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Abstract
A multi-material structure that is composed of several different material properties is promising for achieving an
ideal functionality that can outperform a single material structure. In the course of automotive design, the combina-
tion of lightweight and stiffmaterials can reduce the weight of a car body without sacrificing its performance. This
paper proposes a multi-material topology optimization (MMTO) framework for the eigenfrequency maximization
problem based on the Multi-material level set (MMLS) based topology optimization. The key idea of MMLS is
to use M level set functions to represent M material regions and one void region without overlap. To demonstrate
the proposed method, first, we formulate an MMTO problem for maximizing the eigenfrequency based on the
shape representation by the MMLS method. Next, we derive the topological derivatives of multiple materials in
the eigenfrequency problem and construct an optimization algorithm in which the level set functions are evolved
by solving a reaction–diffusion equation (RDE) based on the topological derivatives. Several numerical examples
are provided to validate the proposed methodology.

Keywords : Eigenfrequency, Multi-material structure, Topology optimization, Multi material level–set method,
Topological derivative

1. Introduction

Multi-material structure composed of several different material properties has been widely used to improve structural
functionalities due to its being an innovative structural configuration. The multi-material design has attracted great interest
from academia and industry. The key idea behind this is to place the “right” material in its ”right” place in order to achieve
an ideal functionality that can outperform a single material design. For example, in the course of automotive design, the
combination of lightweight and stiff materials can reduce the weight of a car body without sacrificing its performance
(Goede et al., 2009). There are also reports of metamaterials with negative thermal expansion coefficients produced by
designing microstructures with multiple materials (Sigmund and Torquato, 1997). In addition, the rapid development of
additive manufacturing technology makes it possible to use multiple materials at the same time to fabricate one single
objective.

As is well-known, unlike the traditional size or shape optimization methods, topology optimization (TO) has a higher
design flexibility, which can attain any shape or topological configuration within a given design space. During the past few
decades, TO techniques have undergone a tremendous development in various directions and multiphysics fields, such as
thermal device design (Yamada et al, 2011), thermal-fluidic device design (Li et al, 2022a), electromagnetic metamaterial
design (Otomori et al., 2012), acoustic metamaterial design (Noguchi et al., 2018), etc. The TO methods can be broadly
classified into the homogenization design method (Bendsøe and Kikuchi, 1988), density method (Bendsøe and Sigmund,
1999), evolutionary structural optimization (ESO) approach (Xie and Steven, 1993), level set-based method (Wang et
al., 2003; Allaire et al., 2004; Yamada et al., 2010), and other feature driven methods such as the moving morphology
component (MMC) method (Guo et al., 2014a) and the moving wide Bezier components with constrained ends (MWB-
CE) method (Zhu et al., 2021).
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Among these methods, the level set-based methods (LSM) are capable of expressing the boundaries of the structure
as the iso-surface of a level set function. Therefore, it has the advantage of obtaining clear boundaries in between different
material phases. The LSM has been developed in several different directions. The common method is to update the level
set function by solving the Hamilton-Jacobi equation (Want et al., 2003; Allaire et al., 2004). In this method, the zero
iso-surfaces of the level set function are moved based on the shape derivative. Different from that, Yamada et al. (2010)
proposed a reaction-diffusion equation-based (RDE) level set method. In this method, the level set function is varied
based on topological derivatives, which allow for not only shape but also topological changes such that new holes can
be created during the optimization process. In the recent work by Li et al. (2022b), they demonstrated the RDE method
by solving a fluid–structure interaction problem where the moving boundary between the fluid and solid phases can be
explicitly captured by the body-fitted adaptive mesh while the holes can be created inside the design domain.

Combining the idea of the LSM with multi-material design, Wang and Wang (2004) proposed a “color” level set
method, which represents 2M material regions with M level set functions. They applied this method to solve the mean
compliance minimization problem, and this method was later applied to other TO problems such as compliant mechanism
design (Wang et al, 2005) and stress-related optimization problems (Guo et al., 2014b). In their later works, Wang and
Wang (2009) proposed a piecewise constant level set method. This method can describe multiple material phases with only
one piecewise constant level-set function. Luo et al. (2009) applied this method to the design of piezoelectric actuators.
Unlike the aforementioned “color” level set method, in the Multi-Material Level Set (MMLS) method proposed by Wang
et al. (2015), they represented (M + 1) material phases with M level set functions, and they used a Hamilton-Jacobi
equation to vary the level set functions. Using the same level set boundary expression, Cui et al. (2016) and Kishimoto et
al. (2017) adopted a reaction–diffusion equation for updating the level set functions.

Although the MMLS method has grown mature in the field of structural optimization problems, to date, there is still
a lack of research reporting on the MMTO for the eigenfrequency problems. Indeed, most of the existing works present
only single-material designs using different TO methods, e.g., the homogenization based approach (Dı́aaz and Kikuchi,
1992), ESO method (Xie and Steven, 1996), density-based approach (Pedersen, 2000), and LSM (Allaire et al., 2005;
Yamada et al., 2010).

Aiming at the research gaps as mentioned above, this work presents a new framework for MMTO based on the
MMLS method for the eigenfrequency maximization problem. First, we formulate MMTO in two ways: (1) MMTO with
concentrated masses and (2) MMTO under mean compliance constraint. Next, we use the MMLS method to represent
multiple material phases without overlap, and the boundaries between each material can be clearly described. Then, the
level set functions are updated using a reaction-diffusion equation with the topological derivative as the reaction term,
which allows for the creation of new holes during optimization. We derive the topological derivatives and numerically
validate the correctness of the deduced results. Several two-dimensional numerical examples are presented to confirm the
validity of the proposed methodology.

The rest of this paper is arranged as follows. In Section 2, we formulate the MMTO problem based on the shape
representation using the MMLS method for eigenfrequency maximization. In Section 3, we perform sensitivity analysis
based on topological derivatives. In Section 4, we construct a TO algorithm using the finite element method. In Section 5,
the validity of the proposed methodology is verified by numerical examples. Finally, conclusions are given in Section 6.

(a) ϕ1. (b) ϕ1 and ϕ2. (c) ϕ1, ϕ2, and ϕ3.

Fig. 1 Schematic diagram of the MMLS method for the case of three-phase material.

2



2
© 2023 The Japan Society of Mechanical Engineers

Nakayama, Li, Furuta, Izui and Nishiwaki, Mechanical Engineering Journal, Vol.10, No.2 (2023)

[DOI: 10.1299/mej.22-00353]

2. Formulation
2.1. Governing equations of eigenfrequency problem

We consider a computational domain Ω ⊂ R2 which consists of several subdomains Ωi (i = 1, . . . , M) where each
subdomain is composed of material phase i. With the assumption of the isotropic linear elastic material, the governing
equations underlying the mth eigenvalue λ(m) and the corresponding eigenmode U(m)i can be formulated as the following
boundary value problem:

C(i)
i jkl

∂2U(m)k

∂xl∂x j
+ λ(m)ρ

(i)U(m)i = 0 in Ωi (1a)

U(i)
(m)i − U( j)

(m)i = 0 on Γi, j (1b)

C(i)
i jkl

∂U(i)
(m)k

∂xl
n(i)

j +C( j)
i jkl

∂U( j)
(m)k

∂xl
n( j)

j = 0 on Γi, j (1c)

U(m)i = 0 on Γu (1d)

Ci jkl
∂U(m)k

∂xl
n j = 0 on Γn, (1e)

where the eigenvalue is equal to the square of the eigenfrequency λ(m) = ω2
(m). Γu is the Dirichlet boundary where the

structure is fixed, Γn is the Neumann boundary, and Γi, j denotes the interface between Ωi and Ω j.
The superscript (i) represents the quantities in the domainΩi and n(i) represents the unit normal vector on Γi, j oriented

from Ωi to Ω j. Eqs. (1b) and (1c) represent continuity of the eigenmode and stress, respectively. C(i)
i jkl and ρ(i) represent

the elastic tensor and mass density, respectively. The elastic tensor of isotropic linear elastic materials in two-dimensional
plane stress problems is given by

C(i)
i jkl =

ν(i)E(i)

1 − ν(i)2 δi jδkl +
E(i)

2(1 + ν(i))
(δikδ jl + δ jkδil), (2)

where E(i) is Young’s modulus and ν(i) is Poisson’s ratio. The eigenmodes are normalized as

M∑
i=1

∫
Ωi

(ρ(i)U(m)iU(m)i)dΩ = 1. (3)

2.2. Multi-material level set boundary expression
Here we examine the basic concept of the the multi-material level set (MMLS) method. Let us consider a compu-

tational domain D ⊂ R2, which is composed of multiple solid phases Ωi ⊂ D (i = 1, . . . , M), together with a void phase
Ω0 = D\Ωi. They can be represented by a set of implicit level set functions ϕi (x) (i = 1, . . . , M), as follows:

ϕ1 (x) < 0 if x ∈ Ω0

ϕ2 (x) < 0, ϕ1 (x) > 0 if x ∈ Ω1
...

