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When a spatially localized stress is applied to a growing one-dimensional interface, the interface
deforms. This deformation is described by the effective surface tension representing the stiffness of the
interface. We present that the stiffness exhibits divergent behavior in the large system size limit for a
growing interface with thermal noise, which has never been observed for equilibrium interfaces.
Furthermore, by connecting the effective surface tension with a space-time correlation function, we
elucidate the mechanism that anomalous dynamical fluctuations lead to divergent stiffness.
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Introduction.—The statistical behavior of many-
interacting elements out of equilibrium has attracted
attention for a wide range of systems [1–3]. A remarkable
feature of such systems is that the standard relations in
equilibrium systems no longer hold. For example, phase
order in two dimensions is not observed for equilibrium
systems at finite temperatures [4,5], while it emerges for
active matters [6] or sheared systems [7]. The particular
nature of out-of-equilibrium systems is not limited to
phase transition problems. The phenomenon we study in
this Letter is the singular response against a perturbation.
In studying response properties of equilibrium systems,

the fluctuation response relation is useful. That is, the static
response against a perturbation is connected to static
fluctuation properties in the system without perturbation.
As a result of this relation, the response is found to be finite
except for phase transition points because static fluctua-
tions are normal in general. In contrast, the static response
against a perturbation imposed to a nonequilibrium steady
state is not determined by static fluctuation properties.
Although several expressions of the static response for
out-of-equilibrium systems have been proposed [8–13] and
experimentally studied [14–16] for the last two decades,
the most primitive method is to consider the time evolution
of the perturbation [17–19]. This means that the dynamic
properties of fluctuations influence the static response if
there is no special property such as a detailed balance
condition. Therefore, a singular response behavior can be
observed without tuning system conditions.
To demonstrate the singular response of many interacting

elements out of equilibrium, we specifically study a one-
dimensional interface, whose height is defined in
0 ≤ x ≤ L. The interface deforms when a localized stress
is applied. For equilibrium interfaces [20], which do not
grow but fluctuate in an equilibrium environment, their
mean profile in the linear response regime is expressed by a
quadratic function of x, where its curvature is determined
by the surface tension κ. Now, let us consider growing

interfaces [21]. We can numerically confirm that the
deformation against the weak localized stress is still
described by a quadratic function of x. In this case, the
curvature of the interface is characterized by the effective
surface tension κeff . We then find that κeff diverges as
L → ∞. In other words, growing interfaces exhibit diver-
gent stiffness.
We attempt to explore the mechanism of the divergent

stiffness by formulating a fluctuation-response relation.
This problem is reminiscent of the standard linear response
theory around an equilibrium state. For example, when
considering heat conduction for a Hamiltonian system in
contact with two heat baths with temperatures T1 and T2,
T2 − T1 is treated as a perturbation [22]. In this case, the
linear response formula is the Green-Kubo formula, which
expresses the conductivity in terms of the time integration
of the current correlation function at equilibrium [19].
Similarly to heat conduction, we expect that the effective
surface tension κeff can be expressed as the time integration
of a certain time correlation function. In this Letter, we
derive such a formula using a generalized fluctuation
theorem associated with the excess entropy production.
Based on the response formula, we study the divergent

stiffness. As is known, some low-dimensional systems
exhibit an anomaly in the large-distance and long-time
properties of the time correlation function [22]. In such
systems, the decay rate of a time correlation function is so
small that its time integration is not bounded in the large
system size limit [22–24]. By combining this property with
the response formula, the mechanism of the divergent
stiffness is understood. We emphasize that the method
we propose in this Letter can be applied to other spatially
extended systems out of equilibrium.
Setup.—The one-dimensional interface defined in

0 ≤ x ≤ L is investigated. The height of the interface at
time t is expressed by hðx; tÞ, which is collectively denoted
by ĥ ¼ ðhðxÞÞLx¼0. For simplicity, the periodic boundary
condition hð0; tÞ ¼ hðL; tÞ is assumed. An external stress

PHYSICAL REVIEW LETTERS 130, 197101 (2023)

0031-9007=23=130(19)=197101(7) 197101-1 © 2023 American Physical Society

https://orcid.org/0000-0003-4586-6716
https://orcid.org/0000-0001-6670-4455
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.197101&domain=pdf&date_stamp=2023-05-08
https://doi.org/10.1103/PhysRevLett.130.197101
https://doi.org/10.1103/PhysRevLett.130.197101
https://doi.org/10.1103/PhysRevLett.130.197101
https://doi.org/10.1103/PhysRevLett.130.197101


