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Abstract

This paper proposes a sufficient statistics approach to studying the welfare effects of

third-degree price discrimination in differentiated oligopoly. Specifically, our sufficient

conditions for price discrimination to increase or decrease social welfare simply entail a

cross-market comparison of multiplications of such sufficient statistics as pass-through,

conduct, and profit margin that are functions of first-order and second-order elasticities

of the firm’s demand. Notably, these results are derived under a general class of market

demand, and can be readily be extended to accommodate heterogeneous firms. These

features suggest that our approach has potential for conducting welfare analysis without

a full specification of an oligopoly model.
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1 Introduction

This paper explores the welfare effects of third-degree price discrimination in oligopoly. Specifi-

cally, we consider a fairly general setting, and present sufficient conditions under which oligopolis-

tic third-degree price discrimination increases or decreases Marshallian social welfare (i.e., the

sum of the consumer and producer surpluses) when all discriminatory markets are served even

in the absence of price discrimination. To do this task, we employ the sufficient statistics ap-

proach as a unifying methodology: a technique often used in public economics (Chetty 2009;

Kleven 2021; Adachi and Fabinger 2022) as well as macroeconomics (Barnichon and Mesters

2022). Our analysis is mainly developed under firm symmetry; however, it can readily be

extended to accommodate heterogeneous firms (Online Appendix C). Moreover, our analysis

permits a moderate degree of cost differences to exist across separate markets.

Under third-degree price discrimination, consumers are segmented into separate markets

and charged different unit prices in accordance with their identifiable characteristics (e.g., age,

occupation, location, or time of purchase). In contrast, all consumers are charged the same

price if third-degree price discrimination is not practiced (i.e., “uniform pricing”). Without loss

of generality, the case of two markets can be considered to understand how price discrimination

might change output and welfare in each market. If all firms are symmetric, the prevailing

equilibrium price is common in either market whether price discrimination or uniform pricing

is implemented. In this situation, if a discriminatory price becomes greater than the uniform

price in one market, and the unit price decreases in the other market, the former market is

traditionally called a “strong” market (s), and the latter a “weak” market (w) in the literature

since Robinson (1933).1 More formally, this situation is expressed by p∗s > p > p∗w, where p∗s and

p∗w are the equilibrium prices under price discrimination in the strong and the weak markets,

respectively, and p is the uniform price.2 Given such a price change, price discrimination

increases output and social welfare in the weak market, but decreases them in the strong

market. What are the overall effects of the price change?

In the analysis below, we follow Leontieff (1940), Silberberg (1970), Schmalensee (1981),

1To be precise, Robinson (1933, p. 189) originally states “stronger” and “weaker” markets.
2In this paper, price discrimination is present when ps > pw, i.e., when prices between markets are not

uniform. As Clerides (2004, p. 402) states, once cost differentials are allowed, “there is no single, widely
accepted definition of price discrimination.” To understand this, consider symmetric firms and let mcs and
mcw be the marginal cost at equilibrium output in markets s and w, respectively (they do not necessarily have
to be constants for any output levels). Then, two alternative definitions can be considered. One is the margin
definition: price discrimination occurs when ps−mcs > pw−mcw. The other one is the markup definition as per
Stigler (1987): price discrimination occurs when ps/mcs > pw/mcw. Our simpler definition is aligned with the
former definition, and employed for its tractability and connectivity to the existing literature on third-degree
price discrimination with no cost differentials. Moreover, our definition of price discrimination coincides with
what Chen and Schwartz (2015) and Chen, Li and Schwartz (2021) call “differential pricing.” As long as cost
differentials are sufficiently small, these differences will not significantly alter the results because if mcs = mcw,
these three definitions are equivalent.
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Holmes (1989), and Aguirre, Cowan, and Vickers (2010) to add the constraint ps − pw = t,

where t ≥ 0 is interpreted as an artificial constraint on the profit maximization problem for

oligopolistic firms under symmetry. Then, the regime change, which is discrete in its nature,

is now measured by t and is continuously connected between t = 0 as uniform pricing and

t∗ ≡ p∗s − p∗w as price discrimination in equilibrium. This formulation enables us to describe

social welfare as a function of t, W (t), and characterize W ′(t) in terms of economic concepts

based on elasticity terms of market demand. In this way, whether social welfare improves or

deteriorates by this global change of the regime can be determined. This methodology shares

the central idea of the sufficient statistics approach where welfare consequences of policy changes

are derived “in terms of estimable elasticities” (Kleven 2021, p. 516). One benefit of focusing on

sufficient statistics “rather than deep primitives” (Chetty 2009, p. 452) in conducting welfare

analysis is that one can focus on the deeper structure that is “robust across a broad class of

underlying models” (Kleven 2021, p. 535) without a particular specification of market demand.

If we instead start with a specific class of demand, it remains unclear to what extent the welfare

analysis is valid under another class of market demand.3

Our sufficient conditions for oligopolistic price discrimination to increase or decrease social

welfare are provided by means of a cross-market comparison of the multiplications of two or

three of the following economic concepts: (i) profit margin, which is the difference between price

and marginal cost (µ ≥ 0); (ii) pass-through, i.e., how the price responds to a small change in

marginal cost (ρ > 0); and (iii) conduct, which measures the degree of market monopolization

(θ ∈ [0, 1]). These three sufficient statistics are determined by the following two first-order

and two second-order elasticities: (a) the own price elasticity of the firm’s demand (εown), (b)

the cross price elasticity of the firm’s demand (εcross), (c) the curvature of the firm’s demand

(αown), and (d) the elasticity of the cross-price effect of the firm’s demand (αcross).

Specifically, this paper demonstrates that the product of all three concepts, θµρ, provides

the sufficient condition for the change in welfare. As explained in Subsection 3.2, the product

of conduct and pass-through evaluated at the discriminatory prices θ∗mρ
∗
m, m = s, w, in Figure

1 (A) is interpreted as quantity pass-through, measuring how output in each individual market

changes in response to a marginal change in price. To evaluate a marginal change in welfare,

profit margin µ∗m should be considered because it measures the welfare gain or loss that results

from a marginal change in quantity under imperfect competition in which the price exceeds

3One may criticize that sufficient statistics are only endogenous variables by holding that a sufficient condition
is meaningful only when it consists of exogenous parameters. However, in equilibrium, our sufficient conditions
are functions of exogenous parameters for the same reason that in equilibrium, endogenous variables are functions
of exogenous variables, as demonstrated in Section 4. However, deep parameters themselves do not always allow
economic interpretations in a direct manner; for example, in the case of linear demand, the slope coefficient is not
directly to related to demand elasticity. In contrast, sufficient statistics such as elasticities almost always have
economic interpretations. This is the benefit from the sufficient statistics approach because welfare analysis can
be conducted based on economic concepts one-level higher that underlie a plausible class of model specification.
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(A) In terms of sufficient statistics (this paper)

Strong market Weak market

(B) In terms of demand curvatures (Aguirre, Cowan, and Vickers 2010)

Strong market Weak market

Figure 1: A graphical illustration of welfare changes in strong and weak markets
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marginal cost. In this way, the welfare implications can be obtained by means of a cross-market

comparison of the quantity change multiplied by the profit margin.

Existing literature on third-degree price discrimination has a centennial tradition, pioneered

by Pigou (1920) and Robinson (1933), with their main focus on whether price discrimination

increases or decreases social welfare (see Varian (1989); Armstrong (2006, 2008); and Stole

(2007) for comprehensive surveys of this literature). Among others, Schmalensee (1981) and

Aguirre, Cowan, and Vickers (hereafter, ACV) (2010) study how demand curvatures relate to

output and welfare effects. Third-degree price discrimination necessarily entails allocative in-

efficiency because some consumers exist who have the same marginal utility but face different

prices simply because they belong to different markets. Thus, for third-degree price discrim-

ination to increase social welfare, it must sufficiently expand aggregate output to offset such

misallocation across markets. Schmalensee (1981) shows that an increase in aggregate output

is a necessary condition for third-degree price discrimination to increase social welfare—a con-

clusion that is generalized by Varian (1985) and Schwartz (1990)—and ACV (2010) identify a

sufficient condition for price discrimination to raise social welfare: inverse demand in the weak

market is more convex than that in the strong market at the discriminatory prices. Figure 1 (B)

provides a graphical illustration of ACV’s (2010) argument: if uniform pricing is implemented

instead, welfare loss in the weak market due to the output reduction that has arisen under

price discrimination is sufficiently large (the right panel) as compared to the welfare gain in

the strong market (the left panel), provided that the inverse demand in the weak market is

sufficiently convex as compared to that in the strong market.

However, these studies are limited to monopolistic third-degree discrimination: to date,

“there are virtually no predictions as to how discrimination impacts welfare” (Hendel and Nevo

2013, p. 2723; emphasis added) when oligopolistic competition is considered. For example,

Holmes (1989) employs the same technique used by Schmalensee (1981) and ACV (2010) to

examine the output effects of third-degree price discrimination in a symmetric oligopoly (see

Section 3 for details). However, Holmes (1989) provides no welfare predictions (see also Dastidar

2006).4 In this paper, we contribute to the literature by providing fairly general conditions

regarding whether oligopolistic price discrimination increases or decreases social welfare.5

4In a similar vein, Armstrong and Vickers (2001) consider a model of symmetric duopoly with product
differentiation à la Hotelling (1929), and study the consequences of third-degree price discrimination in the
competitive limit around zero transportation costs wherein the equilibrium prices are almost equal to marginal
cost. Under this setting, Armstrong and Vickers (2001) show that price discrimination decreases social welfare
if the weak market has a lower value of price elasticity of demand (Adachi and Matsushima (2014) also derive
a similar result by assuming linear demand in a standard model of symmetrically differentiated duopoly). Our
paper aims to fill the gap between monopoly, such as in Schmalensee (1981) and ACV (2010), and Armstrong
and Vickers’ (2001) competitive limit with respect to welfare implications. I thank Susumu Sato for suggesting
this interpretation.

5Rhodes and Zhou (2022) incorporate oligopolistic competition into a model of personalized pricing or first-
degree price discrimination as the limit case of third-degree price discrimination.
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Notably, our analysis does not necessitate the assumption of no cost differentials between

discriminatory markets. In almost all theoretical studies on price discrimination, this assump-

tion is made mainly to focus on demand differences. However, in many real-world cases of price

discrimination, cost differentials are quite often observed, such as in the typical example of

freight charges across regional markets with different transportation and storage costs (Phlips

1983, pp. 5-7). In the narrowest definition of price discrimination, this might not be considered

price discrimination because they can be regarded as distinct products. However, airlines can

be arguably motivated to offer different types of seats because they seek to exploit heterogeneity

among consumers. In light of this observation, this study permits a moderate amount of cost

differentials to exist across discriminatory markets. Specifically, our analysis below needs not

employ an explicit assumption regarding constant marginal costs in strong and weak market,

cs and cw, as long as the second-order conditions for profit maximization are satisfied and a

sufficiently large discrepancy between cs and cw does not change the order of discriminatory

prices from the one with no cost differentials.6 Figure 1 also reflects this generalization: in (A),

cs and cw are different, whereas in (B), marginal cost, c, is common for both strong and weak

markets.

In a closely related study, Chen, Li, and Schwartz (2021) extend Chen and Schwartz’ (2015)

analysis of monopoly to investigate the welfare effects of cost-based price discrimination (“dif-

ferential pricing”) in oligopoly.7 In their setting, demand in market m = 1, 2, ...,M with N

symmetric firms is given by (using Chen, Li, and Schwartz’ (2021) notation) λm · D̃(pm), where

pm = (pm1, pm2, ..., pmN) is the price vector in market m and λm ∈ (0, 1) is the weight for

market m satisfying
∑M

m=1 λm = 1. As such, market heterogeneity arises only from the supply

side—firms’ marginal costs are different across markets—because own and cross elasticites are

identical across markets that result from the common demand component, D̃(·). Under this

setting, Chen, Li, and Schwartz (2021) are able to identify demand conditions to determine

aggregate social welfare—expressed in terms of the weights (λ1, λ2, ..., λM)—is concave or con-

vex as a function of price: because the uniform price lies in between the discriminatory prices,

social welfare is higher (corr. lower) under differential pricing if the welfare function is convex

(corr. concave).

However, aggregate social welfare is no longer expressed in this simple manner once demand

heterogeneity across markets is allowed. A typical situation when cost-based price discrimina-

tion can be at issue comes from the universal service requirement and fairness concerns (Okada

2014; Geruso 2017; DellaVigna and Gentzkow 2019). In these cases, markets segmented by,

6In the context of reduced-fare parking as a form of third-degree price discrimination with cost differentials,
Flores and Kalashnikov (2017) characterize a sufficient condition for free parking (drivers receive a price discount
in the form of complementary parking while pedestrians do not) to be welfare improving.

7See also Galera and Zaratiegui (2006) and Bertoletti (2009) as studies of conditions under which price
discrimination increases social welfare when cost differentials between markets are allowed.
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e.g., geographical areas would differ in terms of price elasticities of market demand, and if so,

Chen, Li, and Schwartz’ (2021) methodology is no longer valid. In contrast, our analysis pro-

vides welfare implications more directly. As pointed out by Chen and Schwartz (2015, p. 103),

our methodology “neither implies nor is implied” by the conditions in the analysis of Chen

and Schwartz (2015) for monopoly and Chen, Li, and Schwartz (2021) for oligopoly. In this

sense, Chen, Li, and Schwartz’ (2021) analysis and mine are not mutually exclusive but are

complementary.