ϕi+1 (x) < 0, ϕ j (x) > 0 (1 ≤ j ≤ i) if x ∈ Ωi (i = 1, . . . , M − 1)
...

ϕ j > 0 (1 ≤ j ≤ M) if x ∈ ΩM .

(4)

Let us take the case of M = 3 as an example. The schematic diagram of the multiple level set function is shown in Fig. 1.
As shown in Fig. 1a, the first level set function ϕ1 (x) is used to identify the presence or the absence of the solid phase
(regardless of which material). Next, the second level set function ϕ2 (x) is used to distinguish between solid phase #1
from other solid phases (solid phases #2 and #3). In the same way, solid phase #2 can be identified based on the third
level set function ϕ3(x).

2.3. Interpolation of material properties
We define the following characteristic functions ψi(x) (i = 0, . . . , M):

ψi(x) =
 1 x ∈ Ωi

0 x < Ωi.
(5)
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Fig. 2 Schematic of the level set function.

ψi(x) can be expressed by the level set functions ϕi(x), as follows:

ψ0(x) = 1 − H(ϕ1)
ψ1(x) = (1 − H (ϕ2)) H(ϕ1)

...

ψi(x) = (1 − H(ϕi+1)) ∏ j
i=1 H(ϕ j) (i = 1, ..., M − 1)

...

ψM(x) = ∏M
j=1 H(ϕ j),

(6)

where H(ϕ) is a heaviside function defined as

H(ϕ) =
 1 if ϕ ≥ 0

0 if ϕ < 0.
(7)

The elasticity tensor and mass density can be interpolated using the characteristic function ψi(x), as follows:
Ci jkl(x) =

M∑
i=1

C(i)
i jklψi(x)

ρ(x) =
M∑

i=1
ρ(i)ψi(x).

(8)

2.4. RDE-based level set method
In this paper, we use the level set-based topology optimization proposed by Yamada et al. (2010), in which a reaction

diffusion equation (RDE) is used to update the level set functions based on the topological derivatives. The topological
derivatives will be explained in detail in Section 3.

The level set functions used here are not the signed distance functions widely used in shape optimization problems.
For the regularization terms used to regularize the optimization problem, which will be explained later, the level set
functions have upper and lower limits, as follows:

−1 ≤ ϕi(x) ≤ 1. (9)

To update the level set function ϕi based on the topological derivatives, we introduce a fictitious time t and assume that
the partial derivative of the level set function ϕi with respect to t is proportional to F̄′(i), the functional derivative of F̄ with
respect to ϕi. Then the following time evolution equation can be obtained:

∂ϕi

∂t
= −F̄′(i), (10)

With Eq. (10), the Lagrangian monotonically decreases with the time evolution (Li et al., 2021). In order to regularize the
above optimization problem which is an ill-posed problem, a diffusive term is introduced, as follows:

∂ϕi

∂t
= −

(
F̄′(i) − τi∇2ϕi

)
, (11)

where τi (i = 1, . . . , M) is the regularization parameter. This is a reaction-diffusion equation, and the diffusion term
guarantees the smoothness of the level set functions. The upper and lower limits are imposed on the level set functions
so that the regularization effect works only near the boundaries, where the gradient of the level set functions is large,
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as shown in Fig. 2. Therefore, the complexity of the optimal structure can be controlled by adjusting the value of the
regularization parameters. Furthermore, we assume that the boundary condition for the level set functions is a Neumann
boundary condition. Therefore, the time evolution equation and boundary conditions are expressed as

∂ϕi

∂t
= −

(
F̄′(i) − τi∇2ϕi

)
in D

∂ϕi

∂x j
n j = 0 on ∂D.

(12)

2.5. Optimum design problem
The simplest objective function for the maximization of the fundamental eigenfrequency can be formulated as

inf
Ω1,...,ΩM

F(Ω1, . . . ,ΩM) = −λ(1) = −ω2
(1). (13)

One of the major issues of eigenfrequency problems in topology optimization is that the order of the eigenvalues may
change during the optimization. Therefore, in the above objective function, when the mode of the fundamental eigenvalue
is swapped, the design sensitivity becomes discontinuous and may lead to an oscillation of the objective value. One of the
solutions is to trace the desired mode shape during the optimization process. For example, Kim and Kim (2000) proposed
a method to examine the mode assurance criterion (MAC) value between each extracted mode of the updated structure
and the desired mode. In contrast to the mode-tracking method using MAC value, which requires defining the desired
mode shape in the entire computational domain and comparing it to the eigenmodes, Maeda et al. (2006) proposed a
method to control the mode shape by specifying the portion of the mode shape where the desired dynamic response is to
be maximized or minimized. An alternative method is to define an objective function with multiple eigenvalues so that the
design sensitivity does not become discontinuous even if the mode switching occurs among the selected eigenvalues in the
process of optimization. Ma et al. (1995) proposed the mean-eigenvalue, which is a combination of multiple eigenvalues,
as the objective function. We follow the lead of Ma et al. and define the objective function as the harmonic mean of the
first n eigenvalues as follows:

inf
Ω1,...,ΩM

F(Ω1, . . . ,ΩM) = −
 n∑

m=1

1
ω2

(m)

−1

= −
( n∑

m=1

1
λ(m)

)−1

. (14)

In conventional topology optimization problems for maximizing the fundamental eigenfrequency, it is common to place
concentrated masses. This is because, without concentrated masses, this design problem becomes an ill-posed problem in
which the solid material is prone to move closer to the fixed walls Γu, and eventually only infinitesimally thin structures
will remain. (Pedersen, 2000). However, since concentrated masses are not real materials, the formulation with concen-
trated masses is difficult to apply to real design problems. Therefore, instead of using concentrated masses, we propose to
use stiffness constraints against static traction, since it is more realistic to maximize the fundamental eigenfrequency while
maintaining stiffness against traction, and as shown in the numerical example, imposing stiffness constraints can prevent
the design problem from being an ill-posed problem. In Section 2.5.1, the conventional eigenfrequency maximization
problem is formulated with concentrated masses, and in Section 2.5.2, the design problem is formulated using the static
mean compliance constraint. In both formulations, the volume constraints are taken into account.

2.5.1. Maximization of the fundamental eigenfrequency with concentrated masses

Fig. 3 Schematic of the eigenfrequency optimization problem with a concentrated mass.

The first optimum design problem is the multi-material topology optimization problem for the maximization of the
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fundamental eigenfrequency with concentrated masses. The optimization problem can be formulated as

inf
ϕ1,...,ϕM

F(ϕ1, . . . , ϕM) = −
( n∑

m=1

1
λ(m)

)−1

s.t. Gk(ϕ1, . . . , ϕM) =

∫
D
ψk dΩ∫

D
dΩ

− Vk
max ≤ 0 (k = 1, · · · ,M).

(15)

where Vk
max is the maximum allowed volume fraction of the material k in the fixed design domain. The above optimization

problem can be replaced with an unconstrained optimization problem using the Lagrangian’s method of undetermined
multipliers, as follows:

inf
ϕ1,...,ϕM

F̄(ϕ1, . . . , ϕM) = F(ϕ1, . . . , ϕM) +
M∑

k=1
(µkGk(ϕ1, . . . , ϕM)) (16)

where F̄ is the Lagrangian and µk ≥ 0 (k = 1, · · · ,M) is the Lagrange multiplier.