ϵpexðxÞ is imposed on the interface, where the total force
ϵ
R
pexðxÞdx is set to zero to avoid the additional drift of the

interface. We first study an equilibrium interface. The free
energy of the interface is assumed to be

FϵðĥÞ≡
Z

L

0

dx

�
κ

2
ð∂xhÞ2 − ϵpexðxÞhðxÞ

�
; ð1Þ

where κ represents the surface tension. The fluctuation
properties are described by the following stochastic
model [20]:

∂th ¼ −
1

γ

δFϵðĥÞ
δh

þ
ffiffiffiffiffiffi
2T
γ

s
ξ; ð2Þ

where γ is the dissipation constant; T is the temperature of
the bath with the Boltzmann constant set to unity; ξ is the
Gaussian white noise satisfying

hξðx; tÞξðx0; t0Þi ¼ δðx − x0Þδðt − t0Þ: ð3Þ

Thus, it is immediately confirmed that the expectation of
the interface shape under the external stress is given by

κ∂2xhhðxÞiϵeq þ ϵpexðxÞ ¼ 0; ð4Þ

where h·iϵeq denotes the expectation in the equilibrium state
of the system with the external stress ϵpexðxÞ. For simpli-
city, focus is placed on the case where pexðxÞ ¼ δðxÞ−
1=L. By solving (4) [25], we obtain

hhðxÞ − hð0Þiϵeq ¼
ϵ

2Lκ

��
x −

L
2

�
2

−
L2

4

�
: ð5Þ

Now, let us consider a growing interface described by

∂th ¼ v0 þ
v0
2
ð∂xhÞ2 −

1

γ

δFϵðĥÞ
δh

þ
ffiffiffiffiffiffi
2T
γ

s
ξ; ð6Þ

as a generalization of (2), where v0 ≥ 0 is the propagation
velocity of the flat interface. When ϵ ¼ 0, (6) is equivalent
to the Kardar-Parisi-Zhang (KPZ) equation [21], which
qualitatively reproduces the dynamics of growing inter-
faces, such as interfaces in liquid-crystal turbulence [29],
slow-combustion fronts in paper [30], and fronts of grow-
ing bacterial colony [31]. Because interfaces appear at
almost all scales of interest in science [2,32], the KPZ
equation has been extensively investigated through numeri-
cal [33–39], theoretical [40–46], and even mathematical
[47–54] approaches. The system given by (6) is interpreted
as a perturbed KPZ equation.
Numerical observation.—Let hhðxÞ − hð0Þiϵss be the

expectation of hðxÞ − hð0Þ with respect to the steady state
of (6). As an illustration, first, we numerically investigate

hhðxÞ − hð0Þiϵss for the specific parameter values κ ¼ T ¼
γ ¼ 1 and v0 ¼ 5. Throughout this Letter, the numerical
simulations were conducted using a spatially discretized
model with a space interval Δx ¼ 0.5 [25,35]. More
precisely, we define a discrete model and check system
size dependence to judge whether it gives a systematic
approximation of the KPZ equation. The shapes of the
growing interfaces shown in Fig. 2 are fitted to the
following form:

hhðxÞ − hð0Þiϵss ¼
ϵ

2Lκeff

��
x −

L
2

�
2

−
L2

4

�
; ð7Þ

which is the generalization of (5) with the replacement of κ
by κeff, where ϵ is assumed to be sufficiently small. The
fitting parameter κeff is interpreted as the effective surface
tension characterizing the stiffness of the growing interface.
We conjecture that (7) is valid in the limit ϵ → 0 because
the linear response for the noiseless case is expressed as a
quadratic function [25]. Figure 1 shows that κeff is greater
than κ. Furthermore, as shown in Fig. 2, κeff increases for a
larger system size L.
Now, two issues naturally arise. The first issue is

quantifying the L dependence of κeff . From the viewpoint
of numerical calculation, however, it becomes harder to
accurately observe a slight shift of hhðxÞ − hð0Þiϵss caused
by the external stress for larger systems. The second issue is
to investigate the mechanism of the L dependence. Both
issues can be resolved by formulating a fluctuation-
response relation for the system under investigation, where
κeff is expressed by dynamical properties of fluctuations in
a system without the external stress.
Response formula.—Let ½ĥ� be a trajectory ðĥðtÞÞτt¼0. We

consider any quantity Að½ĥ�Þ satisfying Að½ĥþ ĉ�Þ¼Að½ĥ�Þ,
where ĉ is a constant function in x. For such Að½ĥ�Þ, we