Our study is also in line with Mrázová and Neary (2017) who show the usefulness of demand

manifold—the relationship between demand elasticity and convexity which is not ascribed to a

function or a correspondence—in comparative statics by suggesting the linkage between these

first- and second-order elasticities and sufficient statistics such as markup and pass-through

as shown in an empirical study by De Loecker, Goldberg, Khandelwal, and Pavcnik (2016).8

Mrázová and Neary (2017) point out that one of the advantages of working with the demand

manifold instead of the demand function per se is that it is clearer to understand results from

comparative statics and counterfactual experiments because demand elasticity and curvature

are more closely related to them than demand primitives themselves.9 However, Mrázová and

Neary (2017) mainly focus on perfect and monopolistic competition: when firm heterogeneity

is taken into account, only cost/productivity heterogeneity à la Melitz (2003) is considered. In

other words, neither εcross nor αcross appears in Mrázová and Neary’s (2017) analysis because

product differentiation in a strategic context is not taken into account. Therefore, Mrázová

and Neary (2017) are only able to focus on two parameters, εown and αown. While we do

not make use of their method directly, we explicitly consider imperfect competition based on

product differentiation: further research would be promising to investigate how Mrázová and

Neary’s (2017) methodology can be more utilized for welfare analysis of imperfectly competitive

behavior with the use of sufficient statistics.

Our methodology has the following policy implications. Admittedly, our welfare predictions

are not “perfect” in that they are stated only as sufficient conditions that justify the current

regime: for example, the first part of Proposition 1 below provides one sufficient condition for

when price discrimination is justified from a standpoint of social welfare. Hence, one may still

miss some other parametric cases of market demand that can also support price discrimination

simply because our sufficient condition does not hold. However, our results enable one to

conclude that once our sufficient condition holds, a regime change that bans price discrimination

definitely decreases social welfare. In this sense, our sufficient conditions are “conservative” but

8In our context, (i) profit margin is determined by the firm-level price elasticity (or the own price elasticity),
(ii) pass-through is determined mainly by the demand curvature, and (iii) conduct is determined by the ratio
of the industry-level elasticity to the firm-level elasticity. See the expressions (17) below for the case of price
discrimination when market-wise elasticities are defined.

9Beggs (2021) derives a necessary and sufficient condition for two demand functions to have the same demand
manifold: one is derived from the other by a change in market size and a change in quality.
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“secure” in line with the “in dubio pro reo” principle behind juridical decisions: it is important

to prevent the “innocent” from being mistakenly judged as “guilty”.

The remainder of this paper is organized as follows. Section 2 presents our base model of

oligopolistic pricing with symmetric firms and constant marginal costs. Then, we derive the

sufficient statistics implications of welfare effects of price discrimination in Section 3. Subse-

quently, Section 4 provide parametric examples of three representative classes of market demand

with product differentiation that are often employed in applies studies: linear, CES (constant

elasticity of substitution), and multinomial logit with outside option. Section 5 concludes.10

Implications of aggregate output and consumer surplus are provided in Online Appendix B,

and we argue in Online Appendix C that our methodology can readily be extended when firm

heterogeneity is introduced.

2 The model of oligopolistic pricing

For ease of exposition, this section follows Holmes (1989) and ACV (2010) to consider the

case of two symmetric firms and two separate markets or consumer groups (hereafter, simply

called “markets”). It is straightforward to extend the following analysis to the case of more

than two symmetric firms and more than two separate markets: in Section 4 below, where we

consider parametric examples of market demand, the number of symmetric firms is assumed to

be N ≥ 2.11 As explained in Introduction, we call one market s (strong), where the equilibrium

discriminatory price is higher than the equilibrium uniform price, and the other w (weak),

where the opposite is true.

Two firms, A and B, have an identical cost structure in each market. Specifically, each firm

has an identical cost function, cm(qim), in market m = s, w, where qim is firm i’s output (i = A,

B). For simplicity of exposition, we assume, with a slight abuse of notation, that firms have a

constant marginal cost in each market m, cm ≥ 0; here, cs and cw can be different. However,

as mentioned again in Subsection 2.3 below, it is assumed that the strong market either has a

higher marginal cost or only slightly lower marginal cost so that its price still increases with

price discrimination. In this sense, this paper does not consider the role of cost differences in

differential pricing (see also Footnote 2 above).

10In this paper, the only policy instrument is an enforcement of uniform pricing. Cowan (2018) studies a
model of monopoly to consider a more moderate instrument by which a government regulates the monopolist’s
profit margins or price-marginal cost ratios across different markets.

11See Online Appendix A for the case of a general number of markets. We assume that resale between markets
is impossible to prevent consumers in the strong market from being better off buying the good at a lower price
in the week market (see Boik (2017) for an empirical analysis of oligopolistic third-degree price discrimination
when arbitrage may matter).
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2.1 Consumers

In market m = s, w, given firms A and B’s prices pAm and pBm, the representative consumer

purchases xAm > 0 and xBm > 0 to maximize her net utility (i.e., surplus)

Um(xm)− pAmxAm − pBmxBm,

where xm = (xAm, xBm), Um is three-times continuously differentiable, ∂Um/∂xim > 0 and

∂2Um/∂x
2
im < 0 for firm i = A, B, and ∂2Um/(∂xAm∂xBm) < 0 (i.e., firms A and B produce

substitutable products). Here, it is assumed that the representative consumer has a large

amount of income so that this maximization problem is valid.

Inverse demands in market m, pim = Pim(xim, x−i,m), are derived from the representative

consumer’s utility maximization (−i = A,B, −i 6= i ): ∂Um(xim, x−i,m)/∂xim − pim = 0, which

also implicitly defines firm i’s direct demand in market m, xim = xim(pim, p−i,m). We assume

that xim(·) is twice continuously differentiable. Because of the assumptions regarding the utility,

firm i’s demand in market m decreases as its own price increases (∂xim/∂pim < 0), and it rises

as the rival’s price increases (∂xim/∂p−i,m > 0; the firms’ products are substitutes).

We also assume that from a viewpoint of consumers, firms are symmetric: Um(x′, x′′) =

Um(x′′, x′) for any x′ > 0 and x′′ > 0. Then, the firms’ demands in market m are also symmetric:

xAm(p′, p′′) = xBm(p′, p′′) for any p′ > 0 and p′′ > 0. Because the firms’ technologies are also

identical, we focus on symmetric Nash equilibrium until we allow firm heterogeneity in Section

5.12

We define the demand in symmetric pricing by qm(p) ≡ xAm(p, p). Note here that

q′m(p) =
∂xAm
∂pA

(pA, p)

∣∣∣∣
pA=p︸ ︷︷ ︸

<0 (ACV’s q′m)

+
∂xAm
∂pB

(p, pB)

∣∣∣∣
pB=p︸ ︷︷ ︸

>0 (strategic)

. (1)

Thus, for q′m(p) to be negative, we assume that |∂xAm(p, p)/∂pA| > ∂xAm(p, p)/∂pB. Note also

that by symmetry, the following relationship also holds (this corresponds to Holmes’ (1989)

Equation 4):
∂xAm
∂pA

(p, p)︸ ︷︷ ︸
own

= q′m(p)︸ ︷︷ ︸
industry

− ∂xBm
∂pA

(p, p)︸ ︷︷ ︸
strategic

.

This exchangeability is key in Holmes’ (1989) derivation below. Intuitively, each firm, under

12Here, ∂2xim(p, p)/∂p2
i can be positive, zero or negative. Following Dastidar’s (2006, p. 234) Assumption 2

(iv), we assume that
∂2xim
∂p2

i

(p, p) +
∂2xim
∂pi∂p−i

(p, p) ≤ 0.
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symmetry, treats the industry demand qm(p) as if it is its own demand. Thus, how a firm’s

pricing behavior affects its own demand as an industry demand has the following two effects:

a small decrease in pA by firm A by deviating from the industry price p (i) not only raises its

own demand by ∂xAm/∂pA as the residual monopolist (industry effects), (ii) firm A can now

also obtain some of the consumers originally attached to firm B, and this amount is ∂xBm/∂pA

(strategic effects).

2.1.1 The (first-order) price elasticities of market demand

Under symmetric pricing, we are able to define, following Holmes (1989, p. 245), the price

elasticity of the industry’s demand by

εIm(p) ≡ −pq
′
m(p)

qm(p)
> 0. (2)

As Weyl and Fabinger (2013, p. 542) state, this should not “be confused with the elasticity

of the residual demand that any of the firms faces.”13 Similarly, the own and the cross price

elasticities of the firm’s demand are defined by

εownm (p) ≡ − p

qm(p)

∂xAm
∂pA

(p, p) > 0

and by

εcrossm (p) ≡ p

qm(p)

∂xBm
∂pA

(p, p) > 0,

respectively. Then, Holmes (1989) shows that under symmetric pricing,

εownm (p) = εIm(p) + εcrossm (p) (3)

holds.14 This implies that the own-price elasticity must be equal to or greater than the

industry’s elasticity and greater than the cross-price elasticity (i.e., εownm (p) ≥ εIm(p) and

εownm (p) > εcrossm (p)).

13Note that εIm here is conceptually identical to η in ACV (2010, p. 1603) and εD in Weyl and Fabinger (2013,
p. 542).

14In general, when there are N ≥ 2 symmetric firms as in Section 4 below, this identity still holds if the cross
price elasticity is defined by εcrossm (p) ≡ (N − 1)[p/qm(p)][∂xBm(p, p)/∂pA].
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2.1.2 The second-order price elasticities of market demand

We also consider two second-order elasticities. First, the curvature of the firm’s (direct) demand

in market m is defined by

αownm (p) ≡ − p

∂xAm(p, p)/∂pA

∂2xAm
∂p2A

(p, p),

which measures the convexity/concavity of the firm’s direct demand, and corresponds to αm(p)

in Aguirre, Cowan and Vickers 2010, p. 1603). Second, we define the elasticity of the cross-price

effect of the firm’s direct demand in market m by

αcrossm (p) ≡ − p

∂xAm(p, p)/∂pA

∂2xAm
∂pB∂pA

(p, p),

which never appears in monopoly. Here, αownm and αcrossm are positive (resp. negative) if and only

if ∂2xAm/∂p
2
A and ∂2xAm/(∂pB∂pA) are positive (resp. negative), respectively. Note also that

the sign of αownm indicates whether the firm’s own part of the demand slope under symmetric

pricing given the rival’s price p, ∂xAm(·, p)/∂pA, is convex (αownm is positive) or concave (αownm

is negative). On the other hand, αcrossm measures to what extent the rival’s price level matters

to how many of the firm’s customers switch to the rival’s product when the firm raises its own

price (∂xAm/∂pA). Thus, a large αcrossm implies that ∂xAm/∂pA is very responsive to a change

in pB, and vice versa.

2.2 Firms

Firm i’s profit in market m is written as

πim(pm) = (pim − cm)xim(pm), (4)

where pm = (pim, p−i,m). As in Dastidar’s (2006, pp. 235-6) Assumptions 3 and 4, for the

existence and the global uniqueness of pricing equilibrium under either uniform pricing or price

discrimination, we assume that for each firm i = A,B, ∂2πim/∂p
2
im < 0, ∂2πim/(∂pim∂p−i,m) >

0, and

−∂
2πim/(∂pim∂p−i,m)

∂2πim/∂p2im
< 1

(see Dastidar’s (2006) Lemmas 1 and 2 for the existence and the uniqueness).

We then define the first-order partial derivative of the profit in market m, evaluated at a

10



symmetric price p, by

∂pπm(p) ≡ ∂πim(pim, p−i,m)

∂pim

∣∣∣∣
pim=p−i,m=p

= qm(p) + (p− cm)
∂xAm
∂pA

(p, p). (5)

Under symmetric discriminatory pricing, p∗m satisfies ∂pπm(p∗m) = 0 for m = s, w, whereas under

symmetric uniform pricing, p is a (unique) solution of ∂pπs(p) + ∂pπw(p) = 0. Throughout this

paper, we consider the situation where the weak market is open under uniform pricing (for

which qw(p∗s) > 0 is a sufficient condition).15

2.2.1 The second-order derivative of the profit function under symmetry

As a measure of concavity of the market-wise profit function in symmetric equilibrium, we

define:

π′′m(p) ≡ q′m(p) +
∂xAm
∂pA

(p, p) + (p− cm)
d

dp

(
∂xAm
∂pA

(p, p)

)
= ∂2pπm(p)︸ ︷︷ ︸

ACV’s π′′m

+
∂xAm
∂pB

(p, p) + (p− cm)
∂2xAm
∂pB∂pA

(p, p)︸ ︷︷ ︸
strategic

, (6)

where ∂2pπm(p) is given by

∂2pπm(p) ≡
[
2 + (p− cm)

∂2xAm(p, p)/∂p2A
∂xAm(p, p)/∂pA

]
∂xAm
∂pA

(p, p), (7)

which corresponds to ACV’s (2010, p. 1603) π′′m(p). The second and third terms in Equation

(6) arise due to oligopoly. Here, in each m, π′′m(p) is assumed to be negative for all p ≥ 0.16

We now argue how π′′m is expressed in terms of the first- and second-order price elasticities

of demand. Note first that Equation (7) implies that

∂2pπm(p) = −{2− p− cm
p︸ ︷︷ ︸

=Lm(p)

[− p

∂xAm
∂pA

(p, p)

∂2xAm
∂p2A

(p, p)

︸ ︷︷ ︸
=αownm (p)

]}[− p

qm(p)

∂xAm
∂pA

(p, p)︸ ︷︷ ︸
=εownm (p)

]
qm(p)

p

15Note that qw(p) > qw(p∗s) because qw(·) is strictly decreasing and p∗s > p. Thus, if qw(p∗s) > 0, then the
weak market is open under uniform pricing, i.e., qw(p) > 0. Alternatively, we would be able to show that there
exist cs and cs, cs < cs, such that p∗s > p∗w and qw(p) > 0 for cs ∈ (cs, cs) in a similar spirit of Adachi and
Matsushima (2014).