2.5.2. Maximization of the fundamental eigenfrequency under mean compliance constraint

(a) Eigenfrequency problem. (b) Static problem.

Fig. 4 Schematic of the eigenfrequency optimization problem under mean compliance constraint.

In this section, in addition to the eigenfrequency problem, as shown in Fig. 4a, we consider a static problem where
the surface traction is applied on the surface Γt, as shown in Fig. 4b. The governing equations underlying the static
displacement ui can be then formulated as the following boundary value problem:

C(i)
i jkl

∂2uk

∂xl∂x j
= 0 in Ωi (17a)

u(i)
i − u( j)

i = 0 on Γi, j (17b)

C(i)
i jkl

∂u(i)
k

∂xl
n(i)

j +C( j)
i jkl

∂u( j)
k

∂xl
n( j)

j = 0 on Γi, j (17c)

ui = 0 on Γu (17d)

Ci jkl
∂uk

∂xl
n j = t̄i on Γt, (17e)

Ci jkl
∂uk

∂xl
n j = 0 on Γn, (17f)

where Γu is the Dirichlet boundary where the structure is fixed, Γt is the Neumann boundary where traction t̄i is applied,
and Γn = Γ/Γu∪Γt is the Neumann boundary. The mean compliance is defined as

∫
Γt

ui t̄i dΓ. By imposing the upper limit to
the mean compliance, the optimal structure can maximize the the fundamental eigenfrequency while maintaining stiffness
against traction t̄i. Then, the multi-material topology optimization problem for the maximization of the fundamental
eigenfrequency under the mean compliance constraint can be formulated as

inf
ϕ1,...,ϕM

F(ϕ1, . . . , ϕM) = −
( n∑

m=1

1
λ(m)

)−1

s.t.


Gk(ϕ1, . . . , ϕM) =

∫
D
ψk dΩ∫

D
dΩ

− Vk
max ≤ 0 (k = 1, · · · ,M)

Gc(ϕ1, . . . , ϕM) =

∫
Γt

ui t̄i dΓ

Cinit
−Cmax ≤ 0

(18)
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where Cinit is the value of mean compliance of the initial guess and Cmax is the ratio of the maximum allowed mean
compliance to Cinit. The above optimization problem can be replaced with an unconstrained optimization problem using
the Lagrangian’s method of undetermined multipliers, as follows:

inf
ϕ1,...,ϕM

F̄(ϕ1, . . . , ϕM) = F(ϕ1, . . . , ϕM) +
M∑

k=1
(µkGk(ϕ1, . . . , ϕM)) + µM+1Gc(ϕ1, . . . , ϕM), (19)

where F̄ is the Lagrangian and µk ≥ 0 (k = 1, · · · ,M + 1) is the Lagrange multiplier.

3. Sensitivity analysis
3.1. Topological derivatives for eigenfrequency maximization problem

For the multi-material optimization problem formulated in Section 2, we conduct sensitivity analysis based on the
concept of the topological derivatives. A topological derivative is a functional derivative of a functional with respect to an
infinitesimal change in its topology. In the context of multi-material topology optimization, it indicates that the material
phase in Ωϵ is replaced by another phase. Assuming that Ωϵ is a circular domain with an infinitesimal radius ϵ centered
at z ∈ Ωa and the material which fills Ωϵ is going to change from material a to material b, the topological derivative of a
functional J is defined as

DT Ja→b(z) = lim
ϵ→0

δJ (z, ϵ)
g(ϵ)

, (20)

where δJ(z, ϵ) is the perturbation of the value of J and g(ϵ) is a function of the radius ϵ, chosen so that the limit value of
the right-hand side of Eq. (20) can exist. In this paper, we define g(ϵ) as the area of Ωϵ , as follows:

g(ϵ) = πϵ2. (21)

Novotny et al. (2003) proposed a method for deriving the topological derivative from the relationship between the topo-
logical and shape derivatives. Following their method, we derive the topological derivative in the same way but for the
optimum design problem given in Eqs. (15) and (18). The deduced topological derivatives can be expressed using the
eigenvalues and eigenmodes, as follows:

DT Fa→b = −
( n∑

m=1

1
λ(m)

)−2 n∑
m=1


Aa→b

i jkl

∂U(m)i

∂x j

∂U(m)k

∂xl
+ λ(m)(ρa − ρb)U(m)iU(m)i

λ2
(m)

 (22)

DT Ga→b
k = −δka + δkb (23)

DT Gca→b = Aa→b
i jkl

∂ui

∂x j

∂uk

∂xl
, (24)

where the coefficients are derived as follows:

Aa→b
i jkl = Aa→bδi jδkl + Ba→b(δikδ jl + δilδ jk)
Aa→b = −

E(a)
{
E(a)(1 − ν(b)) − E(b)(1 − ν(a))

}
{
E(a)(1 − ν(b)) + E(b)(1 + ν(a))

}
(1 − ν(a))2 +

2E(a)
{
E(a)(1 + ν(b)) − E(b)(1 + ν(a))

}
{
E(a)(1 + ν(b)) + E(b)(3 − ν(a))

}
(1 + ν(a))2

Ba→b = −
2E(a)

{
E(a)(1 + ν(b)) − E(b)(1 + ν(a))

}
{
E(a)(1 + ν(b)) + E(b)(3 − ν(a))

}
(1 + ν(a))2 .

(25)

The topological derivative of the mean compliance in Eq. (24) has been already derived by Kishimoto et al. (2017), and
the derivation of the topological derivative of the objective function Eq. (22) is followed by the numerical verification
which can be found in Appendix A. Then, the topological derivative of the Lagrangian Eq. (19) can be expressed as

DT F̄a→b = DT Fa→b +
M∑

k=1

(
µkDT Ga→b

k

)
+ µM+1DT Gca→b. (26)
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3.2. Expression of the design sensitivity with topological derivatives
In this section, we recall the idea by Kishimoto et al (2017) and illustrate how the design sensitivity can be expressed

based on topological derivatives. For brevity, we demonstrate the idea using a two-material case as an example. In
this case, there are six topological derivatives that need to be computed: DT J1→0, DT J2→0, DT J0→1, DT J0→2, DT J1→2,
and DT J2→1. The superscript “0” denotes a void region, and “1” and “2” denote solid phases #1 and #2, respectively
(e.g.,DT J1→0 is the topological derivative when an infinitesimal circular void region is created in solid phase #1, and so
on).

As for DT J1→0, DT J2→0, DT J0→1, DT J0→2, the material distribution changes only from solid to void, or vice versa.
But the material phase inside the solid region doesn’t change. Therefore, for these topological changes, only the sign
of the first level set function ϕ1(x) changes, while that of the second level set function ϕ2(x) does not. If we define
δϕ1(x) as the perturbation of the first level set function ϕ1(x), then sign (δϕ1(x)) = −1 for DT J1→0 and DT J2→0, and
sign (δϕ1(x)) = 1 for DT J0→1 and DT J0→2. Therefore, the topological derivative with respect to ϕ1(x) can be expressed
as

J′(1) = ψ1sign (δϕ1(x)) DT J1→0 + ψ2sign (δϕ1(x)) DT J2→0

+ (1 − H(ϕ1))
[
(1 − H(ϕ2)) sign (δϕ1(x)) DT J0→1 + H(ϕ2)DT sign (δϕ1(x)) J0→2

]
= −ψ1DT J1→0 − ψ2DT J2→0 + (1 − H(ϕ1))

[
(1 − H(ϕ2)) DT J0→1 + H(ϕ2)DT J0→2

]
.

(27)

As for DT J1→2 and DT J2→1, the material phase inside the solid region changes when there are no voids to be created.
Therefore, only the sign of ϕ2(x) can change, while that of ϕ1(x) remains positive. Similarly, if we define δϕ2(x) as the
perturbation of ϕ2(x), then sign (δϕ2(x)) = −1 for DT J1→2 and sign (δϕ2(x)) = 1 for DT J2→1. Hence, the topological
derivative with respect to ϕ2(x) can be expressed as

J′(2) = ψ2sign (δϕ2(x)) DT J2→1 + H(ϕ1)(1 − H(ϕ2))sign (δϕ2(x)) DT J1→2

= −ψ2DT J2→1 + H(ϕ1)(1 − H(ϕ2))DT J1→2.
(28)

In general, the topological derivative with respect to ϕi(x) for M phase materials can be expressed as

J′(i) = −
M∑
j=i
ψ j(x)DT Ji→( j−1) + (1 − H(ϕi(x)))

M∑
j=i

∂ψ j(x)
∂H(ϕi(x))

DT J( j−1)→i. (29)

Fig. 5 Flowchart of topology optimization.