FIG. 1. Time-averaged patterns in steady state under the external
stress with ϵ=γ ¼ 0.01. The system size is L ¼ 16. The curvature
of the growing interface (v0 ¼ 5, triangular-orange symbol) is
smaller than that of the equilibrium interface (v0 ¼ 0, round-blue
symbol). The symbols are joined by lines for visual aid.
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define A� as A�ð½ĥ�Þ≡ Að½ĥ��Þ with ½ĥ�� ≡ ðĥðτ − tÞÞτt¼0,
which represents the time-reversal of ½ĥ�. For equilibrium
cases v0 ¼ 0, the detailed balance condition hAiϵeq ¼ hA�iϵeq
holds for any ϵ, and the stationary distribution is given by

Pϵ
eqðhÞ ¼

1

Z
expð−βFϵðhÞÞ ð8Þ

with β ¼ T−1. This also leads to (4).
For growing interfaces with v0 > 0, the detailed balance

condition does not hold. The extent of the violation is
expressed by the entropy production

σ ¼ γ

T

Z
τ

0

dt
Z

L

0

dx ð∂thÞ
�
v0 þ

v0
2
ð∂xhÞ2

�
; ð9Þ

which is the work done by the nonconservative force
divided by the temperature. Using this thermodynamic
entropy production, we arrive at the standard fluctuation
theorem [25]

hAiItr ¼ hA�e−σiItr; ð10Þ

where h·iItr denotes the ensemble average over noise
realizations and the initial conditions sampled from the
stationary distribution with v0 ¼ 0. This relation holds for a
wide range of driven systems in contact with a heat bath
[55–58]. However, (10) is not useful to obtain the linear
response property around the state with v0 ≠ 0 and ϵ ¼ 0.
Here, we notice another time-reversal transformation

½ĥ� → ½ĥ�† ≡ ð−ĥðτ − tÞÞτt¼0 such that hAi0ss ¼ hA†i0ss holds
for A†ð½ĥ�Þ≡ Að½ĥ�†Þ [23,25]. However, this time-reversal
symmetry is violated for interfaces under the external stress
ϵ > 0. Then, following the standard procedure for the
fluctuation theorem [58], we calculate the ratio of path

probabilities of ½ĥ� and ½ĥ�† and take the logarithm of the
result to obtain

σ̃ ≡ −
ϵκ

γT

Z
τ

0

dt
Z

L

0

dxpexðxÞ
∂
2hðx; tÞ
∂
2x

; ð11Þ

which characterizes the violation of the symmetry asso-
ciated with the time-reversal transformation ½ĥ� → ½ĥ�†.
Indeed, we can show a generalized fluctuation theorem

hAiIItr ¼ hA†e−σ̃iIItr ; ð12Þ

where h·iIItr denotes the ensemble average over the noise
realizations and initial conditions sampled from the sta-
tionary distribution without the external stress. Note that σ̃
is not the thermodynamic entropy production, but inter-
preted as an excess entropy production that appears only
when the external stress is imposed [59].
Here, we set A ¼ hðx; τÞ − hð0; τÞ, substitute it into (12),

take the limit τ → ∞, and expand the right-hand side of
(12) in ϵ. Noting that hAiIItr goes to hhðxÞ − hð0Þiϵss, we
obtain [25]

lim
ϵ→0

hhðxÞ − hð0Þiϵss
ϵ

¼ κ

γT

Z
∞

0

dtðCðx; tÞ − Cð0; tÞÞ ð13Þ

with

Cðx; tÞ≡ h∂xhðx; 0Þ∂xhð0; tÞi0ss: ð14Þ

This relation is interpreted as the fluctuation-response
relation of the system under investigation. Equation (13)
is understood from the fluctuation-dissipation theorem for
classical stochastic processes [60–62]. However, to our best
knowledge, an explicit formula connecting the response to
an external perturbation has never been proposed to date.
We numerically check the validity of (13) for small systems
with L ¼ 2, 4, 8, and 16. In Fig. 3, the left-hand side of (13)
is plotted against the right-hand side of (13) at x ¼ L=2 for
both cases of v0 ¼ 0 and v0 ¼ 5. The result confirms that
(13) holds.
Divergent stiffness.—As explained above, the numerical

calculation of κeff defined by (7) is not easy to carry out for
large systems. Thus, using the response formula (13), we
study the stiffness of the growing interface. Specifically,
from (7) and (13), we obtain