16ACV’s (2010) Appendix A discusses the concavity of the profit function.
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= −[2− Lm(p)αownm (p)]εownm (p)
qm(p)

p
,

where

Lm(p) ≡ p− cm
p

(8)

is the markup rate (i.e., the Lerner index). Then, from Equation (6), it can be verified that

π′′m(p) is expressed in terms of the four elasticities (εownm , εcrossm , αownm , and αcrossm ) as well as qm(p)

and p itself:

π′′m(p) = −[2− Lm(p)αownm (p)]εownm (p)
qm(p)

p
+ [

p

qm(p)

∂xAm
∂pB

(p, p)︸ ︷︷ ︸
=εcrossm (p)

]
qm(p)

p

−p− cm
p︸ ︷︷ ︸

=Lm(p)

[− p

∂xAm
∂pA

(p, p)

∂2xAm
∂pB∂pA

(p, p)

︸ ︷︷ ︸
=αcrossm (p)

][
p

qm(p)

∂xAm
∂pA

(p, p)︸ ︷︷ ︸
=−εownm (p)

]
qm(p)

p

= −{[2− (αownm + αcrossm )Lm]εownm − εcrossm }qm
p
. (9)

2.2.2 Conduct

Now, we are able to define the conduct parameter 17 in market m by θm(p) ≡ 1 − ADRm(p),

where ADRm(p) is the aggregate diversion ratio (Shapiro 1996) in market m, defined by

ADRm(p) ≡ −∂xBm(p, p)/∂pA
∂xAm(p, p)/∂pA

=
εcrossm (p)

εownm (p)
≥ 0.

This concept will be utilized in Section 3. Here, ADRm(p) measures the intensity of rivalness :

if ADRm(p) is close to one, consumers who leave a firm as a response to an increase in its price

are mostly switching to its rival’s product.18

17This term originates from the empirical literature where conduct itself is a target of estimation (“parameter”)
without an exact specification of strategic interaction (see, e.g., Bresnahan 1989; Genesove and Mullin 1998;
and Corts 1999). Here, strategic interaction is explicitly modeled (i.e., price competition), and thus the degree
of conduct is solely based on product differentiation with no possibility of collusive pricing.

18Alternatively, Weyl and Fabinger (2013, p. 531) and Adachi and Fabinger (2022) define the conduct pa-
rameter in a market (which, in our interest in price discrimination, can be indexed by m) by θm ≡ εImLm
(their mc and εD are replaced by our cm and εIm, respectively) as the Lerner index adjusted by the elasticity
of the industry’s demand. If the first-order condition is given for each market (that is, if full price discrimi-
nation is allowed), then θm(p) defined as in Weyl and Fabinger (2013) coincides with 1 − ADRm(p) because
[(pm − cm)/pm]εownm = 1 and thus

εIm(p)Lm(p) =
1

εFm(p)

(
− p

qm(p)

)
q′m(p)

= −qm(p)

p

1

∂xAm(p, p)/∂pA

(
− p

qm(p)

)(
∂xAm
∂pA

(p, p) +
∂xAm
∂pB

(p, p)

)
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As Weyl and Fabinger (2013, p. 544) argue, θm(p) captures the degree of industry-level

brand loyalty or stickiness19 in market m. To see this, note that the conduct parameter is also

expressed by

θm(p) =
εIm(p)

εownm (p)
, (10)

where εownm (p) ≥ εIm(p). If εownm (p)→∞ as in the case of the price-taking assumption, θm(p) is

zero. On the other hand, if εownm (p) is equal to εIm(p), that is, the own elasticity is nothing but

the industry’s elasticity, then it is monopoly and θm(p) = 1.20 Note here that by using this the

Holmes decomposition (Equation 3), we can rewrite Equation (9) as

π′′m(p) = −{1 + θm − (αownm + αcrossm )Lm}
qmε

own
m

p
. (11)

Note also here that θm(p), which ranges between 0 and 1, better captures the brand stickiness

than Lm(p) does: the markup rate, Lm, alone is not appropriate to measure the rivalness within

market m because it can be the case that pm is close to cm (the markup rate is close to zero)

simply because the price elasticity of the industry’s demand εIm(pm) is very large, whereas the

brand rivalness is so weak that the cross-price elasticity, εcrossm , remains very small (as a result,

in total, εownm is very large, which is actually the reason for the low markup rate). However, if

εcrossm is close to εownm (i.e., almost of all consumers who leave a firm as a response to its price

increase are switching to other rivals’ products), then θm becomes close to zero irrespective of

the value of the markup rate.

2.3 Equilibrium

The equilibrium discriminatory price in market m = s, w, p∗m, satisfies the following Lerner

formula:

εownm (p∗m)Lm(p∗m) = 1. (12)

This shows that the discriminatory price in market m approaches to the marginal cost as the

own-price elasticity for the firm, εownm (p∗m), becomes large. Because of Holmes’ (1989) elasticity

formula explained above, εownm (p∗m) can be large (i) when εIm(p∗m) is very large even if εcrossm (p∗m)

=
∂xAm(p, p)/∂pA + ∂xBm(p, p)/∂pA

∂xAm(p, p)/∂pA
(by symmetry)

= 1−ADRm(p) ≡ θm(p)

is established. It turns out that this alternative definition is more tractable when firm heterogeneity is introduced
in Section 5.

19Even if firms’ products have the same characteristics across different markets (with no product differentia-
tion), brand loyalty may differ across markets, reflecting the differences in market characteristics (as summarized
in demand functions).

20Because [(pm − cm)/pm]εownm = 1 and εownm = εIm + εcrossm , it is verified that θm + [(pm − cm)/pm]εcrossm = 1.
Thus, as long as the products are substitutes (εcrossm > 0), θm is less than one.
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is close to zero, or (ii) when εcrossm (p∗m) is very large even if εIm(p∗m) is close to zero. Evidently,

if there are no cost differentials between markets, which market is strong or weak is solely

determined by the difference in the own-price elasticity. As mentioned above, we assume that

the marginal cost in the strong market is not sufficiently low to assure that p∗s > p > p∗w indeed

holds.21,22

Lastly, let ym be per-firm (symmetric) market share of output in market m, that is,

ym(ps, pw) ≡ qm(pm)/[qs(ps) + qw(pw)]. Then, the equilibrium uniform price, p ≡ p(cs, cw),

satisfies: ∑
m=s,w

ymε
own
m (p)Lm(p) = 1, (13)

where ym ≡ ym(p(cs, cw), p(cs, cw)) for m = s, w.23 In this way, the equilibrium level of uniform

price is determined by the market-share weighted average of the own price elasticities, whereas

the equilibrium level of discriminatory price solely depends on the firm’s own price elasticity in

that market. In the rest of the paper, the dependence of the equilibrium price is often implicit

when there are no confusions. In particular, the superscript star (the upper bar) denotes price

discrimination (uniform pricing). For example, we write (εIm)∗ ≡ εIm(p∗m) and ε̄Im ≡ εIm(p) as the

industry’s elasticities in equilibrium.

3 Welfare analysis

As mentioned in Introduction, we add the constraint ps − pw = t, where t ≥ 0, to the firms’

profit maximization problem.24 Then, we express social welfare (as well as aggregate output

and consumer surplus) as a function of t in [0, t∗], where t = 0 corresponds to uniform pricing,

21See Nahata, Ostaszewski, and Sahoo (1990) for an example of all discriminatory prices being lower than
the uniform price with a plausible demand structure under monopoly. In the case of oligopoly, Corts (1998)
show that best-response asymmetry, in which firms differ in ranking strong and weak markets, is necessary for
all discriminatory prices to be lower than the uniform price (“all-out price competition”). As long as symmetric
firms are considered, this case never arises.

22When price discrimination is allowed, each firm may not price discriminate even if it is allowed to do so
because it is still able to set a uniform price (i.e., it is not forced to price discriminate). We assume that
πim(·, p∗−i,m) is strictly increasing (decreasing) at pim = p in market m = s (m) and thus firm i has an incentive
to deviate from the equilibrium uniform price if the other firm chooses p∗−i,s and p∗−i,w, and that πim(·, p∗−i,m)
attains the global optimum at pim = p∗im.

23If there are no cost differentials, i.e., cs = cw (≡ c), then the formula is simpler:

p− c
p

=
1∑

m=s,w ymε
own
m (p)

as shown by Holmes (1989, p. 247): the markup rate (common to all markets) is equal to the inverse of the
average of own-price elasticities weighted by the output shares.

24Alternatively, Vickers (2020) analyzes properties of social welfare and consumer surplus as a scalar argument
to make a comparison between price discrimination and uniform pricing in monopoly. Vickers (2020) especially
focuses on the case where quantity elasticity or inverse demand curvature is constant for all markets. See also
Cowan (2017) for an analysis of the role of price elasticity and demand curvature in determining the effects of
monopolistic third-degree price discrimination.
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and t = t∗ ≡ p∗s−p∗w to price discrimination. Note that under this constrained problem of profit

maximization, pw satisfies ∂pπs(pw + t) + ∂pπw(pw) = 0. Thus, we write the solution by pw(t).

Then, we define ps(t) ≡ pw(t) + t. Applying the implicit function theorem to this equation

yields to 
p′w(t) = − 1

1 + π′′w/π
′′
s

< 0

p′s(t) =
1

1 + π′′s/π
′′
w

> 0.

(14)

They show the natural relationship between p′m and π′′m: as the π′′m becomes smaller around the

equilibrium price, i.e., the profit function in market m becomes flatter at the peak point, the

price becomes more responsive in that market. i.e., |p′m| is larger.

3.1 Preliminaries

We now define the representative consumer’s utility in symmetric pricing by Ũm(q) = Um(q, q).

Then, social welfare under symmetric pricing as a function of t is written as

W (t) ≡ Ũs(qs[ps(t)]) + Ũw(qw[pw(t)])− 2cs · qs[ps(t)]− 2cw · qw[pw(t)]

= (Ũ ′s − 2cs) · q′s · p′s(t) + (Ũ ′w − 2cw) · q′w · p′w(t),

which implies (using Ũ ′m = ∂Um/∂qA + ∂Um/∂qB = 2(∂Um/∂qA) by symmetry)

W ′(t)

2
= [ps(t)− cs] · q′s · p′s(t) + [pw(t)− cw] · q′w · p′w(t)

=

(
− π′′sπ

′′
w

π′′s + π′′w

)
︸ ︷︷ ︸

>0

{zw[pw(t)]− zs[ps(t)]} ,

where, as in ACV (2010, p. 1605),

zm(p) ≡ µm(p)q′m(p)

π′′m(p)

is “the ratio of the marginal effect of a price increase on social welfare to the second derivative

of the profit function,” and

µm(p) ≡ p− cm (15)
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is the profit margin in market m.25 In contrast to ACV (2010), our q′m and π′′m have strategic

effects as Equations (1) and (6) above show.

Now, if we assume zm is increasing in p (the increasing ratio condition for welfare; IRCW),26

then as in ACV’s (2010) Lemma, it is verified that if there exists t̂ such that W ′(t̂) = 0, then

W ′′(t̂)/2 < 0. This is because

W ′′(t)

2
=

(
− π′′sπ

′′
w

π′′s + π′′w

)
(z′wp

′
w − z′sp′s) + (zw − zs)

d

dt

(
− π′′sπ

′′
w

π′′s + π′′w

)
,

and thus sign[W ′′(t̂)/2] = sign[z′sp
′
s − z′wp′w] is negative (∵ z′wp

′
w < 0, z′sp

′
s > 0, and zw = zs for

t = t̂). Hence, (1/2)W (t) is strictly quasi-concave on [0, t∗], and behaves in either manner:

1. If W ′(0) ≤ 0, then (1/2)W (t) is monotonically decreasing in r, and as a result ∆W/2 ≡
[W (t∗)−W (0)]/2 < 0; price discrimination decreases social welfare.

2. If W ′(0) > 0, then (1/2)W (t) either

(a) is monotonically increasing (if W ′(t∗) > 0, this is true), and as a result, ∆W/2 > 0;

price discrimination increases social welfare.

(b) first increases, and then after the reaching the maximum (where W ′(t) = 0), de-

creases until t = t∗. In this case, price discrimination may increase or decrease

social welfare.

Below, we focus on the first two cases that provide sufficient conditions for determining the

welfare effects of price discrimination. All the three parametric examples in Section 4 below

satisfy the IRCW.