4. Numerical implementations
4.1. Optimization algorithms

The flowchart of the optimization procedure is shown in Fig. 5. First, the level set functions ϕi(x) are initialized.
Then, the optimization loop begins. In the second step, the governing equations are solved using the finite element
method. Next, the objective function is computed. The optimization loop is ended if the objective function has converged.
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Otherwise, in the fourth step, the topological derivatives of the objective function and constraint functions are computed.
Finally, the level set functions are updated based on Eq. (12) using the finite element method. This workflow will then be
repeated until the stopping criteria is satisfied.

5. Numerical examples
5.1. Maximization of the fundamental eigenfrequency with concentrated masses

(a) Design model for the beam test case. (b) Initial guess. (c) Optimal structure.

Fig. 6 Topology optimization of a two-material beam structure.

In this section, we will show an example for the design problem illustrated in Section 2.5.1. We consider the opti-
mization of a two-material beam structure to discuss the effects of different material properties on the optimal solutions.
Secondly, a three-material beam design is presented.

In this paper, the Poisson’s ratio of all the materials is set to 0.3, and the Young’s modulus and mass density are
non-dimentionalized. Both the Young’s modulus and mass density of concentrated masses are set to 1.0 × 103. The
eigenfrequency analysis is performed under plane stress conditions, and the objective function is the harmonic mean of
the first three eigenvalues as defined in Eq. (14).

The target problem is a beam test case, as illustrated in Fig. 6a. The fixed design domain is a rectangular domain
whose dimension is 6.0 × 1.0. Both the left and right ends are fixed walls, and a concentrated mass whose dimension
is 0.05 × 0.05 is placed in the center of the design domain. Both the Young’s modulus and mass density of material
1 (represented in blue color in the following figures) are set to 1.0 and those of material 2 (represented in red color
in the following figures) are set to 2.0. The maximum allowed volume fractions for both materials 1 and 2 are set to
V1

max = V2
max = 0.2, and the regularization parameters are set to τ1 = τ2 = 1.0 × 10−4.

Figs. 6b and c show the initial guess and the optimal structure, respectively, and Fig. 7 shows the first three eigen-
modes of the optimal structure. The first and third eigenmodes are bending modes while the second one is a longitudinal
mode. In the first eigenmodes, the large inertia force from the concentrated mass is applied to the structure in the direction
perpendicular to the axis, resulting in the structure with a large moment of inertia of area near the concentrated mass and
Γu, where the bending moment is large. We can observe that material 2, which has a higher stiffness, is placed near Γu,
where the elastic strain energy density of the first eigenmode is relatively high. Material 1, which has a lower mass den-
sity, is placed away from Γu, where the amplitude of the first eigenmode is relatively large. Fig. 8a shows the convergence
histories of the objective and constraint values, and Fig. 8b shows those of the first three eigenfrequencies. The value of
the objective function of the optimal structure is F = −7.710 × 10−3, and the eigenfrequencies are ω(1) = 1.017 × 10−1,
ω(2) = 2.173 × 10−1, and ω(3) = 2.898 × 10−1. From Fig. 8b, we can see that the eigenfrequencies do not change their
order during this optimization process.

Here, we investigate the effect of the material properties on the optimal structure. Fig. 9 shows the optimal structures
with different values of the mass density of material 2, while the material properties of material 1 and the Young’s modulus
of material 2 are the same as those cases shown in Fig. 6c. In each test case, the material with the lower mass density is
distributed away from Γu, and the material with the higher mass density is distributed near Γu. However, the strain energy
density is very high at the four corners of the design domain, therefore, the material with a higher stiffness is distributed
there regardless of its mass density.

On the other hand, Fig. 10 shows the optimal structures with the different values of the Young’s modulus of material

(a) 1st mode shape. (b) 2nd mode shape. (c) 3rd mode shape.

Fig. 7 Mode shapes of the optimal structure of a two-material beam problem.
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(a) Objective and constraint values. (b) First three eigenfrequencies.

Fig. 8 Histories of (a) the objective and constraint values, (b) the first three eigenfrequencies.

(a) ρ2 = 0.5. (b) ρ2 = 8.

Fig. 9 Optimal structures of material 2 with different values of mass density.

(a) E2 = 0.5. (b) E2 = 4.

Fig. 10 Optimal structures of material 2 with different values of Young’s modulus.

(a) (V1
max,V

2
max,V

3
max) = (0.1, 0.1, 0.2). (b) (V1

max,V
2
max,V

3
max) = (0.1, 0.2, 0.1). (c) (V1

max,V
2
max,V

3
max) = (0.2, 0.1, 0.1).

Fig. 11 Optimal structures of a three-material beam problem with different values of volume fractions.

2 while the other material properties remain unchanged. In both cases, the thicker structures composed of the softer
material support the thinner structures composed of the stiffer material. As shown in Fig. 10b, materials with high mass
density are distributed away from Γu if their Young’s modulus is large, because these thin structures have an effect of its
mass reduction. In actual design, the thin structures can collapse due to buckling or stress concentrations. One possible
solution is to perform topology optimization with a buckling load constraint (Ferrari and Sigmund, 2019; Ishida et al.,
2022) and a stress constraint (Le et al., 2010; Luo et al., 2013), but their applications are left for future work.

Finally, we examine the case where three materials are used. The Young’s moduli of material 1 (blue regions),
material 2 (red regions), and material 3 (green regions) are set to E(1) = 1, E(2) = 2, and E(3) = 3, respectively, and the mass
densities are ρ(1) = 1, ρ(2) = 2, and ρ(3) = 3, respectively. The regularization parameters for all the level set functions are
τ = 1 × 10−4. Fig. 11 shows the optimal structure when the volume fractions are set to {V1

max,V
2
max,V

3
max} = {0.1, 0.1, 0.2},

{0.1, 0.2, 0.1}, {0.2, 0.1, 0.1}. From these results, we can draw similar conclusions with the two-material cases. That is, the
materials with higher stiffness are distributed near Γu, while the materials with lower mass density are distributed away
from Γu. Therefore, it further confirms the validity of the proposed method.

5.2. Maximization of the fundamental eigenfrequency under mean compliance constraint
In this section, we will show an example for the design problem illustrated in Section 2.5.2. The effects of the

direction of static traction force on the optimal solutions are examined.
Two target problems for maximization of the fundamental eigenfrequency under mean compliance constraint are

shown in Fig. 12. Both the fixed design domains are a rectangular domain whose dimension is 2.0 × 1.0, the left end is
fixed, u = [0, 0]T, and traction t̄ is applied in the middle portion of the right end Γt. However, different traction t̄ is applied
in model A and in model B: t̄ = [0,−1]T in model A and t̄ = [1, 0]T in model B. Both the Young’s modulus and mass
density of material 1 (represented in blue color in the following figures) are set to 1.0 and those of material 2 (represented
in red color in the following figures) are set to 2.0. The maximum allowed volume fractions for both material phases are
set to V1

max = V2
max = 25%, and the regularization parameters are set to τ1 = τ2 = 1.0 × 10−4.
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(a) Design model A. (b) Design model B.

Fig. 12 Design models for the cantilever test case.

