, the secondary 
current is maximum, and the effect of the rotor magnetomotive 
force is significant. This method is called “Method A-1.” In the 
case of s=0, the air-gap flux density is evaluated near the rated 
condition. This method is called “Method A-0.” Notably, in 
Method A-1 and Method A-0, the computational cost required 
to obtain the air-gap flux densities during a period is typically 
much smaller compared with Method A-m because there is no 
need to consider the slip frequency in the rotor region. In 
addition, Method A-0 is suitable for the nonlinear MOR based 
on the CLN method because the condition of s=0, which is close 
to the rated condition, enables us to evaluate the dominant SHs 
at a practical saturation level of the stator and rotor cores. In 
Methods A-m, A-1, and A-0, the SHs greater than 1% of the 
fundamental were selected as the dominant components.  

Both p2 in (14) and τ in (15) can be calculated from Ez in (12), 
Hθ in (11), and Br in (13). Additionally, Ez is the time derivative 
of Az as indicated in (12), and Br is represented by a Fourier 
series expansion with Asm and Acm. Therefore, in theory, we 
should focus on Hθ and Br simultaneously when extracting the 
dominant SHs, which are equivalent to I in (17) and Φ in (19). 
The treatment of Hθ and Br is discussed in detail in III-B.  

The SHs in the air-gap flux density waveform comprise the 
fundamental, the stator and rotor slot harmonics, and their 
cross-interactions. The space order of these values can be 
estimated beforehand based on the number of stator slots ns and 
number of rotor slots nr. Generally, the order of potential stator 
slot harmonics is ins±1, that of the rotor slot harmonics is jnr±1, 

and that of the cross-interaction harmonics is jnr±ins±1, where i 
and j are integers. If all stator and rotor slot harmonics and their 
cross-interactions are considered, the number of potential SHs 
will be enormous and large computational cost will be required. 
Hence, only the stator and rotor slot harmonics were considered. 
This method is called “Method B.”  

III. NUMERICAL RESULTS 

A. Verification of Developed Multiport CLN Method  
To verify the developed CLN procedure in (1)–(6), the cage 

IM shown in Fig. 2(a) was investigated, in which the number of 
rotor bars per pole-pair is 8 and Pn=2. Fig. 2(b) shows the flux 
lines corresponding to the 17th SH at n=2, which were obtained 
from the one-pole model. Because the sum of the bar currents 
is strictly zero owing to the symmetry in the one-pole model, 
the numerical result shown in Fig. 2(b) is considered as the 
reference solution. Fig. 2(c) shows the flux lines calculated by 
the existing CLN method in the two-pole model. Owing to the 
numerical errors, the sum of the bar currents is not zero, and 
unphysical flux lines are obtained. The developed CLN 
procedure can obtain reasonable flux lines as shown in Fig. 2(d). 

B.  Extraction of Dominant SHs in Air-gap Flux Density  
Fig. 3 shows the practical cage IM model, in which the 

number of rotor bars per pole-pair is 17 and Pn=2. The 
maximum efficiency of this IM is achieved at s=0.133. To 
reduce the computational cost required in Method A-m owing 
to the small slip, the polyphase time-periodic condition is used 
[8] by setting s=9/(4×17)≈0.132. The number of time steps per 
period was set to 360. In the case of the FEM, we determined 
an initial value to start a transient calculation based on the time-
harmonic eddy-current analysis [13], where the slip frequency 
is applied to the rotor region. In contrast, the initial value for the 
CLN method was set to 0.  

 Fig. 4 shows the amplitude of the time and space harmonics 
of the radial and circumferential component Br and Bθ, 
respectively, which were obtained using Methods A-m, A-1, 

                
(a)                                              (b) 

      
(c)                                                      (d) 

Fig. 2. Flux lines obtained by existing and developed CLN methods. (a) Mesh 
of one-pole model. (b) Reference. (c) Existing method. (d) Developed method. 
 

  
Fig. 3. Mesh of a practical cage induction motor. 
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and A-0. In Fig. 4, each component is normalized by the 
fundamental of Br at each slip, which is the maximum 
component included in the air-gap flux density waveform; the 
components smaller than 1% of the fundamental are not shown. 
Although the fractional time harmonics occur at s=9/(4×17), 
they are rounded to the nearest integers in Fig. 4(a) and (d). This 
approximation for “time” order does not influence the 
appropriate selection of dominant “space” harmonics. The 
stator slot harmonics 6i±1, the rotor slot harmonics 17j±1, and 
their cross-interactions 17j±6i±1 are included in Fig. 4 as main 
components. Because Br is larger than Bθ and the significant 
time and space orders of Bθ are always consistent with those of 
Br, as shown in Fig. 4, the dominant SHs are determined based 
on the time and space harmonic analysis of Br.  

Table I lists the number of selected SHs over 1% of the 
fundamental obtained by each method. Method A-1 extracts 
many SHs compared with the other methods. Because the 
primary current is maximum at s=1, a large voltage drop occurs 
at the primary impedance and the electromotive force decreases, 
which results in the decrease of the fundamental component of 
Br. Thus, the amplitude of the higher-order SHs is relatively 
large and many SHs are selected by Method A-1. As s decreases, 
the primary current decreases, and the fundamental of Br 
increases, which leads to a decrease in the number of selected 
SHs. The third column in Table I lists the calculation times to 
extract dominant SHs using the FEM. The values in parentheses 
denote the number of periods to obtain the air-gap flux density 
waveform in the steady state during a period corresponding to 
a slip frequency. Method A-m requires a 5-period transient 
analysis using the polyphase time-periodic condition.  