25Here, µm(p)q′m(p) can be interpreted as the marginal effect of a price increase on social welfare in market
m because:

d[

per-firm (normalized)︷ ︸︸ ︷
1

2
Um[qm(p)]− cmqm(p)]

dp
= µm(p)q′m(p).

26Note that

z′m(p) =
[µm(p)q′′m(p) + q′m(p)]π′′m(p)− µm(p)q′m(p)π′′′m(p)

[π′′m(p)]2

and thus, the IRCW is equivalent to

[µm(p)q′′m(p) + q′m(p)]π′′m(p) > µm(p)q′m(p)π′′′m(p).

Appendix B of ACV (2010) discusses sufficient conditions for the IRCW (IRC in their abbreviation) to hold in
the case of monopoly.
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3.2 Sufficient conditions using pass-through

To provide a formal statement that permits the graphical interpretation explained in In-

troduction, we must define the remaining sufficient statistic—pass-through in market m by

ρm ≡ ∂pm/∂cm. It is a function of t ∈ [0, t∗] of the constrained problem considered above. In

particular,

ρm[pm(t)] =



∂xAm/∂pA
π′′s + π′′w

for t < t∗

∂xAm/∂pA
π′′m

(≡ ρ∗m) for t = t∗

is obtained by applying the implicit function theorem to ∂pπs(pw + t) + ∂pπw(pw) = 0 for t < t∗

and ∂pπm(pm) = 0 for t = t∗ (i.e., under price discrimination).

From Equation (9) it is observed that ρ∗m as defined above can be expressed as

ρ∗m =

∂xAm
∂pA{

2− [(αownm )∗ + (αcrossm )∗](Lm)∗ − (εcrossm )∗

(εownm )∗

}
∂xAm
∂pA

=
1

2− (εcrossm )∗ + (αownm )∗ + (αcrossm )∗

(εownm )∗

because (Lm)∗ = 1/(εownm )∗. Note here that in the case of monopoly (i.e., (εcrossm )∗ = 0 and

(αcrossm )∗ = 0),

ρ∗m =
1

2− (αownm )∗

(εownm )∗

(16)

and (αownm )∗/(εownm )∗ corresponds to ACV’s (2010, p. 1603) curvature of the inverse demand, σ∗m.

Now, using conduct, profit margin, and pass-through, we obtain the following sufficient

conditions for price discrimination to increase or decrease social welfare.

Proposition 1. Given the IRCW, price discrimination increases social welfare if

µ∗sθ
∗
sρ
∗
s < µ∗wθ

∗
wρ
∗
w

holds, and it decreases social welfare if

µsθsρs
π̄′′s

≥ µwθwρw
π̄′′w
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holds, where

π̄′′m ≡ π′′m(p) = −{[2− (αownm + ᾱcrossm )Lm ]̄εownm − ε̄crossm }qm
p
,

for m = s, w.

Proof. See Appendix A.

In plain words, if either (i) conduct (θ), (ii) profit margin (µ), or (iii) pass-through (ρ) is

sufficiently small in the strong market, then social welfare is likely to be higher under price

discrimination. In particular, if these three measures are calculated (or estimated) in each

separate market, then it would assist one to judge whether price discrimination is desirable

from a society’s viewpoint. Specifically, suppose that price discrimination is being conducted.

Then, to evaluate it from a viewpoint of social welfare, one only needs the local information:

first, θ∗m, µ∗m and ρ∗m for each m = s, w, are computed, and if the sufficient condition above

is satisfied, then the ongoing price discrimination is justified. In addition, to compute θ∗m, µ∗m

and ρ∗m in equilibrium, information on marginal cost is unnecessary : once a specific form of

demand function, qim = xim(pim, p−i,m), is provided (and if the IRCW is satisfied), then the

three variables are computed in the following manner:27

θ∗m = 1− (εcrossm )∗

(εownm )∗

ρ∗m =
1

2− (εcrossm )∗ + (αownm )∗ + (αcrossm )∗

(εownm )∗

µ∗m =
p∗m

(εownm )∗
.

(17)

Thus, if the firm’s demand for each market m is estimated and the discriminatory price p∗m

is observed, then one can easily compute θ∗m, µ∗m, and ρ∗m, using up to second-order demand

elasticities.28

To provide an intuitive understanding as explained in Introduction, note that θ∗mρ
∗
m is

interpreted as quantity pass-through in market m under price discrimination if the marginal

costs are constant: it is defined as dq∗m/dq̃, where q̃ is an exogenous amount of output with

πjm(pjm, p−j,m) = (pjm − cm)[xjm(pjm, p−j,m)− q̃], which can be expressed by

dq∗m
dq̃

= q′m(p∗m) · dp
∗
m

dq̃

=
q′m

∂xAm/∂pA
· ∂xAm
∂pA

· dp
∗
m

dq̃

27An alternative expression for µ∗m is µ∗m = cm/[(ε
own
m )∗ − 1] if the cost information is used.

28It should be emphasized that the second-order supply property, i.e., the derivative of marginal cost, would
be necessary if non-constant marginal cost is allowed, as suggested by Adachi and Fabinger (2022) in the context
of general “taxation” (pure taxation and other additional costs from external changes).
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=

(
q′m

∂xAm/∂pA

)
·
(
∂xAm/∂pA

π′′m

)
= θ∗m · ρ∗m

because the first-order condition with q̃ indicates dp∗m/dq̃ = 1/π
′′
m.29 Now, µ∗m × θ∗mρ∗m approx-

imates the trapezoid generated by a small deviation from (perfect) price discrimination that

captures the marginal welfare gain in the strong market and the marginal welfare loss in the

weak market (see Figure 1, A). If the latter is larger than the former, such a deviation lowers

social welfare, and owing to the IRCW, this argument extends globally so that the regime

switch to uniform pricing definitely decreases social welfare.

Note that this comparison is not straightforward when starting at uniform pricing (see the

latter part of Proposition 1): why is the adjustment term, π̄′′m, necessary for the deviation from

uniform pricing? This is because pass-through is not defined market-wise unless the pricing

regime is “perfect” or “full” price discrimination (i.e., t = t∗), where the first-order conditions

are given market-wise. Note that if |π′′m| is small, then πm is “flat,” and thus the price shift

|∆pm| in response to some change would be large (see Expression 14). Hence, the role of π′′w/π
′′
s

is to adjust measurement units for ρw/ρs. For example, if |π′′w| is very small, then ρw is “over

represented,” and thus it should be “penalized” so that the right hand side of the inequality in

the proposition becomes small.

Proposition 1 cannot be further simplified even if no cost differentials (i.e., cs = cw) are

additionally assumed. In other words, this expression is already robust to the inclusion of cost

differentials. Now, if we further assume that there are no strategic effects (i.e., θm = 1), then

the condition µ∗wθ
∗
wρ
∗
w ≥ µ∗sθ

∗
sρ
∗
s becomes (p∗s − c)/(p∗w − c) ≤ (1/ρ∗s)/(1/ρ

∗
w), which coincides

with
p∗w − c
2− σ∗w

≥ p∗s − c
2− σ∗s

in Proposition 2 of ACV (2010, p. 1606), where σ∗m is what they call the curvature of the inverse

demand function (under price discrimination), because of σ∗m = (αownm )∗/(εownm )∗ and Equation

(16). Thus, price discrimination increases social welfare “if the discriminatory prices are not far

apart and the inverse demand function in the weak market is locally more convex than that in

the strong market” (ACV 2010, p. 1602). As compared to Figure 1 (B), Figure 1 (A) shows the

usefulness of the sufficient statistics in welfare evaluation. In Online Appendix B, we extend

our arguments to aggregate output and consumer surplus. Online Appendix C also argues that

our methodology is readily extended to accommodate heterogeneous firms.

29Note that this is the case where dq∗m/dq̃ is evaluated at q̃ = 0: Miklós-Thal and Shaffer (2021a) derive a
general formula for q̃ > 0, correcting Weyl and Fabinger’s (2013) arguments. If marginal costs are non-constant
(see Online Appendix D), then πim(pim, p−i,m) = pim · [xim(pim, p−i,m)− q̃]− cm[xim(pim, p−i,m)− q̃] should be
considered, where cm(·) is the cost function, and thus θ∗mρ

∗
m is no longer the quantity pass-through under price

discrimination (that is, when q̃ = 0). See Weyl and Fabinger (2013, p. 572) for a precise expression of quantity
pass-through with non-constant marginal costs.
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3.3 An alternative expression

The next result shows another expression that can be readily verified to be equivalent to

Proposition 1.

Corollary 1. Given the IRCW, price discrimination increases social welfare if

µ∗sθ
∗
s

1 + θ∗s − [(αowns )∗ + (αcrosss )∗]L∗s
<

µ∗wθ
∗
w

1 + θ∗w − [(αownw )∗ + (αcrossw )∗]L∗w

holds, and it decreases social welfare if

µ̄sθ̄s
1 + θ̄s − (ᾱowns + ᾱcrosss )L̄s

≥ µ̄wθ̄w
1 + θ̄w − (ᾱownw + ᾱcrossw )L̄w

holds.

Proof. Using Equations (2), (10), and (11), we can rewrite zm so that

W ′(t)

2
=

(
− π′′sπ

′′
w

π′′s + π′′w

)(
µwθw

1 + θw − (αownw + αcrossw )Lw
− µsθs

1 + θs − (αowns + αcrosss )Ls

)
for t ∈ [0, t∗].

This corollary indicates that pass-through is, although it facilitates an intuitive interpre-

tation as shown in Proposition 1, not necessary. Instead, the own and cross curvatures are

utilized, and the second inequality in Corollary 1 is computationally simpler than the second

inequality in Proposition 1 because the second-order derivative for the profit function, π′′m , is

not involved. For this reason, this corollary’s result is used for numerical exercises in the next

section.

Note that our expression for

zm =
(pm − cm)θm

1 + θm − (αownm + αcrossm )Lm

is a generalization of ACV’s (2010) Equation (4),

zm =
pm − c

2− αownm Lm

if there are no strategic effects (i.e., θm = 1 and αcrossm = 0). Additionally, if there are no cost

differentials (i.e., cs = cw ≡ c), then the second part of the corollary reduces to ACV’s (2010,

p. 1605) Proposition 1 (αowns ≥ αownw in our notation; in their notation, αs(p) ≥ αw(p)) because

Ls(p) = Lw(p). That is, the firm’s “direct demand function in the strong market is at least as

convex as that in the weak market at the nondiscriminatory price” (ACV 2010, p. 1602).
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4 Parametric examples of market demand

To consider the following three examples of parametric market demand, we consider N ≥ 2

symmetric firms, assuming that there are still two separate markets (strong and weak): let

xm = (x1m, x2m, ..., xNm) be the representative consumer’s consumption bundle in market m =

s, w, and pm = (p1m, p2m, ..., pNm) be the prices in that market. We focus on (i) linear, (ii)

CES (constant elasticity of substitution), and (iii) multinomial logit demands: these demand

functions are among the commonly-used demand systems (Quint 2014; Choné and Linnemer

2020), and Online Appendix B verifies that the IRCW holds for these three demands. Note

that to save notation, the same βm is repeatedly used in the following three examples, but with

different meanings (similarly, ωm appears twice: in Subsections 4.1 and 4.3).

Let the set of related parameters be denoted by Θ. If

G(Θ, N) ≡ µ̄sθ̄s
1 + θ̄s − (ᾱowns + ᾱcrosss )L̄s

− µ̄wθ̄w
1 + θ̄w − (ᾱownw + ᾱcrossw )L̄w

and

H(Θ, N) ≡ µ∗sθ
∗
s

1 + θ∗s − [(αowns )∗ + (αcrosss )∗]L∗s
− µ∗wθ

∗
w

1 + θ∗w − [(αownw )∗ + (αcrossw )∗]L∗w

are defined, then, according to Corollary 1, G(Θ, N) ≥ 0 implies ∆W < 0 and H(Θ, N) < 0

implies ∆W > 0. Table 1 shows the first- and second-order elasticities as well as the conduct

parameter θm (from Equation 10) as a function of p: p (in the case of uniform pricing) or p∗m

(in the case of price discrimination) is imputed. Interestingly, in the case of CES demand,

not only (εownm , εcrossm ) is constant but so are (αownm , αcrossm ) and θm. Given any price p, Lm, and

µm are obtained from Equations (8) and (15), respectively. Then, G(Θ, N) and H(Θ, N) are

parametrically expressed for each of the demands.

We below focus on cross-market differences in demand in line with the literature on third-

degree price discrimination where market differences arise from the demand side. In particular,

we focus on one parameter that is closely related to the first-order elasticities, (δs, δw) for linear

demand, (σs, σw) for CES demand, and (βs, βw) for multinomial demand (see below for the

definitions).

However, our methodology does not preclude cost differences: in all these examples, we

consider both cases of common and different marginal costs across strong and weak markets.