Fig. 13a shows the initial guess for both models, and Figs. 13b and c show optimal structures of model A and model
B, respectively. The objective value of the optimal structure of model A is F = −8.103 × 10−2 and that of model B is
F = −5.962×10−2. Fig. 14 shows the first three eigenmodes of the optimal structure of model A, and the eigenfrequencies
are ω(1) = 3.343 × 10−1, ω(2) = 7.461 × 10−1, and ω(3) = 7.907 × 10−1. On the other hand, Fig. 15 shows the first three
eigenmodes of the optimal structure of model B, and the eigenfrequencies areω(1) = 2.802×10−1, ω(2) = 6.004×10−1, and
ω(3) = 8.890 × 10−1. Figs. 14 and 15 show that in the optimal solutions in both models, the first and second eigenmodes
are bending modes while the third one is a longitudinal mode. The optimal solution of model A has a structure with a
large moment of inertia of area, resulting in a structure with high stiffness against a bending load and bending vibration.
Around Γt, where the amplitude of the first eigenmode is relatively large, material 1 is used because it has a lower mass
density. On the other hand, in the optimal solution of model B, in order to increase stiffness against the axial load t̄, the
distribution of materials is concentrated around the axis of the cantilever and material 2 is placed near Γt, where strain
energy density is relatively large. As a result, the optimal solution of model B has a smaller first eigenfrequency than the
optimal solution of model A because the structure has less flexural rigidity and is heavier in the region away from Γu.

6. Conclusions

In this paper, we present a multi-material topology optimization (MMTO) method for the fundamental eigenfre-
quency maximization problem. The key idea is to adopt the RDE-based MMLS method to obtain the optimal configu-
rations for multiple material phases represented by multiple level set functions. We formulated the MMTO problem in
two different ways: (i) with concentrated mass and (ii) under mean compliance. We confirm the validity of the proposed

(a) Initial guess. (b) Optimal structure of model A. (c) Optimal structure of model B.

Fig. 13 Topology optimization of a two-material cantilever problem under mean compliance constraint.

(a) 1st mode shape. (b) 2nd mode shape. (c) 3rd mode shape.

Fig. 14 Mode shapes of the optimal structure of model A.

(a) 1st mode shape. (b) 2nd mode shape. (c) 3rd mode shape.

Fig. 15 Mode shapes of the optimal structure of model B.
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methodology with concentrated masses by showcasing a beam example and the validity of the proposed methodology
under mean compliance by a cantilever example. The main findings can be summarized as follows:

( 1 ) MMLS method boundary representation allows us to obtain optimal configurations with clear boundaries be-
tween multiple material phases.

( 2 ) Updating the level set function based on the reaction-diffusion equation in which the topological derivatives are
used as the source term allows topological changes such that new holes can be created in the optimization process.

( 3 ) It is confirmed that reasonable results can be obtained with different values of material properties and volume
fractions. It is also shown that the proposed method can be easily extended to the case where not only two but also three
materials are used.

( 4 ) It is confirmed that imposing mean compliance constraints prevents the eigenfrequency problem in topology
optimization from being an ill-posed problem. It is also found that different optimal structures are obtained for different
static traction and that these structures are reasonable.

As a final remark, we conclude that many issues concerning eigenfrequency TO have still not been resolved and
they are worthy of further investigation. For example, it could be quite interesting but challenging to extend the present
framework to solve large-scale three-dimensional problems. This will require a fully distributed framework including
scalable domain decomposition, matrix assembly, distributed unstructured mesh adaptation, etc. (Li et al., 2022c). And
these are targeted in our future research works.
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Appendix A Sensitivity analysis

Fig. 16 Schematic diagram of topological derivative.

In the appendix, we provide the details of the sensitivity analysis. As stated in Section 3, the topological derivative
at z ∈ Ωa is defined as follows:

DT Fa→b(z) = lim
ϵ→0

δF (z, ϵ)
g(ϵ)

, (A.1)

where g(ϵ) as the area of Ωϵ :

g(ϵ) = πϵ2. (A.2)

In this section, we derive the topological derivative of F based on the method proposed by Novotny et al. (2003),
on which the equation of the relationship between the topological derivative and shape derivative is used. The shape
derivative is a functional derivative of an objective functional with respect to an infinitesimal change in its boundaries.
The shape derivative is defined as follows:

DF (Ωa,Ωϵ) · V :=
d
ds

F (φs(Ωa), φs(Ωϵ))
∣∣∣∣∣
s=0

, (A.3)

where φs is deformation mapping of Ωa and Ωϵ in the direction V (x), defined as:

φs(x) = x + sV (x). (A.4)

In order to derive the topological derivative, we first calculate the shape derivative when Ωϵ expands isotropically. The
vector V is then defined as follows:

V = n(−) = −n(+) on Γϵ , (A.5)

where n(−) is the outward unit normal vector at the boundary Γϵ , as shown in Fig. 16. Novotny et al. (2003) proposed a
method to derive the topological derivative by taking the limit value of the shape derivative when the radius ϵ approaches
0, as follows:

DT Fa→b(z) = lim
ϵ→0

DF(Ωa,Ωϵ) · V
g′(ϵ)

, (A.6)

where g′(ϵ) is the derivative of g(ϵ) with respect to ϵ, which is g′(ϵ) = 2πϵ in this paper .
Assuming that the eigenfrequencies don’t switch their orders due to the slight change in topology, the shape derivative

of the objective function F in Eq. (14) is expressed as the sum of the shape derivatives of the eigenvalues:

DF(Ωa,Ωϵ) · V =
( n∑

m=1

1
λ(m)

)−2 n∑
m=1

Dλ(m)(Ωa,Ωϵ) · V
λ2

(m)

 . (A.7)

Therefore, the topological derivative of the objective function Eq. (14) is derived in the following process. First, we derive
the shape derivative of the eigenvalue λ(m) using the adjoint variable method. Next, the asymptotic behavior of the state
variables is examined as ϵ → 0. Finally, we substitute the result of the asymptotic analysis into the shape derivative,
and obtain the topological derivative from the relationship between the shape derivative and topological derivative of
Eq. (A.6).

14



2
© 2023 The Japan Society of Mechanical Engineers

Nakayama, Li, Furuta, Izui and Nishiwaki, Mechanical Engineering Journal, Vol.10, No.2 (2023)

[DOI: 10.1299/mej.22-00353]

A.1 Formulation of Lagrangian
We consider eigenvalues and eigenvectors after the material in Ωϵ changes from material a to material b. If we

represent the eigenvalues and eigenvectors by adding superscript ϵ to them, the governing equations underlying the mth
eigenvalue λϵ(m) and the corresponding eigenmode U ϵ

(m) can be formulated as the following boundary value problem:

C(b)
i jkl

∂2Uϵ
(m)k

∂xl∂x j
+ λϵ(m)ρ

(b)Uϵ
(m)i = 0 in Ωϵ (A.8a)

C(a)
i jkl

∂2Uϵ
(m)k

∂xl∂x j
+ λϵ(m)ρ

(a)Uϵ
(m)i = 0 in Ωa\Ωϵ (A.8b)

Uϵ(−)
(m)i − Uϵ(+)

(m)i = 0 on Γϵ (A.8c)

C(b)
i jkl

∂Uϵ(−)
(m)k

∂xl
n(ϵ)

j −C(a)
i jkl

∂Uϵ(+)
(m)k

∂xl
n(ϵ)

j = 0 on Γϵ (A.8d)

Uϵ
(m)i = 0 on Γu (A.8e)

Ci jkl
∂U(m)k

∂xl
n j = 0 on Γn, (A.8f)

where the quantities with superscript (−) represent quantities inside Ωϵ , and the quantities with superscript (+) represent
quantities outside Ωϵ . The eigenmodes are normalized as follows:

∫
Ωa

(ρ(a)Uϵ
(m)iU

ϵ
(m)i)dΩ +

∫
Ωϵ

(ρ(b)Uϵ
(m)iU

ϵ
(m)i)dΩ = 1 (A.9)

In order to derive the shape derivative of the eigenvalue λϵ(m), we formulate the Lagrangian L as

L
(
Ωa,Ωϵ ;W , X, W̃ , X̃

)
= X +

∫
Ωa

(
C(a)

i jkl
∂W̃i

∂x j

∂Wk

∂xl
− Xρ(a)W̃iWi

)
dΩ +

∫
Ωϵ

(
C(b)

i jkl
∂W̃i

∂x j

∂Wk

∂xl
− Xρ(b)W̃iWi

)
dΩ

−
∫
Γϵ

1
2

C(a)
i jkl

∂W (+)
k

∂xl
n(+)

j −C(b)
i jkl

∂W (−)
k

∂xl
n(−)

j

 (W̃ (+)
i − W̃ (−)

i

)
dΓ

−
∫
Γϵ

1
2

C(a)
i jkl

∂W̃ (+)
i

∂x j
n(+)

l −C(b)
i jkl

∂W̃ (−)
i

∂x j
n(−)

l

 (W (+)
k −W (−)

k

)
dΓ

−
∫
Γu

(
C(a)

i jkl
∂Wk

∂xl
n j

)
W̃idΓ −

∫
Γu

(
C(a)

i jkl
∂W̃i

∂x j
nl

)
WkdΓ

+X̃
{
1 −

∫
Ωa

(ρ(a)WiWi)dΩ −
∫
Ωϵ

(ρ(b)WiWi)dΩ
}
.