κeff ¼ −
γTL
8κ

�Z
∞

0

dt

�
C

�
L
2
; t

�
− Cð0; tÞ

��
−1
: ð15Þ

By dimensional analysis, we find that κeff=κ is expressed as
a function of L=L0 with

L0 ¼
lκ3

Tγ2v20
; ð16Þ

FIG. 2. System size dependence of the curve for v0 ¼ 5 in
Fig. 1. The patterns of L ¼ 8, 16, 32, and 64 are shown from
bottom to top. The symbols are joined by lines for visual aid.
Although the equilibrium (v0 ¼ 0) interface does not depend on
L, the growing interface becomes stiffer for larger L.
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where l is a numerical constant corresponding to the
dimensionless length characterizing the crossover [25]. In
other words, the following equation is obtained using a
scaling function f whose form has not been determined yet:

κeff ¼ κf

�
L
L0

�
: ð17Þ

First, we notice that κeff → κ as L0 → ∞, because v0 → 0
refers to the equilibrium limit. To find the functional form
of f, the right-hand side of (15) is numerically calculated
for several values of L and v0 for fixed κ ¼ T ¼ γ ¼ 1. The
numerical results are plotted in Fig. 4, such that the
following equation holds for L ≫ L0:

κeff ¼ κ

�
L
L0

�
1=2

; ð18Þ

as indicated by the dotted line in Fig. 4. Here, the value of l
is numerically estimated as l ¼ 60. It is found that the data
points for L ≥ 16 are on one curve, which determines the
form of the scaling function f. Note that those for L ≤ 8,
which are not shown in Fig. 4, deviate from the curve [25].
This means that the discretized equation used for the
numerical calculation is no longer a good approximation
of the KPZ equation when L ≤ 8. From Fig. 4, it is
concluded that L0 with l ≃ 60 provides the cross-over
length from the normal response to the singular response,
where the stiffness κeff shows the divergence as a function
of L=L0, which is the main result of this Letter.
The divergent stiffness comes from a dynamical singu-

larity of the correlation function Cðx; tÞ, as suggested in the

formula expressed by (15). The relation is explained in
detail. Let C̃ðk; tÞ be the Fourier transform of Cðx; tÞ. By
dimensional analysis, we have

Z
∞

0

dt C̃ðk; tÞ ¼ γT
κ2k2

Φ
�

kκ3

Tγ2v20

�
; ð19Þ

where the prefactor is the equilibrium form and the non-
equilibrium correction is expressed in terms of a dimen-
sionless scaling function Φ. Now, let us consider the case
L → ∞ with fixed v0 ≠ 0. As is known, C̃ðk; tÞ has the
scaling form gðkztÞ in the limit L → ∞, where the
dynamical exponent z is given by z ¼ 3=2 [21,23].
Assuming that the scaling part of C̃ðk; tÞ is dominant for
the evaluation of κeff , we substitute the scaling form into the
left-hand side of (19). We then obtain [25]

Φ
�

kκ3

Tγ2v20

�
¼ c

� jkjκ3
Tγ2v20

�
1=2

; ð20Þ

where the numerical constant c is calculated as c ¼ 2.43 by
the analysis of an exactly solvable stochastic model [44].
For finite but large L cases, it is assumed that (20) holds
with the replacement of k by kn ¼ 2πn=L, where n is an
integer satisfying −nc ≤ n ≤ nc. The cutoff integer nc is
given by nc ¼ L=ð2ΔxÞ. We then calculate [25]

Z
∞

0

dt½CðL=2; tÞ − Cð0; tÞ�

¼ −
ffiffiffiffi
L

p �
16c2

8π3

�
1=2

�
T
κv20

�
1=2Xnc=2

n¼1

1

ð2n − 1Þ3=2 : ð21Þ

FIG. 3. Comparison of the left-hand side and the right-hand
side of (13). The former is estimated by the direct calculation of
the response for ϵ > 0, while the latter is calculated in the system
with ϵ ¼ 0. The round-blue and triangular-orange symbols
represent the data for v0 ¼ 0 (L ¼ 2, 4, 8, 16) and v0 ¼ 5
(L ¼ 2, 4, 8, 16), respectively. These symbols should be on the
dotted line if the left and right-hand sides of (13) are equal.