To ensure that the strong market is indeed strong when cost differentials are allowed but

demand heterogeneity is not allowed, it is sufficient to assume that the marginal cost in the

strong market is higher than in that in the weak market, cw: cs > cw (although cs should

not be too much higher than cw). Hence, we consider cs that is slightly higher than cw when

cost differentials are allowed. However, this inequality will not be sufficient when demand
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(i) Linear

First-order

Own: εownm (p)
[1 + (N − 2)δm]p

(1− δm)(ωm − p)
Cross: εcrossm (p)

δmp

(1− δm)(ωm − p)

Second-order

Own: αownm 0

Cross: αcrossm 0

Conduct

θm
1 + (N − 3)δm
1 + (N − 2)δm

(ii) CES

First-order

Own: εownm

1 + (N − 1)σm
N

Cross: εcrossm

σm − 1

N

Second-order

Own: αownm

Nσm[N + 1 + (N − 1)σm]− 2(σm − 1)[1 + (N − 1)σm]

N [1 + (N − 1)σm]

Cross: αcrossm

Nσm(σm − 1)− 2(σm − 1)[1 + (N − 1)σm]

N [1 + (N − 1)σm]

Conduct

θm
2 + (N − 2)σm
1 + (N − 1)σm

(iii) Logit

First-order

Own: εownm (p) βmp · [1− qm(p;N)]

Cross: εcrossm (p) βmp · qm(p;N)

Second-order

Own: αownm (p) βmp · [1− 2qm(p;N)]

Cross: αcrossm (p)
βmp · qm(p;N)[1− 2qm(p;N)]

1− qm(p;N)

Conduct

θm(p)
1− 2qm(p;N)

1− qm(p;N)

Table 1: The four elasticities and the conduct ‘parameter’ under symmetric price p in market
m (with N symmetric firms). See the main text for the notations. Note that for the CES
demand, the four elasticities and the conduct parameter are constant for any p. For the linear
demand, the two second-order elasticites are zero, and the conduct parameter is constant.
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differentials are also allowed: we exclude the parameter region where p∗s ≥ p∗w does not hold in

each of the three examples.

4.1 Linear demand

Linear demand is derived from the quadratic utility of the representative consumer in market

m = s, w under symmetric product differentiation (Shubik with Levitan 1980):

Um(xm) = ωm ·
N∑
i=1

xim −
1

2

(
βm

N∑
i=1

x2im + 2γm
∑
j 6=i

ximxjm

)
.

This yields linear inverse demand, Pim(xim,x−i,m) = ωm−βmxim−γm
∑

j 6=i xjm, where x−i,m =

(xjm)j=1,2,...,N ; j 6=i, and the corresponding direct demand in market m is

xim(pim,p−i,m;ωm, βm, γm) =
1

[1 + (N − 1)δm](1− δm)βm

×

{
ωm(1− δm)− [1 + (N − 2)δm]pim + δm

∑
j 6=i

pjm

}

for firm i, where p−i,m = (pjm)j=1,2,...,N ; j 6=i, and δm ≡ γm/βm ∈ [0, 1) is the strength of substi-

tutability : if δm is close to one, market m is approximated by perfect competition, whereas if

δm is equal to zero, each firm behaves as a monopolist.

In symmetric equilibrium with pm = (p, p, ..., p) , the firm’s demand in market m is given

by

qm(p) =
ωm − p

[1 + (N − 1)δm]βm
,

and thus the own and the cross price elasticities can be obtained as shown in Table 1, which

imply that the conduct parameter is given as a constant by

θm(p) =
1 + (N − 3)δm
1 + (N − 2)δm

≡ θ̃m.

Then, the discriminatory price in market m satisfies Equation (12):

p∗m − cm
p∗m︸ ︷︷ ︸

=Lm(p∗m)

=
(1− δm)(ωm − p∗m)

[1 + (N − 2)δm]p∗m︸ ︷︷ ︸
=1/εownm (p∗m)

⇔ p∗m = p∗m(cm, ωm, δm, N) ≡ (1− δm)ωm + [1 + (N − 2)δm]cm
2 + (N − 3)δm

,
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whereas the equilibrium uniform price, p, is derived by solving Equation (13):

∑
m=s,w

[1 + (N − 2)δm](p− cm)

[1 + (N − 1)δm](1− δm)βm
=
∑
m=s,w

ωm − p
[1 + (N − 1)δm]βm

,

because

ȳmε̄
own
m Lm =

ωm − p
[1 + (N − 1)δm]βm∑

m=s,w

ωm − p
[1 + (N − 1)δm]βm

· [1 + (N − 2)δm]p

(1− δm)(ωm − p)
· p− cm

p

=

[1 + (N − 2)δm](p− cm)

[1 + (N − 1)δm](1− δm)βm∑
m=s,w

ωm − p
[1 + (N − 1)δm]βm

for m = s, w, leading to an explicit solution:

p = p(c,ω, δ,β, N) ≡

∑
m=s,w

(1− δm)ωm + [1 + (N − 2)δm]cm
[1 + (N − 1)δm](1− δm)βm∑

m=s,w

2 + (N − 3)δm
[1 + (N − 1)δm](1− δm)βm

,

where c = (cs, cw), ω = (ωs, ωw), δ = (δs, δw), and β = (βs, βw).

Finally, noting the two curvatures, αownm and αcrossm , are necessarily zero and the conduct

parameter is constant in each market, it is verified that

G(δ,ω,β, c, N) =
µ̄sθ̃s

1 + θ̄s
− µ̄wθ̃w

1 + θ̄w

=
(p− cs)[1 + (N − 3)δs]

2 + (2N − 5)δs
− (p− cw)[1 + (N − 3)δw]

2 + (2N − 5)δw

and

H(δ,ω,β, c, N) =
µ∗sθ̃s

1 + θ∗s
− µ∗wθ̃w

1 + θ∗w

=
(1− δs)(ωs − cs)[1 + (N − 3)δs]

[2 + (N − 3)δs][2 + (2N − 5)δs]
− (1− δw)(ωw − cw)[[1 + (N − 3)δw]

[2 + (N − 3)δw][2 + (2N − 5)δw]
.

In Figure 2 with ωs = 1.50, ωw = 1.00, and βs = βw = 1.00, we consider the two cases

of identical marginal costs (cs = cw = 0.20) on the left panel, and of different marginal costs

(cs = 0.22 and cw = 0.20) on the right panel. The top panel assumes N = 2, whereas the bottle

24



Marginal costs are:

common across markets different across markets
(cs = cw = 0.20) (cs = 0.22; cw = 0.20)

Figure 2: Linear demand with ωs = 1.5, ωw = 1.0, and βs = βw = 1.0. Note that for p∗w to
be actually lower than p∗s, δs, relative to δw, must not be sufficiently large. Specifically, the
lower-right shaded region of (δs, δw) must be excluded. The regions for H < 0 and for G ≥ 0 are
colored when N = 2 (top) and when N = 4 (bottom), depending on whether the two marginal
costs are common (left) or different (right). Note also that H < 0 is only a part of the region
where price discrimination improves social welfare and G ≥ 0 is also only a part of the region
where it reduces social welfare.
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panel has N = 4 firms. In each of the four graphs, the dark-shaded are of the (δs, δw) region

is excluded because p∗s ≥ p∗w does not holds. It is observed that the region for sufficiency for

∆W < 0 when the current regime of uniform pricing is relaxed, i.e, G(δs, δw;ω,β, c, N) ≥ 0,

appears in the north-west side where the degree of substitutability in the weak market is

sufficiently large. Here, a marginal increase in welfare gain due to the lower price in the weak

market will be relatively low because the intensity of competition in the weak market is already

high. Hence, welfare gain in the weak market due to the price reduction is limited and thus

price discrimination is likely to reduce social welfare (Adachi and Matsushima (2014) also derive

a similar finding from their Figures 4 and 5). This effect from competition is also prominent

when the number of firms increases to N = 4: the region for H(δs, δw;ω,β, c, N) < 0 where

sufficiency for ∆W > 0, i.e, social welfare decreases if price discrimination is banned, shrinks.

4.2 CES (constant elasticity of substitution) demand

Suppose that the representative consumer’s utility in market m is given by:

Um(xm) =

(
N∑
i=1

x
σm−1
σm

im

) σm
σm−1

,

where σm > 1 is the constant elasticity of substitution across products/firms (Vives 1999,

pp. 147-8).30 Then, the direct demand function for good/firm i is given by

xim(pim,p−i,m;σm) =
p−σmim∑N
j=1 p

1−σm
jm

,

and, in symmetric equilibrium, the firm’s demand in market m is

qm(p) =
1

Np
,

and thus the own and the cross price elasticities are obtained as constants as indicated in Table

1 and thus the conduct parameter is also given as a constant by

θm(p) =
2 + (N − 2)σm
1 + (N − 1)σm

≡ θ̂m.

30Anderson, de Palma, and Thisse (1992, pp. 85-90) discuss how this demand system can be microfounded by
discrete choice modeling. The elasticity of substitution between the two goods is constant, 1/(1− βm)
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The own and the cross curvatures are also obtained as constants as shown in Table 1. Hence,

let the sum of these two curvatures be denoted by

α̂m ≡ αownm (p) + αcrossm (p)

=
N2σm(1 + σm)− 4(σm − 1)[1 + (N − 1)σm]

N [1 + (N − 1)σm]

Now, the discriminatory price in market m is obtained explicitly by solving Equation (12):

p∗m − cm
p∗m

=
N

1 + (N − 1)σm

⇔ p∗m = p∗m(cm, σm, N) ≡ 1 + (N − 1)σm
(N − 1)(σm − 1)

cm,

which indicate constant markup, whereas the equilibrium uniform price satisfies Equation (13):

∑
m=s,w

[1 + (N − 1)σm](p− cm)

2N
= p

because

ȳmε̄
own
m Lm =

qm(p)

qs(p) + qw(p)
· 1 + (N − 1)σm

N
· p− cm

p

=
[1 + (N − 1)σm](p− cm)

2Np
,

which leads to the following explicit solution:

p = p(c,σ, N) ≡ [1 + (N − 1)σs]cs + [1 + (N − 1)σw]cw
(N − 1)(σs + σw − 2)

.

Then, it is also verified that

G(σ, c, N) =
µ̄sθ̂s

1 + θ̂s − α̂sL̄s
− µ̄wθ̂w

1 + θ̂w − α̂wL̄w
=

1

(N − 1) (σs + σw − 2)

×
[

[2 + (N − 2)σs][−(N − 1)σw (cs − cw) + (2N − 1)cs + cw]

[1 + (N − 1)σs] (Σs + 1)

− [2 + (N − 2)σw][(N − 1)σs (cs − cw) + (2N − 1)cw + cs]

[1 + (N − 1)σw] (Σw + 1)

]
,
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where

Σs ≡
{σs[(N − 2)2σs +N(N + 4)− 8] + 4}[(N − 1)σw (cs − cw)− (2N − 1)cs − cw]

N ((N − 1)σs + 1) (cs ((N − 1)σs + 1) + cw ((N − 1)σw + 1))

+
2 + (N − 2)σs
1 + (N − 1)σs

Σw ≡ −
{σw[(N − 2)2σw +N(N + 4)− 8] + 4}[(N − 1)σs (cs − cw) + (2N − 1)cw + cs]

N ((N − 1)σw + 1) (cs ((N − 1)σs + 1) + cw ((N − 1)σw + 1))

+
2 + (N − 2)σw
1 + (N − 1)σw

and

H(σ, c, N) =
µ∗sθ̂s

1 + θ̂s − α̂sL∗s
− µ∗wθ̂w

1 + θ̂w − α̂wL∗w

=
N [2 + (N − 2)σs][1 + (N − 1)σs]cs

(σs − 1) 2{N − 1 + [1 +N2(N − 2)]σs}

− N [2 + (N − 2)σw][1 + (N − 1)σw]cw
(σw − 1) 2{N − 1 + [1 +N2(N − 2)]σw}

.

Note that in the case of CES demand, (σs, σw) is the only pair of demand parameters that

determines which market is strong. Specifically, as in Figure 2 above, the degree of substitution

in the weak market, σw, must be sufficiently high as compared to σs for p∗s ≥ p∗w to hold.

Interestingly, Figure 3 shows that if differential costs are not allowed (i.e., the left panel), the

region of H(σs, σw; c, N) < 0 does not appear. Moreover, if N = 4, neither the region of H < 0

nor G ≥ 0 appears, indicating that welfare assessment is not possible. However, once differential

costs are allowed (i.e., the right panel), the region for H < 0 appears: if (σs, σw) belongs to

this region, we can definitely conclude that price discrimination increases social welfare. By

comparing Figure 3 with Figure 2, we can also find that (δs, δw) in the linear demand and

(σs, σw) in the CES demand play a similar role.

4.3 Multinomial logit demand with outside option

Lastly, we consider the following share/demand function that each firm i faces in market m =

s, w:

xim(pim,p−i,m;ωm, βm) =
exp(ωm − βmpjm)

1 +
N∑
j=1

exp(ωm − βmpjm)

∈ (0, 1),
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Marginal costs are:

common across markets different across markets
(cs = cw = 0.20) (cs = 0.22; cw = 0.20)

Figure 3: CES demand when N = 2 (top) and when N = 4 (bottom). As in Figure 2, the
dark-shaded region of (σs, σw) is excluded for p∗s to be actually higher than p∗w. The regions for
H < 0 and for G ≥ 0 are colored when the two marginal costs are common (left) or different
(right). Note also that H < 0 is only a part of the region where price discrimination improves
social welfare and G ≥ 0 is also only a part of the region where it reduces social welfare.
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where ωm > 0 is now the product-specific utility, and βm > 0 is the price responsiveness of the

representative consumer in market m.31 Then, under symmetric pricing, each firm’s market

share is given by

qm(p;N) =
exp(ωm − βmp)

1 +N · exp(ωm − βmp)
,

where the dependence on N is made explicit for clarity. For any N ≥ 2, the own and cross

price elasticities are εownm (p) = βmp · [1 − qm(p;N)] and εcrossm (p) = βmpqm(p;N), respectively.