(A.10)

Note that W , X, W̃ , X̃ are variables independent of Ωa and Ωϵ , whereas U(m) and λ(m) are the state variables that depend
on Ωa and Ωϵ .

Performing integration by parts with respect to W̃ , the Lagrangian (A.10) can be transformed as

L
(
Ωa,Ωϵ ;W , X, W̃ , X̃

)
= X −

∫
Ωa

(
C(a)

i jkl
∂2Wk

∂xl∂x j
+ Xρ(a)Wi

)
W̃idΩ −

∫
Ωϵ

(
C(b)

i jkl
∂2Wk

∂xl∂x j
+ Xρ(b)Wi

)
W̃idΩ

+
∫
Γϵ

1
2

C(a)
i jkl

∂W (+)
k

∂xl
n(+)

j +C(b)
i jkl

∂W (−)
k

∂xl
n(−)

j

 (W̃ (+)
i − W̃ (−)

i

)
dΓ

−
∫
Γϵ

1
2

C(a)
i jkl

∂W̃ (+)
i

∂x j
n(+)

l −C(b)
i jkl

∂W̃ (−)
i

∂x j
n(−)

l

 (W (+)
k −W (−)

k

)
dΓ

+
∫
Γn

(
C(a)

i jkl
∂Wk

∂xl
n j

)
W̃idΓ −

∫
Γu

(
C(a)

i jkl
∂W̃i

∂x j
nl

)
WkdΓ

+X̃
{
1 −

∫
Ωa

(ρ(a)WiWi)dΩ −
∫
Ωϵ

(ρ(b)WiWi)dΩ
}
.

(A.11)

From the governing equations Eqs. (A.8a) to (A.8f) and the normalization condition Eq. (A.9), we can see that the
following equation is varied for any W̃ and X̃ if W = U ϵ

(m) (Ωa,Ωϵ) and X = λϵ(m) (Ωa,Ωϵ):

λϵ(m) (Ωa,Ωϵ) = L
(
Ωa,Ωϵ ;uϵ

(m), λ
ϵ
(m),W , X̃

)
. (A.12)
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A.2 Adjoint variable
At the stationary point of the Lagrangian, the following stationary conditions are valid:〈
∂L
∂Wi

, δWi

〉
= 0, (A.13)

∂L
∂X
= 0, (A.14)〈

∂L
∂W̃i

, δW̃i

〉
= 0, (A.15)

∂L
∂X̃
= 0. (A.16)

From Eq. (A.11) and stationary conditions Eqs. (A.15) and (A.16), the following equations can be obtained:

0 =

〈
∂L
∂Wi

, δWi

〉
=

∫
Ωa

(
C(a)

i jkl
∂2Wk

∂xl∂x j
+ Xρ(a)Wi

)
δW̃idΩ +

∫
Ωϵ

(
C(b)

i jkl
∂2Wk

∂xl∂x j
+ Xρ(b)Wi

)
δW̃idΩ

−
∫
Γϵ

1
2

C(a)
i jkl

∂W (+)
k

∂xl
n(+)

j +C(b)
i jkl

∂W (−)
k

∂xl
n(−)

j

 (δW̃ (+)
i − δW̃

(−)
i )dΓ

−
∫
Γϵ

1
2

(W (+)
k −W (−)

k )

C(a)
i jkl

∂
(
δW̃ (+)

i

)
∂x j

n(+)
l −C(b)

i jkl

∂
(
δW̃ (−)

i

)
∂x j

n(−)
l

 dΓ

+
∫
Γn

(
C(a)

i jkl
∂Wk

∂xl
n j

)
δW̃idΓ −

∫
Γu

Wk

C(a)
i jkl

∂
(
δW̃i

)
∂x j

nl

 dΓ,

(A.17)

0 =
∂L
∂X̃
= 1 −

∫
Ωa

(ρ(a)WiWi)dΩ −
∫
Ωϵ

(ρ(b)WiWi)dΩ. (A.18)

Comparing the above equations with the governing equations Eqs. (A.8a) to (A.8f) and the normalization condition
Eq. (A.9), we can see that W = U ϵ

(m) (Ωa,Ωϵ) and X = λϵ(m) (Ωa,Ωϵ) satisfy the stationary conditions Eqs. (A.15)
and (A.16) for any δW̃ and δX.

Next, we consider the stationary conditions Eqs. (A.13) and (A.14). We assume that the stationary conditions are
valid if W̃ = v (Ωa,Ωϵ) and X̃ = η (Ωa,Ωϵ). Using integration by parts, the Lagrangian Eq. (A.10) can be deformed as
follows:

L(Ωa,Ωϵ ;W , X, W̃ , X̃) = X −
∫
Ωa

(
C(a)

i jkl
∂2W̃i

∂x j∂xl
+ Xρ(a)W̃k

)
WkdΩ −

∫
Ωa

(
C(a)

i jkl
∂2W̃i

∂x j∂xl
+ Xρ(a)W̃k

)
WkdΩ

−
∫
Γϵ

1
2

C(a)
i jkl

∂W (+)
k

∂xl
n(+)

j −C(b)
i jkl

∂W (−)
k

∂xl
n(−)

j

 (W̃ (+)
i − W̃ (−)

i )dΓ

+
∫
Γϵ

1
2

C(a)
i jkl

∂W̃ (+)
i

∂x j
n(+)

l +C(b)
i jkl

∂W̃ (−)
i

∂x j
n(−)

l

 (W (+)
k −W (−)

k )dΓ

+
∫
Γn

(
C(a)

i jkl
∂W̃i

∂x j
nl

)
WkdΓ −

∫
Γu

(
C(a)

i jkl
∂Wk

∂xl
n j

)
W̃idΓ

+X̃
{
1 −

∫
Ωa

(ρ(a)WiWi)dΩ −
∫
Ωϵ

(ρ(b)WiWi)dΩ
}
.

(A.19)

From the above equation and the stationary conditions Eqs. (A.13) and (A.14), the following equality is obtained:
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0 =

〈
∂L
∂Wi

, δWi

〉
=

∫
Ωa

(
C(a)

i jkl
∂2vk

∂xl∂x j
+ λϵ(m)ρ

(a)vi + 2ηρ(a)Uϵ
(m)i

)
δWidΩ +

∫
Ωϵ

(
C(b)

i jkl
∂2vk

∂xl∂x j
+ λϵ(m)ρ

(b)vi + 2ηρ(b)Uϵ
(m)i

)
δWidΩ

−
∫
Γϵ

1
2

(v(+)
k − v(−)

k )

C(a)
i jkl

∂
(
δW (+)

i

)
∂x j

n(+)
l −C(b)

i jkl

∂
(
δW (−)

i

)
∂x j

n(−)
l

 dΓ

+
∫
Γϵ

1
2

C(a)
i jkl

∂v(+)
k

∂xl
n(+)

j +C(b)
i jkl

∂v(−)
k

∂xl
n(−)

j

 (δW (+)
i − δW

(−)
i )dΓ

+
∫
Γn

(
C(a)

i jkl
∂vk

∂xl
n j

)
δWidΓ −

∫
Γu

vk

(
C(a)

i jkl
∂ (δWi)
∂x j

nl

)
dΓ,

(A.20)

0 =
∂L
∂X
= 1 −

∫
Ωa

(
ρ(a)viUϵ

(m)i

)
dΩ −

∫
Ωϵ

(
ρ(b)viUϵ

(m)i

)
dΩ. (A.21)

Here, we used the fact that Ci jkl = Ckli j to convert the subscript (i, j, k, l) to (k, l, i, j). Therefore, the stationary conditions
Eqs. (A.13) and (A.14) are valid when v and η satisfy the following adjoint equation:

C(b)
i jkl

∂2vk

∂xl∂x j
+ λρ(b)vi + 2ηρ(a)Uϵ

(m)i = 0 in Ωϵ (A.22a)

C(a)
i jkl

∂2vk

∂xl∂x j
+ λρ(a)vi + 2ηρ(a)Uϵ

(m)i = 0 in Ωa\Ωϵ (A.22b)

v(+)
(m)i − v(−)

(m)i = 0 on Γϵ (A.22c)

C(+)
i jkl

∂v(a)
k

∂xl
n(+)

j +C(b)
i jkl

∂v(−)
k

∂xl
n(−)

j = 0 on Γϵ (A.22d)

vi = 0 on Γu (A.22e)

Ci jkl
∂vk

∂xl
n j = 0 on Γn (A.22f)∫

Ωa
(ρ(a)viUϵ

(m)i)dΩ +
∫
Ωϵ

(ρ(b)viUϵ
(m)i)dΩ = 1, (A.22g)

Now, we determine the value of η. The following equation can be obtained by multiplying Eqs. (A.8a) and (A.8b) by v

and integrating it over the domain:

∫
Ωa

C(a)
i jkl

∂vi

∂x j

∂Uϵ
(m)k

∂xl
− λρ(a)viUϵ

(m)i

 dΩ +
∫
Ωϵ

C(b)
i jkl

∂vi

∂x j

∂Uϵ
(m)k

∂xl
− λρ(b)viUϵ

(m)i

 dΩ = 0. (A.23)

The following equality is obtained by multiplying the adjoint equations Eqs. (A.22a) and (A.22b) by uϵ
(m) and integrating

it:

∫
Ωa

C(a)
i jkl

∂vi

∂x j

∂Uϵ
(m)k

∂xl
− λρ(a)Uϵ

(m)ivi − 2ηUϵ
(m)iU

ϵ
(m)i

 dΩ +
∫
Ωϵ

C(b)
i jkl

∂vi

∂x j

∂Uϵ
(m)k

∂xl
− λρ(b)Uϵ

(m)ivi − 2ηUϵ
(m)iU

ϵ
(m)i

 dΩ = 0

(A.24)

By taking the difference between Eq. (A.23) and Eq. (A.24) and using the normalization condition Eq. (A.9), η can be
obtained as

η
{∫
Ωa

(ρ(a)Uϵ
(m)iU

ϵ
(m)i)dΩ +

∫
Ωϵ

(ρ(b)Uϵ
(m)iU

ϵ
(m)i)dΩ

}
= η = 0. (A.25)

Hence, the adjoint equations Eqs. (A.22a) to (A.22g) are equal to the governing equations Eqs. (A.8a) to (A.8f) and the
normalization condition Eq. (A.9). Therefore, the adjoint variable can be expressed with the eigenmode multiplied with a
constant K, as follows:

v = KU ϵ
(m). (A.26)

17



2
© 2023 The Japan Society of Mechanical Engineers

Nakayama, Li, Furuta, Izui and Nishiwaki, Mechanical Engineering Journal, Vol.10, No.2 (2023)

[DOI: 10.1299/mej.22-00353]

Furthermore, from the normalization conditions for the eigenmode and the adjoint variable Eqs. (A.9) and (A.22g), the
value of K can be determined as follows:

1 =
∫
Ωa

(
ρ(a)Uϵ

(m)ivi

)
dΩ +

∫
Ωϵ

(
ρ(b)Uϵ

(m)ivi

)
dΩ

= K
{∫
Ωa

(
ρ(a)Uϵ

(m)iU
ϵ
(m)i

)
dΩ +

∫
Ωϵ

(
ρ(b)Uϵ

(m)iU
ϵ
(m)i

)
dΩ

}
= K.

(A.27)

Therefore, the adjoint variable is equal to the eigenmode:

v = U ϵ
(m). (A.28)

A.3 Shape derivative
We derive the shape derivative of the eigenvalue λ(m) from the shape derivative of the Lagrangian at the stationary

point. We use the following formulas for shape derivatives (Allaire et al., 2004). If the functional J is defined as the
domain integral over the domain Ω of a density function j(x), as follows:

J =
∫
Ω

jdΩ, (A.29)

then the shape derivative of J can be obtained as

DJ · V =
∫
∂Ω

(Vini) jdΩ, (A.30)

where n denotes the outward unit normal vector on ∂Ω. On the other hand, if the functional J is defined as the boundary
integral of a density function j(x), as follows:

J =
∫
Γ

jdΓ, (A.31)

then the shape derivative of J is obtained as

DJ · V =
∫
∂Ω

(Vini)
(
∂ j
∂x j

n j + H j
)

dΩ, (A.32)

where H ≡ divn is the mean curvature of ∂Ω. The formulas Eqs. (A.30) and (A.32) can be used only if the density
function j(x) does not depend on Ω.

From Eq. (A.12), the shape derivative of the eigenvalue λ(m) can be derived from the shape derivative of the La-
grangian at the stationary point, as follows:

Dλϵ(m) (Ωa,Ωϵ) · V = DL(Ωa,Ωϵ) · V |W=U ϵ
(m),X=λ

ϵ
(m),W̃=U ϵ

(m),X̃=0

+

〈
∂L
∂Wi

(Ωa,Ωϵ), δWi

〉∣∣∣∣∣∣
W=U ϵ

(m),X=λ
ϵ
(m),W̃=U ϵ

(m),X̃=0
+
∂L
∂X

(Ωa,Ωϵ) · δX
∣∣∣∣∣
W=U ϵ

(m),X=λ
ϵ
(m),W̃=U ϵ

(m),X̃=0

+

〈
∂L
∂W̃i

(Ωa,Ωϵ), δW̃i

〉∣∣∣∣∣∣
W=U ϵ

(m),X=λ
ϵ
(m),W̃=U ϵ

(m),X̃=0
+
∂L
∂X̃

(Ωa,Ωϵ) · δX̃
∣∣∣∣∣
W=U ϵ

(m),X=λ
ϵ
(m),W̃=U ϵ

(m),X̃=0

= DL(Ωa,Ωϵ) · V |W=U ϵ
(m),X=λ

ϵ
(m),W̃=U ϵ

(m),X̃=0 ,

(A.33)

Here, we used the fact that the second to fifth terms of the middle side of the above equation are zero for any δW , δX, δW̃ , δX̃
from the stationary conditions Eqs. (A.13) to (A.16). Applying the shape derivative formulas Eq. (A.30) and Eq. (A.32)

to the shape derivative of the Lagrangian, and noting that U ϵ(+)
(m) = U ϵ(−)

(m) and C(a)
i jkl

∂Uϵ(+)
(m)k

∂xl
n(+)

j = −C(b)
i jkl

∂Uϵ(−)
(m)k

∂xl
n(−)

j on the

boundary Γϵ and the vector field V is defined as Eq. (A.5), the shape derivative of the eigenvalue λϵ(m) can be expressed as

Dλϵ(m) (Ωa,Ωϵ) · V =
∫
Γϵ

C(b)
i jkl

∂Uϵ(−)
(m)i

∂x j

∂Uϵ(−)
(m)k

∂xl
− λϵ(m)ρ

(b)Uϵ(−)
(m)i U

ϵ(−)
(m)i

 dΓ

−
∫
Γϵ

C(a)
i jkl

∂Uϵ(+)
(m)i

∂x j

∂Uϵ(+)
(m)k

∂xl
− λϵ(m)ρ

(a)Uϵ(+)
(m)i U

ϵ(+)
(m)i

 dΓ

−
∫
Γϵ

2

C(b)
i jkl

∂U(−)
(m)k

∂xl
n(−)

j


∂U(−)

(m)i

∂xβ
n(−)
β −

∂U(+)
(m)i

∂xβ
n(−)
β

 dΓ.