In Fig. 5, the time variation of the phase current, torque, and 
secondary copper loss are compared at s=0.0588. In the CLN 
method, N was set to 3. The numerical results obtained by the 
FEM almost overlap with those obtained by the CLN based on 
Methods A-m, A-1, and A-0. In contrast, the torque and eddy-
current loss waveforms obtained from the CLN based on 
Method B are different from the other results, because the cross-
interaction components between the stator and rotor slots are 
ignored. The most accurate results are obtained by Method A-1 

because the number of appropriately selected SHs is large. The 
fourth and fifth columns in Table I present the computational 
times to derive the circuit parameters using the FEM and the 
transient analysis at s=0.0588. The values in parentheses 
indicate the number of periods to obtain the steady-state 
solutions for a period. Because the initial value of the FEM is 
appropriately determined by the time-harmonic analysis, the 
number of periods to reach the steady state is smaller compared 
with the CLN methods. Although the CLN methods require 
computational time to extract the dominant SHs and derive the 
circuit parameters by the FEM, these calculations are carried 
out only once. Furthermore, a transient analysis by the CLN is 
much faster than the FEM. Therefore, the CLN method is 

 
                                              (a)                                                                                (b)                                                                                (c) 

  
                                               (d)                                                                               (e)                                                                                (f) 
Fig. 4.  Normalized time and space harmonics included in air-gap flux density waveform. (a) Br based on Method A-m at s=9/(4×17). (b) Br based on Method A-
1. (c) Br based on Method A-0. (d) Bθ based on Method A-m at s=9/(4×17). (e) Bθ based on Method A-1. (f) Bθ based on Method A-0. 
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   (c) 

Fig. 5.  Comparison of numerical results obtained by FEM and CLN methods 
at s=1/17. (a) Phase current. (b) Torque. (c) Secondary copper loss. 
 

TABLE I 
NUMBER OF SHS AND COMPUTATIONAL TIMES 

Method Number 
of SHs 

Computational time [s] 
Extracting 

dominant SHs 
Deriving circuit 

parameters 
Transient 
analysis 

A-m 39 891.4 (5) 261.8 12.7 (10) 
A-1 65 358.0 (2) 379.6 40.6 (10) 
A-0 36 359.0 (2) 176.0 10.6 (10) 
B 73 - 672.3 51.1 (10) 

FEM - - - 718.4 (4) 
Intel Xeon Gold 6148 was used. 
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suitable for situations where transient analyses are repeatedly 
carried out, for instance, in the design of electric motor control 
systems. From the viewpoint of computational accuracy and 
time, the use of either Method A-1 or Method A-0 is effective.  

C. Circuit Simulation Coupled with Control System 
The circuit simulation coupled with control system was 

conducted using the CLN as an accurate cage IM model. Fig. 6 
shows the block diagram for the circuit simulation under speed 
control, which was implemented in Simulink; the CLN is 
represented by an S-Function block. The motion equation is 
coupled to consider the rotation of the rotor. The time step size 
was 20 µs and the starting transient for 100 ms was analyzed. 
The sine-triangle pulse width modulation was adopted for the 
inverter, and the carrier frequency was 5 kHz. The 
computations were carried out on Intel Core i7-8665U. 

Fig. 7 show the time variations of the torque and speed when 
the dominant SHs were extracted using Method A-0 and 
Method A-1, respectively. The finite-element analysis of the IM 
coupled with the motion equation was also carried out by 
applying the line voltage obtained by the circuit simulation. The 
numerical results obtained by the FEM are shown in Fig. 7 as 
the reference solutions. The torque waveforms obtained by the 
FEM and CLN are slightly different just after starting the IM in 
Fig. 7(a). However, the effect of the slot and carrier harmonics 
on the torque is appropriately evaluated, and the numerical 
results obtained by the CLN are sufficiently accurate for its 
practical use. In Fig. 7(b), the CLN based on Method A-1 
achieves the highly accurate circuit simulation, because the 
number of selected SHs is larger compared with Method A-0. 

The calculation times of the CLN with Method A-0 and Method 
A-1 are 30 s and 90 s, respectively. The FEM requires 35 min. 
Therefore, the effectiveness of the proposed CLN method in 
terms of computational accuracy and efficiency was confirmed. 

IV. CONCLUSION 
This study developed a novel CLN procedure for a cage IM 

to satisfy the condition of the sum of bar currents always being 
zero. Furthermore, a method is proposed to select the 
appropriate SHs based on time and space harmonic analysis. 
The developed motor model was applied to the circuit 
simulation of a cage IM under speed control. The results reveal 
that the proposed method can achieve high accuracy in circuit 
simulation with acceptable computational cost. In future work, 
we will combine the method for selecting appropriate SHs with 
the nonlinear MOR based on the CLN method and investigate 
a method for modeling skewed rotor slots. 
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Fig. 6. Block diagram for circuit simulation coupled with control system. 

 

 
(a) 

 
(b) 

Fig. 7.  Numerical results of circuit simulation under speed control. (a) Torque 
and speed using Method A-0. (b) Torque and speed using Method A-1.  
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