Hence, the conduct parameter is given by

θm(p) =
1− 2qm(p;N)

1− qm(p;N)
.

Similarly, the two curvatures are also obtained as shown in Table 1. the symmetric discrimina-

tory equilibrium price p∗m = p∗m(cm, ωm, βm, N) satisfies:

p∗m − cm︸ ︷︷ ︸
=µ∗m

− 1

βm(1− q∗m)
= 0

and

q∗m ≡ qm(p∗m;N) =
exp(ωm − βmp∗m)

1 +N · exp(ωm − βmp∗m)
.

Both p∗m and q∗m should be jointly solved numerically. Similarly, the equilibrium uniform price

p = p(c,ω,β, N) satisfies∑
m=s,w

qm(p;N) {1− βm(p− cm)[1− qm(p;N)]} = 0,

which should also be numerically solved.

It is thus shown that

G(β,ω, c, N) =
(p− cs)(1− 2qs)

2− 3qs − βs(p− cs)(1− 2qs)
− (p− cw)(1− 2qw)

2− 3qw − βw(p− cw)(1− 2qw)

and

H(β,ω, c, N) =
(p∗s − cs)(1− 2q∗s)

2− 3q∗s − βs(p∗s − cs)(1− 2q∗s)
− (p∗w − cw)(1− 2q∗w)

2− 3q∗w − βw(p∗s − cw)(1− 2q∗w)
.

31Anderson, de Palma, and Thisse (1987) argue that the indirect utility of the representative consumer in
market m is given by

Vm(pm) =
ln
[∑N

i=1 exp (ωm − βmpim)
]

βm
.

This demand form can also be microfounded by the random utility model (see, e.g., Anderson, de Palma, and
Thisse 1992, Ch. 2).
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Figure 4 shows that the same type of argument carries over from the cases of linear de-

mand. These examples exhibit similarity between linear and multinomial demands in terms

of predictions based on our analysis using sufficient statistics. Recall that the cost structure

is set common for both demands. It is observed that if linear or multinomial logit demand is

assumed, intense competition in the weak market due to a lesser degree of product differenti-

ation in that market is likely to justify a ban against price discrimination because this is the

case where G ≥ 0 is likely to hold.

5 Concluding remarks

This paper presents the theoretical implications of oligopolistic third-degree price discrimination

with general non-linear demand, allowing cost differentials to exist across separate markets.

In this sense, this paper, with the help of the methodology proposed by Weyl and Fabinger

(2013), generalizes Aguirre, Cowan, and Vickers’ (2010) analysis of monopolistic third-degree

price discrimination to complement Chen, Li, and Schwartz’ (2015) analysis of oligopolistic

differential pricing.

Our theoretical analysis, which accommodates firm heterogeneity, can also be utilized to

empirically assess the welfare effects of third-degree price discrimination under oligopoly. In

particular, in line with the “sufficient statistics” approach (Chetty 2009; Kleven 2021; and

Barnichon and Mesters 2022), our predictions regarding the welfare effects do not rely on

functional specifications, and are thus considered to be fairly robust, although these sufficient

statistics can take different values, depending on functional specifications. However, once the

numerical values of sufficient statistics are obtained, there should be no disagreement regarding

welfare assessment.

As a promising direction, it would be interesting to apply our methodology to the analysis

of the welfare effects of wholesale/input third-degree price discrimination (Katz 1987; DeGraba

1990; Yoshida 2000; Inderst and Valletti 2009; Villas-Boas 2009; Arya and Mittenforf 2010; Li

2014; O’Brien 2014; Miklós-Thal and Shaffer 2021b, 2021c; and Gaudin and Lestage 2023).32

To do so, one would need to properly define the sufficient statistics at each stage of a vertical

relationship. Another important issue to consider is the case of multi-product oligopolistic

firms (Armstrong and Vickers 2018; and Nocke and Schutz 2018). What happens if price

discrimination is allowed for some products, whereas uniform pricing is enforced for others?

These and other important issues related to third-degree price discrimination await further

research.

32See Jaffe and Weyl (2013) for such an attempt.
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Marginal costs are:

common across markets different across markets
(cs = cw = 0.20) (cs = 0.22; cw = 0.20)

Figure 4: Multinomial logit demand with ωs = 1.5 and ωw = 1.0 when N = 2 (top) and when
N = 4 (bottom). As in Figures 2, and 3, the region of (βs, βw) where the price coefficient for the
strong market βs relatively large as compared to βw is excluded (the dark-shaded area). The
regions for H < 0 and for G ≥ 0 are colored when the two marginal costs are common (left) or
different (right). Note also that H < 0 is only a part of the region where price discrimination
improves social welfare and G ≥ 0 is also only a part of the region where it reduces social
welfare. 32



Appendix A. Proof of Proposition 1

First, for t = t∗, it is observed that

zm(p∗m) =

 −qm(p∗m)

∂xAm
∂pA

(p∗m, p
∗
m)

 θm(p∗m)ρm(p∗m)

= µm(p∗m)θm(p∗m)ρm(p∗m)

and thus
W ′(t∗)

2
=

(
− π′′sπ

′′
w

π′′s + π′′w

)
(µ∗wθ

∗
wρ
∗
w − µ∗sθ∗sρ∗s) > 0

if µ∗wθ
∗
wρ
∗
w > µ∗sθ

∗
sρ
∗
s holds.33 Given the IRCW, this means that W (t) is strictly increasing in

[0, t∗]. This completes the proof for the first part.

Next, for t < t∗, note that

zm(pm) = θm

(
−qm

∂xAm/∂pA

)(
∂xAm/∂pA

π′′m

)
= µmθm

(
∂xAm/∂pA
π′′s + π′′w

)
︸ ︷︷ ︸

=ρm

(
π′′s + π′′w
π′′m

)
.

Thus, it is verified that

W ′(t)

2
=

(
− π′′sπ

′′
w

π′′s + π′′w

)(
µwθwρw

π′′s + π′′w
π′′w

− µsθsρs
π′′s + π′′w
π′′s

)
= (−π′′sπ′′w)︸ ︷︷ ︸

<0

(
µw(t)θw(t)ρw(t)

π′′w
− µs(t)θs(t)ρs(t)

π′′s

)
,

which implies that given the IRCW, W (t) is strictly decreasing in [0, t∗] if W ′(0) ≤ 0. This

completes the proof for the second part.
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Online Appendices for “A sufficient statistics approach

for welfare analysis of oligopolistic third-degree price dis-

crimination”

Online Appendix A. The case of a general number of markets

Throughout this paper, we assume one strong market and one weak market. More gener-

ally, by defining S ≡ {m|p∗m > p} and W ≡ {m|p > p∗m}, we can let ps(r), s ∈ S, and

pw(r), w ∈ S, consist of the optimal price vector under constraints |pm − p| ≤ r for all

m ∈ S ∪ W , with r ∈ [0,maxm|p∗m − p|]. Then, for example, social welfare is defined as

W (r; cs, cw) ≡
∑

s∈S Ũs(qs[ps(r)]) +
∑

w∈W Ũw(qw[pw(r)])− 2
∑

s∈S(cs · qs[ps(r)])− 2
∑

w∈W (cw ·
qw[pw(r)]). Clearly, our two-market analysis does not lose any validity. In this way, an in-

crease in the weighted aggregate output,
∑

m=s,w (p− cm) q′m[pm(r)]p′m(r) > 0, can be written as

E[(p−cm)q′mp
′
m] > 0 with a general number of markets. For this to hold, Cov(p−cm, q′mp′m) > 0,

that is, on average, the markup under uniform pricing and q′mp
′
m > 0 must be positively corre-

lated because E[(p− cm)] > 0 and E[q′mp
′
m] > 0.

Online Appendix B. Aggregate output and consumer surplus

In this appendix, we discuss how we can extend our sufficient statistics approach to analysis of

aggregate output as well as consumer surplus.

In a similar way for W (t) defined in Subsection 3.1, aggregate output under pricing is given

by

Q(t) = Qs(t) +Qw(t) = 2 {qs[ps(t)] + qw[pw(t)]} ,

whereas consumer surplus is defined by replacing cm in W (t) by pm(t) to define

CS(t) = Us(qs[ps(t)]) + Uw(qw[pw(t)])− 2ps(t) · qs[ps(t)]− 2pw(t) · qw[pw(t)].

Hence, Q(t) and CS(t) are also functions of t ∈ [0, t∗]. The regime change from uniform

pricing to price discrimination is captured by a parameter shift from t = 0 to t = t∗, and vice

versa. However, if these functions are globally concave in this range, then the local sign at

t = 0 or t∗ may predict the sign from the regime change. Specifically, consider a representative

function, F (t). If the global concavity of F (t) is assured, then F (t) behaves in either manner:

1. If F ′(0) ≤ 0, then F (t)/2 is monotonically decreasing in t, and as a result ∆F/2 =

[F (t∗)− F (0)]/2 < 0; price discrimination decreases F .

2. If F ′(0) > 0, then F (t)/2 either

1



(a) is monotonically increasing (if F ′(t∗) > 0, this is true), and as a result, ∆F/2 > 0;

price discrimination increases F .

(b) first increases, and then after the reaching the maximum (where F ′(t) = 0), decreases

until t = t∗. In this case, price discrimination may increase or decrease F : it cannot

be determined whether ∆F/2 < 0 or ∆F/2 > 0 without further functional and/or

parametric restrictions.

Below, we verify whether and how Q(t) and CS(t) are related to this argument.

B1. Output effects

First, we define hm(p) ≡ q′m(p)/π′′m(p) > 0 so that

Q′(t)

2
=

(
− π′′sπ

′′
w

π′′s + π′′w

)
︸ ︷︷ ︸

>0

{hw[pw(t)]− hs[ps(t)]} . (18)

and assume that this hm is increasing (and call it the increasing ratio condition for quantity;

IRCQ). This condition is equivalent to ςIm(p) > αIm(p), where

ςIm(p) ≡ −dπ
′′
m

dp

p

π′′m
= −pπ

′′′
m

π′′m

is the industry-level price elasticity of π′′m and αIm(p) ≡ −pq′′m/q′m is the industry-level demand

curvature.34 It is also expressed by νIm(p) > 0, where νIm(p) ≡ −ph′m/hm is the industry-level

price elasticity of hm.35 Now, it is shown that

Q′′(t)

2
=

(
− q′sq

′
w

π′′s + π′′w

)
[h′sp

′
s − h′wp′w] + [hs − hw]

d

dr

(
− q′sq

′
w

π′′s + π′′w

)
,

34To see this, note that h′m < 0 is equivalent to π′′′m > (π′′m/q
′
m)q′′m, where π′′m/q

′
m > 0, because h′m(p) =

(π′′′mq
′
m − π′′mq′′m)/(q′m)2, which implies that:

h′m < 0⇔ −pπ
′′′
m

π′′m
> −pq

′′
m

q′m
⇔ ςIm > αIm.

Essentially, the IRCQ states that the profit function, starting from the zero price, increases quickly, attaining
the optimal price, and then decreases slowly as p becomes larger and larger beyond the optimum. In this way,
the optimal price is reached “close” enough to the zero price, rather than “still climbing up” even far away from
it. To see this, if q′′m > 0, then it is necessary for π′′′m to be positive. This means that π′′m, which is negative,
should be larger (i.e., the negative slope of π′′m should be gentler) as p increases. If q′′m ≤ 0, then π′′′m should be,
whether it is positive or negative, sufficiently large. In either case, as p increases, πm increases quickly below
the optimum, and decreases slowly beyond it.

35This is because it is verified that

h′m
hm

=
π′′′mq

′
m − π′′mq′′m
[q′m]2︸ ︷︷ ︸
<0

· q
′
m

π′′m︸︷︷︸
>0

=
π′′′mq

′
m − π′′mq′′m
q′mπ

′′
m

,

2



so that there exists t̂ such that Q′(t̂) = 0 and

Q′′(t̂)

2
= − q′sq

′
w

π′′s + π′′w
(h′sp

′
s − h′wp′w) < 0

because h′sp
′
s < 0 and h′wp

′
w > 0, implying the the global concavity of Q(t) is attained. Based

on these results, the following proposition is obtained.

Proposition 2. Given the IRCQ, price discrimination increases aggregate output if

θ∗sρ
∗
s < θ∗wρ

∗
w

holds, and it decreases aggregate output if

θsρs
π̄′′s
≥ θwρw

π̄′′w

holds.36

Proof. First, note that q′m/π
′′
m = θ∗m · ρ∗m. Then, this implies that from Equality (18) above,

Q′(t̄)

2
=

(
− π′′sπ

′′
w

π′′s + π′′w

)
(θ∗wρ

∗
w − θ∗sρ∗s) .

Conversely, for t < t̄, it can be verified that:

Q′(t)

2
=

(
q′w

∂xA,w/∂pA

)(
∂xA,w
∂pA

)
p′w +

(
q′s

∂xA,s/∂pA

)(
∂xA,s
∂pA

)
p′s

= θw

(
∂xA,w/∂pA
π′′s + π′′w

)
(π′′s + π′′w)p′w + θs

(
∂xA,s/∂pA
π′′s + π′′w

)
(π′′s + π′′w)p′s

= (−π′′sπ′′w)︸ ︷︷ ︸
<0

(
θw(t)ρw(t)

π′′w
− θs(t)ρs(t)

π′′s

)
,

which completes the proof.