(A.34)
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A.4 Asymptotic analysis
In this step, the asymptotic behavior of the state variables U ϵ

(m) and λϵ(m) is examined when the radius ϵ approaches 0.
U ϵ

(m) and λϵ(m) are expanded using the eigenmode and eigenvalue when Ωϵ does not exist, as follows:

U ϵ
(m)(x) = U(m)(x) + Û (x),

λϵ(m) = λ(m) + λ̂,
(A.35)

where U(m) and λ(m) are the mth eigenmode and eigenvalue, respectively, when Ωϵ does not exist, whereas Û and λ̂ are

remainders. Now, we introduce a new coordinate ξ =
x − z
ϵ

, and Û can be expanded asymptotically with respect to ϵ
(Giusti et al., 2016):

Û (x) = ŵ(ξ) = ϵŵ(0)(ξ) + O(ϵ2), (A.36)

Moreover, U(m) can be Taylor-expanded in a neighborhood of z, as follows:

U(m)i(x) = U(m)i(z) + ϵξ j
∂U(m)i

∂x j

∣∣∣∣∣∣
x=z

+ ϵ2ξ jξk
∂2U(m)i

∂x j∂xk

∣∣∣∣∣∣
x=z

+ O(ϵ3). (A.37)

By substituting Eqs. (A.36) and (A.37) into Eqs. (A.8a) and (A.8b), the following equations for ŵ(ξ) are obtained:

C(b)
i jkl

∂2U(m)k

∂xl∂x j

∣∣∣∣∣∣
x=z

+
C(b)

i jkl

ϵ2

∂2ŵ(−)
k (ξ)

∂ξl∂ξ j
+

(
λ(m) + λ̂

)
ρ(b)

{
U(m)i(z) + ŵ(−)

i (ξ)
}
+ O(ϵ) = 0 in Ωϵ , (A.38a)

C(a)
i jkl

ϵ2

∂2ŵ(+)
k (ξ)

∂ξl∂ξ j
+ λ(m)ρ

(p)ŵ(+)
i (ξ) + λ̂ρ(a)

{
U(m)i(z) + ŵ(+)

i (ξ)
}
+ O(ϵ) = 0 in Ωa\Ωϵ . (A.38b)

The leading term, ŵ(0), satisfies the following equations:

C(b)
i jkl

∂2ŵ(0)(−)
k (ξ)
∂ξl∂ξ j

= 0 in Ωϵ (A.39a)

C(a)
i jkl

∂2ŵ(0)(+)
k (ξ)
∂ξl∂ξ j

= 0 in Ωa\Ωϵ . (A.39b)

From Eqs. (A.39a) and (A.39b), we can see that the partial differential equation for the leading term ŵ(0) is the same as
that of static equilibrium problems. Similarly, the boundary condition for ŵ(0) on Γϵ can be obtained as

ŵ(0)(−)
i (ξ) − ŵ(0)(+)

i (ξ) = 0 on Γϵ (A.40a)

C(b)
i jkl

 ∂U(m)k

∂xl

∣∣∣∣∣∣
x=z

n(−)
j +

∂ŵ(−)
k (ξ)
∂ξl

n(−)
j

 −C(a)
i jkl

 ∂U(m)k

∂xl

∣∣∣∣∣∣
x=z

n(−)
j +

∂ŵ(+)
k (ξ)
∂ξl

n(−)
j

 = 0 on Γϵ . (A.40b)

To obtain the explicit expression for ŵ(0), it is required that ŵ(0)(+)
i → 0 when r =

√
ξ2

1 + ξ
2
2 → ∞. The boundary value

problem for ŵ(0) can be solved in polar coordinates (r, θ) defined as follows:

ξ1 = r cos(θ), ξ2 = r sin(θ) (A.41)

Using the analytical solution of static equilibrium problems for the linear elastic model in the polar coordinate system
(Barber, 2010), ŵ(0) can be calculated as

ŵ(0)(−)
r = D1r + D2κ

(a)r cos(2θ) + D3κ
(a)r sin(2θ),

ŵ(0)(−)
θ = −D2κ

(a)r sin(2θ) + D3κ
(a)r cos(2θ),

ŵ(0)(+)
r = D1r−1 + D2

{
(κ(a) + 1)r−1 − r−3

}
cos(2θ) + D3

{
(κ(a) + 1)r−1 − r−3

}
sin(2θ),

ŵ(0)(+)
θ = −D2

{
(κ(a) − 1)r−1 + r−3

}
sin(2θ) + D3

{
(κ(a) − 1)r−1 + r−3

}
cos(2θ),

(A.42)

where the coefficients are

D1 =
E(a)(1 − ν(b)) − E(b)(1 − ν(a))
E(a)(1 − ν(b)) + E(b)(1 + ν(a))

(
∂U(m)1

∂x1

∣∣∣∣∣∣
x=z

+
∂U(m)2

∂x2

∣∣∣∣∣∣
x=z

)
,

D2 =
E(a)(1 + ν(b)) − E(b)(1 + ν(a))

2
{
E(a)(1 + ν(b)) + E(b)(3 − ν(a))

} (
∂U(m)1

∂x1

∣∣∣∣∣∣
x=z

−
∂U(m)2

∂x2

∣∣∣∣∣∣
x=z

)
,

D3 =
E(a)(1 + ν(b)) − E(b)(1 + ν(a))

2
{
E(a)(1 + ν(b)) + E(b)(3 − ν(a))

} (
∂U(m)1

∂x2

∣∣∣∣∣∣
x=z

+
∂U(m)2

∂x1

∣∣∣∣∣∣
x=z

)
.

(A.43)
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A.5 Topological derivative
The asymptotic behavior of the shape derivative Eq. (A.34) can be calculated using the results of the asymptotic

analysis of the eigenmode U ϵ
(m), as follows:

Dλϵ(m) (Ωa,Ωϵ) · V = 2πϵ
{

Aa→b
i jkl

∂U(m)i

∂x j

∂U(m)k

∂xl
+ λ(m)(ρa − ρb)U(m)iU(m)i

}
+ O(ϵ2), (A.44)

where the coefficients are

Aa→b
i jkl = Aa→bδi jδkl + Ba→b(δikδ jl + δilδ jk)
Aa→b =

E(a)
{
E(a)(1 − ν(b)) − E(b)(1 − ν(a))

}
{
E(a)(1 − ν(b)) + E(b)(1 + ν(a))

}
(1 − ν(a))2 +

2E(a)
{
E(a)(1 + ν(b)) − E(b)(1 + ν(a))

}
{
E(a)(1 + ν(b)) + E(b)(3 − ν(a))

}
(1 + ν(a))2

Ba→b =
2E(a)

{
E(a)(1 + ν(b)) − E(b)(1 + ν(a))

}
{
E(a)(1 + ν(b)) + E(b)(3 − ν(a))

}
(1 + ν(a))2 .

(A.45)

From the relation in Eq. (A.7), the shape derivative of the objective function F is obtained using the shape derivative of
the eigenvalues as

DF (Ωa,Ωϵ) · V = −2πϵ
( n∑

m=1

1
λ(m)

)−2 n∑
m=1


Aa→b

i jkl

∂U(m)i

∂x j

∂U(m)k

∂xl
+ λ(m)(ρa − ρb)U(m)iU(m)i

λ2
(m)

 + O(ϵ2). (A.46)

Based on the relationship between the topological derivative and the shape derivative in Eq. (A.6), the topological deriva-
tive can be obtained by taking the limit value of the shape derivative, as follows:

DT F = −
( n∑

m=1

1
λ(m)

)−2 n∑
m=1


Aa→b

i jkl

∂U(m)i

∂x j

∂U(m)k

∂xl
+ λ(m)(ρa − ρb)U(m)iU(m)i

λ2
(m)

 . (A.47)

Appendix B Numerical validation of topological derivatives

Here, we numerically validate the topological derivative of F in Eq. (A.47), by comparing the results obtained using
the derivatives with those obtained using finite differences. Consider thatΩr is a circular region with a finite radius r whose
center is located at z, as shown in Fig. 17. The numerical finite difference is the sensitivity of the objective function when
Ωr is replaced with a different material. Therefore, the numerical finite difference can be defined as

DN Fa→b(z, r) =
δF(z, r)

g(r)
. (B.48)

In Fig. 18, the black points indicate the values of the topological derivative and the red points indicate the values of the
numerical difference. We can see that the numerical difference and topological derivative take the same values, therefore,
the validity of the topological derivative we derived is confirmed.

Fig. 17 Schematic diagram of numerical difference. Fig. 18 Comparison between topological derivative
and numerical difference.
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