FIG. 4. System size dependence of κeff . The symbols are the
numerical results for L ¼ 16, 32, 64, 128, 256, and 512 for
v0 ¼ 0.2, 0.5, 1, 3, and 5 from left to right (difference in symbols
represents the difference in v0). κeff maintains the same value as κ
for L ≪ L0 and diverges as ðL=L0Þ1=2 for L ≫ L0.
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By substituting (21) into (15), κeff ¼ κðL=Lest
0 Þ1=2 holds

with Lest
0 ¼ lestκ3=ðTγ2v20Þ, where the numerical constant

lest is given as

lest ¼ ð32cÞ2
ð2πÞ3

�Xnc=2
n¼1

1

ð2n − 1Þ3=2
�2

: ð22Þ

Therefore, the divergent stiffness arises from the singularity
expressed by (20). The

ffiffiffiffi
L

p
dependence of κeff corresponds

to the k3=2 dependence of
R∞
0 dt C̃ðk; tÞ. The crossover

length L0 observed in the numerical simulations is pre-
dictable by considering the asymptotic form ofR
∞
0 dt C̃ðk; tÞ. Indeed, the value l ≃ 60 obtained by the
numerical simulations is consistent with (22). For example,
lest ¼ 62.5 for nc ¼ 128. When investigating infinitely
large systems, the limit nc → ∞ should be taken. In this
case, lest approaches 69.52 [25].
Concluding remarks.—In this Letter, the response for-

mula (15) expressing the effective surface tension is
formulated in terms of the time correlation function
Cðx; tÞ of ∂xhðx; tÞ. Then, it is shown that the divergent
stiffness comes from the dynamical singularity expressed
by (20).
The stochastic dynamics of the interface can be observed

in a much wider context [63]. Keeping the universality in
mind, we study the KPZ equation

∂th ¼ λ

2
ð∂xhÞ2 þ ν∂2xhþ

ffiffiffiffiffiffiffi
2D

p
ξ ð23Þ

defined in 0 ≤ x ≤ L, where the standard parameters ν, D,
and λ are introduced. By adding a localized force, νeff
instead of κeff can be operationally defined through (7). Our
formula (16) with replacements κ=γ → ν, v0 → λ, and
T=γ → D can be used to estimate ν, D, and λ when there
exists a phenomenon that may be effectively described by
the KPZ equation. Specifically, one can estimate ν3=ðDλ2Þ
by observing crossover length of νeff . From the fluctuation
spectrum of ∂xh, D=ν is determined. The parameter λ is
determined from the average propagation velocity. These
three data lead to ν, D, and λ. For example, putting oil on
boundaries of an interface in combustion of paper [30],
we can study a response property. Since the system is
described by the model in this Letter, the parameter values
of the KPZ equation will be determined by using the
method above.
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Noise-driven interfaces and their macroscopic representa-
tion, Phys. Rev. E 94, 052802 (2016).

[39] Priyanka, U. C. Täuber, and M. Pleimling, Feedback control
of surface roughness in a one-dimensional Kardar-
Parisi-Zhang growth process, Phys. Rev. E 101, 022101
(2020).

[40] H. van Beijeren, R. Kutner, and H. Spohn, Excess Noise
for Driven Diffusive Systems, Phys. Rev. Lett. 54, 2026
(1985).

[41] E. Medina, T. Hwa, M. Kardar, and Y. Zhang, Burgers
equation with correlated noise: Renormalization-group

analysis and applications to directed polymers and interface
growth, Phys. Rev. A 39, 3053 (1989).

[42] E. Frey and U. C. Täuber, Two-loop renormalization-group
analysis of the Burgers–Kardar-Parisi-Zhang equation,
Phys. Rev. E 50, 1024 (1994).

[43] F. Colaiori and M. A. Moore, Numerical solution of the
mode-coupling equations for the Kardar-Parisi-Zhang
equation in one dimension, Phys. Rev. E 65, 017105
(2001).

[44] M. Prähofer and H. Spohn, Exact scaling functions for one-
dimensional stationary KPZ growth, J. Stat. Phys. 115, 255
(2004).
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