Online Appendix E discusses the relationship between Holmes’ (1989) expression of the

and thus,

νIm =

(
−pπ

′′′
m

π′′m

)
−
(
−pq

′′
m

q′m

)
= ςIm − αIm,

which implies that h′m < 0⇔ νIm > 0.
36As Holmes (1989, fn.2) points out, an increase in aggregate output by price discrimination is necessary for

an increase in welfare. In our model, this can be readily observed when marginal costs are identical across
markets: the latter inequality in this proposition is implied by the second inequality in Proposition 1.
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output effect and ours, and interprets his result in terms of the sufficient statistics.37

B2. Consumer surplus

First, note that

CS ′(t)

2
= ps(r) · q′s · p′s(t) + pw(t) · q′w · p′w(t)

−p′s(t)[ps(t) · q′s + qs]− p′w(t)[pw(t) · q′w + qw]

= −[p′s(t)qs + p′w(t)qw]

=

(
− π′′sπ

′′
w

π′′s + π′′w

)
︸ ︷︷ ︸

>0

{gs[ps(t)]− gw[pw(t)]} , (19)

where gm(p) ≡ qm(p)/π′′m(p). If gm is assumed to be decreasing, then one can use a similar

argument. We call this the decreasing marginal consumer loss condition (DMCLC), which is

equivalent to ςIm(p) > εIm(p).38 Then, the global concavity of CS(t) is attained. Thus, we can

37If hm is decreasing, as we assume throughout, then zm is increasing because

z′m(p) =
1− zm(p)h′m(p)

hm(p)

so that z′m is positive if h′m is negative. That is, the IRCQ is a sufficient condition for the IRCW to hold. Thus,
our IRCQ is a sophistication of ACV’s (2010) monotonicity condition (i.e., their IRC); it is a sophistication that
requires “not too convex” demand functions to a stricter degree.

38Recall that ςIm(p) ≡ −(dπ′′m/dp)(p/π
′′
m) = −(pπ′′′m/π

′′
m) was defined as the industry-level price elasticity of

π′′m in Appendix B1 above. To see this relationship, note first that gm = (q′m/π
′′
m)(qm/q

′
m) = (1/hm)(qm/q

′
m).

Thus,

g′m = − h′m
[hm]2

× qm
q′m

+
1

hm
(1− σIm)

=
1

hm
[−
(
−ph

′
m

hm

)
︸ ︷︷ ︸

=νIm

(
− qm
pq′m

)
︸ ︷︷ ︸

= 1

εIm

+ (1− σIm)],

where σIm(p) ≡ qmq
′′
m/(q

′
m)2 corresponds to what ACV (2010, p. 1603) call the curvature of the the inverse

demand., and it is also written as:

σIm =

(
−pq′′m
q′m

)
︸ ︷︷ ︸

=αIm

(
− qm
pq′m

)
︸ ︷︷ ︸

= 1

εIm

=
αIm
εIm

.

Hence,

g′m =
1

hm

[
1− νIm + αIm

εIm

]
,

which implies that g′m < 0⇔ νIm(p) +αIm(p) > εIm(p)⇔ ςIm(p) > εIm(p). it is also verified that g′m < 0 is equiv-
alent to π′′′m > (q′mπ

′′
m)/qm, where the right hand side is positive, because g′m = (q′mπ

′′
m − qmπ′′′m)/(π

′′

m)2. Now,
recall that the IRCQ is equivalent to π′′′m > q′′mπ

′′
m/q

′
m: if q′mπ

′′
m/qm > q′′mπ

′′
m/q

′
m ⇔ q′′m(p) < [q′m(p)]2/qm(p),

that is qm(p) is not “too convex,” then the DMCLC is a sufficient condition for the IRCQ to hold. Thus,

4



determine the sign of CS ′(0): it follows that

sign[CS ′(0)] = sign[
qs(p)

π′′s(p)
− qw(p)

π′′w(p)
],

and thus, the following proposition is obtained.

Proposition 3. Given the DMCLC, price discrimination decreases consumer surplus if the

output in the weak market at the uniform price p is sufficiently large, i.e.,

qs
π̄′′s

<
qw
π̄′′w

holds.

Then, using profit margin and pass-through, we can rewrite Equality (19) as

CS ′(t)

2
= (−π′′sπ′′w)︸ ︷︷ ︸

<0

(
µw(t)ρw(t)

π′′w
− µs(t)ρs(t)

π′′s

)

for t < t∗, and

CS ′(t∗)

2
=

(
− π′′sπ

′′
w

π′′s + π′′w

)
︸ ︷︷ ︸

>0

(µ∗wρ
∗
w − µ∗sρ∗s)

for t = t∗ which immediately leads to the following proposition.

Proposition 4. Given the DMCLC, price discrimination increases consumer surplus if

µ∗sρ
∗
s < µ∗wρ

∗
w

holds, and it decreases consumer surplus if

µsρs
π̄′′s
≥ µwρw

π̄′′w

holds.

B3. “DMCLC ⇒ IRCQ ⇒ IRCW”

As discussed in Footnote 38, the DMCLC implies the IRCQ (see Figure OA1), and the IRCQ

implies the IRCW. A simpler way to establish “DMCLC ⇒ IRCQ ⇒ IRCW” is to recall first

under this “not too convex” assumption, the relationship, “DMCLC ⇒ IRCQ ⇒ IRCW,” holds if σIm(p) < 1 is
additionally imposed.

5



DMCLC: g′m < 0
m

ςIm > εIm

⇓ (If σIm < 1 ⇔ εIm > αIm is imposed)

ςIm > αIm
m

IRCQ: h′m < 0

Figure OA1: DMCLC implies IRCQ

that

g′m = − h′m
[hm]2

× qm
q′m

+
1

hm
(1− σIm),

where 1− σIm > 0 is assumed, that is, qm is not “ too convex.” Hence, g′m < 0 if and only if

h′m <

(
q′mhm
qm

)
︸ ︷︷ ︸

<0

·
(

1− qmq
′′
m

[q′m]2

)
︸ ︷︷ ︸

>0

,

indicating that “if g′m < 0 (DMCLC), then h′m < 0 (IRCQ).” However, the converse is not true

because h′m < 0 is not sufficient to ensure that g′m < 0. Next, recall that zm(p) = (p−cm)/hm(p),

which implies that

z′m =
hm − (p− cm)h′m

[hm]2
.

Thus, if h′m < 0, then hm > 0 > (p − cm)h′m, indicating that “if h′m < 0 (IRCQ), then z′m > 0

(IRCW).” However, the converse is not true because z′m > 0 is not sufficient to ensure that

h′m < 0.

Below, we discuss whether the DMCLC holds in each of the three parametric examples in

Section 4.

B4. Whether the DMCLC holds in the parametric examples

Let p−i = (p, p, ..., p) be a tuple of N − 1 symmetric prices, p. Our results are summarized in

Table 2.

B4.1. Linear demand First, it is observed that

π′′m(p) = q′m(p) +
∂xim
∂pi

(p,p−i) + (p− cm)
d

dp

(
∂xim
∂pi

(p,p−i)

)

6



Linear CES Logit
DMCLC No Yes ?

IRCQ No Yes Yes
IRCW Yes Yes Yes

Table 2: Whether each condition is satisfied in the three examples of market demand

= − 2 + (N − 3)δm
[1 + (N − 1)δm](1− δm)βm

< 0

because

q′m(p) = − 1

[1 + (N − 1)δm]βm

and
∂xim
∂pi

(p,p−i) = − 1 + (N − 2)δm
[1 + (N − 1)δm](1− δm)βm

,

both of which are constant. Then, it is verified that

gm(p) =
qm(p)

π′′m(p)

=

(
ωm − p

[1 + (N − 1)δm]βm

)
(
− 2 + (N − 3)δm

[1 + (N − 1)δm](1− δm)βm

)
= −(ωm − p)(1− δm)

2 + (N − 3)δm

and thus g′m(p) = (1− δm)/[2 + (N − 3)δm] > 0; the DMCLC never holds. Moreover, the IRCQ

does not hold, either, because

hm(p) =
1

q′m(p)/π′′m(p)

=

(
− 2 + (N − 3)δm

[1 + (N − 1)δm](1− δm)βm

)
(
− 1

[1 + (N − 1)δm]βm

)
=

2 + (N − 3)δm
1− δm

,

implying that h′m(p) = 0.

However, the IRCW does hold. This is because

zm(p) =
(p− cm)q′m(p)

π′′m(p)
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=

(p− cm)

(
− 1

[1 + (N − 1)δm]βm

)
(
− 2 + (N − 3)δm

[1 + (N − 1)δm](1− δm)βm

)
= (p− cm)

(
1− δm

2 + (N − 3)δm

)
,

which implies that z′m(p) = (1− δm)/[2 + (N − 3)δm] > 0.

B4.2. CES (constant elasticity of substitution) demand First, it is verified that

π′′m(p) = − 1

Np2
− 1 + (N − 1)σm

N2p2
+ (p− cm)

2[1 + (N − 1)σm]

N2p3

= − 1

N2p2

{
N + [1 + (N − 1)σm]

[
1− 2(p− cm)

p

]}
because

q′m(p) = − 1

Np2

and
∂xim
∂pi

(p,p−i) = −1 + (N − 1)σm
N2p2

.

Then, it is observed that

gm(p) =
qm(p)

π′′m(p)

= − Np2

Np− [1 + (N − 1)σm] (p− 2cm)

and thus

g′m(p) =
N {(N − 1)(σm − 1)p− 4[1 + (N − 1)σm]cm}
{(N − 1)(σm − 1)p− 2[1 + (N − 1)σm]cm} 2

p,

which implies that gm is decreasing (i.e., the DMCLC holds) for

p <
4[1 + (N − 1)σm]cm

(N − 1)(σm − 1)
= 4p∗m.

Although gw is not globally decreasing, it is decreasing in the price range for p∗w, [p∗w, p] because

p ≤ 4p∗s holds.39 Then, gs is also globally decreasing in the price range, [p, p∗w]. Therefore, the

39To see this, note first that p ≤ 4p∗s is equivalent to p∗s ≤ [(4σs + 3σw − 7)/(σs − 1)]p∗w. Therefore, since
p∗s ≥ p∗w, it must hold that (4σs + 3σw − 7)/(σs − 1) ≥ 1. This is equivalent to 2σs + σw ≥ 3, which holds by
assumption (σm > 1 for m = s, w).
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IRCQ, and hence, the IRCW always hold in the relevant price range.

Now, we define K by K(σ, c, N) ≡ µ∗sρ
∗
s − µ∗wρ∗w. Then, from Proposition 4, K < 0 implies

∆CS > 0. Now, it is verified that

K(σ, c, N) =
Ncs

(N − 1)(σs − 1)
· [1 + (N − 1)σs]

2

(σs − 1){[(N − 1)N − 1]σs + 1}

− Ncw
(N − 1)(σw − 1)

· [1 + (N − 1)σw]2

(σw − 1){[(N − 1)N − 1]σw + 1}

because

(εcrossm )∗ + (αownm )∗ + (αcrossm )∗ =
σm − 1

N
+
N2σm(1 + σm)− 4(σm − 1)[1 + (N − 1)σm]

N [1 + (N − 1)σm]

=
{[3 + (N − 3)N ]σm +N(N + 3)− 6}σm + 3

N [1 + (N − 1)σm]

and hence

ρ∗m =
1

2− (εcrossm )∗ + (αownm )∗ + (αcrossm )∗

(εownm )∗

=
[1 + (N − 1)σm]2

(σm − 1){[(N − 1)N − 1]σm + 1}
.

Figure 5 illustrates when K < 0 holds. As in Figure 3, there is an interesting contrast

between the left and right panels. If the marginal costs are common across markets, the region

of K < 0 disappears once the constraint p∗s ≥ p∗w is imposed. However, if the marginal cost in

the strong market becomes 10% higher, the area of K < 0 appears for N = 2 and N = 4 where

σs is sufficiently large as compared σw.

B4.3. Multinomial logit demand with outside option Unfortunately, it cannot be

shown that the DMCLC holds for the logit demand, though σIm(p) < 1 is satisfied.40 To see

this, first, recall (from Footnote 38) that g′m < 0 if and only if ςIm > εIm (⇔ −(pπ′′′m/π
′′
m) >

40Recall that the logit demand under symmetric pricing is given by:

qm(p) =
exp(ωm − βmp)

1 +N exp(ωm − βmp)
,

which implies that q′m(p) = −βmqm(p)[1−N · qm(p)] and q′′m(p) = −βmq′m(p)[1− 2N · qm(p)]. Hence,

q′′m(p) <
[q′m(p)]2

qm(p)
⇔ −βm[1− 2N · qm(p)] >

q′m(p)

qm(p)
⇔ 1− 2N · qm(p) < 1−N · qm(p),

which must be true.

9



Marginal costs are:

common across markets different across markets
(cs = cw = 0.20) (cs = 0.22; cw = 0.20)

Figure 5: CES demand when N = 2 (top) and when N = 4 (bottom). In the left panel with
common marginal costs, the region of K < 0 does not appear because it is fully covered by the
dark-shaded area of (σs, σw) where p∗s ≥ p∗w does not hold. In the right panel with different
marginal costs across markets, the region for H < 0 and K < 0 is colored.
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−(pq′m/qm)), that is,41

π′′′m(p) > −βm · [1−Nqm(p)]π′′m(p), (20)

where π′′m(p) and π′′′m(p) are given as:

π′′m(p) = q′m(p) +
∂xim
∂pi

(p,p−i) + (p− cm)
d

dp

(
∂xim
∂pi

(p,p−i)

)
= −βmqm · (1−Nqm)− βmqm · (1− qm)− βm(p− cm)q′m(1− 2qm)

= −βmqm · [2− (N + 1)qm − βm(p− cm)(1− 2qm)(1−Nqm)]

and thus

π′′′m(p) = −βm(1−Nqm)π′′m − βmqm · [−(N + 1)q′m − βm(1− 2qm)(1−Nqm)

+βm(p− cm)(N + 2− 4Nqm)q′m] .

This implies that Inequality (20) is rewritten as

βm[2 +N(1− 4qm)︸ ︷︷ ︸
>0

](p− cm) > 3 +N − 1

qm︸ ︷︷ ︸
≷0

,

which cannot be verified to be true.

However, the logit demand does satisfy the IRCQ (and hence the IRCW). This is because

h
′
m is negative if and only if ςIm > αIm (⇔ −pπ′′′m

π′′m
> −pq′′m

q′m
), that is

π′′′m(p) > −βm · [1− 2N · qm(p)]π′′m(p)

⇔ 2βmN · (
1

N
− qm︸ ︷︷ ︸
>0

)(p− cm) > −(
1

qm
− 2︸ ︷︷ ︸

>0

)− N − 1

N · ( 1

N
− qm︸ ︷︷ ︸
>0

)
,

which holds for any N ≥ 2 as long as p ≥ cm.

Online Appendix C. Firm heterogeneity

In this section, we argue that the main thrusts under firm symmetry also hold when heteroge-

neous firms are introduced. Without loss of generality, we keep considering one strong market

and one weak market. We also assume Corts’ (1998, p. 315) best-response symmetry : all firms

agree on which market is strong and which market is weak. The case of best response asymmetry

41Here, the dependence of qm(p) on N is suppressed for notational simplicity.
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is studied by Corts (1998) (see also Footnote 22 above).42

The number of firms is N (≥ 2),43 and each firm i = 1, 2, ..., N has the constraint, pis−piw ≤
ti. Then, as above, firm i’s price in the weak market under all of these constraints is written

as piw(t) as a function of t = (t1, t2, ..., tN)T, where T denotes transposing. Accordingly, firm

i’s price in the strong market is written as pis(t) = piw(t) + ti. Therefore, the firms’ price pair

in market m = w, s is written as pm(t) = (p1m(t), p2m(t), ..., pNm(t))T. Then, social welfare is

defined as a function of t:

W (t) ≡ Us(xs[ps(t)]) + Uw(xw[pw(t)])− cT
s · xs[ps(t)]− cT

w · xw[pw(t)],

where xm[pm(t)] = (x1m[pm(t)], x2m[pm(t)], ..., xNm[pm(t)])T and cm = (c1m, c2m, ..., cNm)T.44

Now, let t∗i ≡ p∗is − p∗iw for each j so that t∗ ≡ (t∗1, t
∗
2, ..., t

∗
N)T. Then, each firm’s constraint

is written as 0 ≤ ti = λt∗i ≤ t∗i , with λ ∈ [0, 1]. Using this, we re-define the functions of t as

functions of one-dimensional variable, λ. In particular, the social welfare is written as:

W (λ) = Us(xs[ps(λ)]) + Uw(xw[pw(λ)])− cT
s · xs[ps(λ)]− cT

w · xw[pw(λ)],

where pm can also be interpreted as a function of λ. Hence, the equilibrium uniform price is

written as p ≡ ps(0) = pw(0), whereas the equilibrium discriminatory prices are p∗s ≡ ps(1)

and p∗w ≡ pw(1).45

We then use ∂xUm = pm from the representative consumer’s utility maximization problem

42Cort’s (1998) Proposition 6 states a stronger result: price symmetry can be attained even with best-response
asymmetry. This result would further justify that introducing firm heterogeneity with a small amount should
not invalidate our analysis assuming firm heterogeneity.

43Here, all N firms are assumed to be present in both markets. This aspect of symmetry might be relaxed:
the difference in the intensity of competition across the markets can also depend on the difference in the number
of active firms across them. For example, Aguirre (2019) shows that price discrimination increases aggregate
output under linear demand either with Cournot competition or product differentiation if the number of firms in
the strong market is larger than that in the weak market. This counters the well-know result that in monopoly
price discrimination never changes aggregate output under linear demand (see, e.g., Robinson 1933; Schmalensee
1981; Varian 1989). A similar finding is also obtained by Miklós-Thal and Shaffer (2021c) in the context of
intermediate price discrimination. We thank Iñaki Aguirre for pointing this out to us.

44By allowing cost differences across firms and markets, Dertwinkel-Kalt and Wey (2023) study oligopolistic
third-degree price discrimination under the demand system proposed by Somaini and Einav (2013), in which
demand in each separate market is covered by all firms and thus no consumers are opting out. Under this
demand system, Dertwinkel-Kalt and Wey (2023) show that each firm’s profit margin (i.e., the Lerner index)
under uniform pricing is expressed as the weighted harmonic mean of its market-specific Lerner indices under
price discrimination. This result indicates that the profit margin is strictly lower the weighted arithmetic mean
of the market-specific margins. In this sense, the market power measured by the Lerner concept is always lower
under uniform pricing, and consumer surplus is strictly greater than under price discrimination. Note, however,
that a change in social welfare is not an issue under this demand system because each firm’s output remains
the same for both regimes.

45Online Appendix F discusses why the exogenous quantity approach by Weyl and Fabinger (2013) and
Miklós-Thal and Shaffer (2021a) is not applicable once firm heterogeneity is allowed.
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in each market m, where

∂xUm ≡
(
∂Um
∂x1m

,
∂Um
∂x2m

, ...,
∂Um
∂xNm

)
,

to derive

W ′(λ)︸ ︷︷ ︸
1×1

=
∑
m=s,w

[µm(pm)T︸ ︷︷ ︸
1×N

· (∂pmxm︸ ︷︷ ︸
N×N

· p′m︸︷︷︸
N×1

)],

where µm(pm) ≡ pm − cm is the profit margin vector,

∂pmxm ≡

(
∂x1m
∂p1m

...
∂xNm
∂p1m


︸ ︷︷ ︸
≡∂p1mxm

. . .


∂x1m
∂pNm

...
∂xNm
∂pNm


︸ ︷︷ ︸
≡∂pNmxm

)

is the Jacobian for market demands, and p′m ≡ (p ′1m(λ), p ′2m(λ), ..., p ′Nm(λ))T.

Firm j’s profit function in market m = s, w is given by Equation (4), where pm now consists

of N firms’ prices as above, and

∂pjmπjm(pm) ≡ xjm(pm) + (pjm − cjm)
∂xjm
∂pjm

(pm)

is defined. Now, we apply the implicit function theorem to f(pw, λ) = 0, where

f( pw︸︷︷︸
N×1

, λ︸︷︷︸
1×1

) ≡



∂p1sπ1s(pw + λt∗) + ∂p1wπ1w(pw)
...

∂pisπis(pw + λt∗) + ∂piwπiw(pw)
...

∂pNsπNs(pw + λt∗) + ∂pNwπNw(pw)


,

is a collection of all firms’ first-order conditions for profit maximization under regime λ, to

obtain p′w(λ) = −[Dpwf ]−1[Dλf ], where

Dpwf ≡


∂2π1s

∂p21s
+
∂2π1w

∂p21w
· · · ∂2π1s

∂pNs∂p1s
+

∂2π1w

∂pNw∂p1w
...

. . .
...

∂2πNs
∂p1s∂pNs

+
∂2πNw

∂p1w∂pNw
· · · ∂2πNs

∂p2Ns
+
∂2πNw
∂p2Nw


︸ ︷︷ ︸

≡K
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=


∂2π1s

∂p21s
· · · ∂2π1s

∂pNs∂p1s
...

. . .
...

∂2πNs
∂p1s∂pNs

· · · ∂2πNs
∂p2Ns


︸ ︷︷ ︸

≡Hs

+


∂2π1w

∂p21w
· · · ∂2π1w

∂pNw∂p1w
...

. . .
...

∂2πNw
∂p1w∂pNw

· · · ∂2πNw
∂p2Nw


︸ ︷︷ ︸

≡Hw

and Dλf = Hst
∗ (with no confusion, we use H and K here which are different from H and K

in Section 4 and Appendix B).

Here, the elasticity matrix and the curvature matrix can be defined by

εm =


ε11,m ε21,m · · · εN1,m

ε12,m ε22,m
...

...
. . .

...

ε1N,m ε2N,m · · · εNN,m



≡



−p1m
x1m

∂x1m
∂p1m

p1m
x1m

∂x2m
∂p1m

· · · p1m
xNm

∂xNm
∂p1m

p2m
x1m

∂x1m
∂p2m

−p2m
x2m

∂x2m
∂p2m

...

...
. . .

...
pNm
x1m

∂x1m
∂pNm

· · · · · · −pNm
xNm

∂xNm
∂pNm


and

αm =


α11,m α21,m · · · αN1,m

α12,m α22,m
...

...
. . .

...

α1N,m · · · · · · αNN,m



≡



− p1m
∂x1m/∂p1m

∂2x1m
∂p21m

− p2m
∂x2m/∂p2m

∂2x2m
∂p2m∂p1m

· · · − pNm
∂xNm/∂pNm

∂2xNm
∂pNm∂p1m

− p1m
∂x1m/∂p1m

∂2x1m
∂p1m∂p2m

− p2m
∂x2m/∂p2m

∂2x2m
∂p22m

...

...
. . .

...

− p1m
∂x1m/∂p1m

∂2x1m
∂p1m∂pNm

· · · · · · − pNm
∂xNm/∂pNm

∂2xNm
∂p2Nm


,

respectively. Note also that for i = 1, 2, ..., N ,

∂2πim(pm)

∂p2im
= 2

∂xim
∂pim

(pm) + (pim − cim)
∂2xim
∂p2im

(pm)
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= −xim
pim

(
−pim
xim

∂xim
∂pim

)[
2− pim − cim

pim

(
− pim
∂xim/∂pim

∂2xim
∂p2im

)]
= − [2− Lim(pim)αii,m] εii,m

xim
pim

and for i, j = 1, 2, ..., N , i 6= j,

∂2πim(pm)

∂pim∂pjm
=

∂xim
∂pjm

(pm) + (pim − cim)
∂2xim

∂pim∂pjm
(pm)

=
xim
pjm

(
pjm
xim

∂xim
∂pjm

)
×
[
1 +

(
pjm
pim

)(
pim − cim

pim

)(
−(pim/xim)(∂xim/∂pim)

(pjm/xim)(∂xim/∂pjm)

)(
− pim
∂xim/∂pim

∂2xim
∂pim∂pjm

)]
=

[
1 +

(
pjm
pim

)
Lim(pim)

εii,m
εij,m

αij,m

]
εij,m

xim
pjm

,

which implies that Hs and Hw are expressed in terms of the sufficient statistics.

Now, we further proceed to obtain:
p′w(λ) = [−K−1︸︷︷︸

N×N

Hs︸︷︷︸
N×N

] t∗︸︷︷︸
N×1

p′s(λ) = −K−1Hst
∗ + t∗ =[I−K−1Hs︸ ︷︷ ︸

N×N

] t∗︸︷︷︸
N×1

,

so that

W ′(λ) = [µT
s ∂psxs][I−K−1Hs ]t

∗ − [µT
w∂pwxw][K−1Hs ]t

∗

= {[µT
s ∂psxs]K

−1[K−Hs ]− [µT
w∂pwxw][K−1Hs ]}t∗

=
{(

[µT
s ∂psxs]H

−1
s

) (
HsK

−1[K−Hs ]
)

−
(
[µT

w∂pwxw]H−1w

) (
HwK−1Hs

)}
t∗.

Subsequently, we define

Zm(p) ≡ [µm(p)T∂pmxm(p)]︸ ︷︷ ︸
1×N

H−1m (p)︸ ︷︷ ︸
N×N

to proceed:

W ′(λ) = { Zw︸︷︷︸
1×N

− Zs︸︷︷︸
1×N

· (K−Hs)H
−1
w︸ ︷︷ ︸

N×N

}(−HwK−1Hs)t
∗︸ ︷︷ ︸

N×1

= (Zw − Zs)(Γt∗),

where Γ ≡ −HwK−1Hs � 0 is assumed. We also assume that multi-dimensional version of

the IRCW: for each market m and each firm i, Zim is increasing in pk, k = 1, 2, ..., N .
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We then define the multi-dimensional version of the conduct parameter (Weyl and Fabinger

2013, p. 552; see Footnote 18) by:

θm(p)T ≡
(
µm(p)T∂p1mxm(p)

−x1m(p)
. . .

µm(p)T∂pimxm(p)

−xim(p)
. . .

µm(p)T∂pNmxm(p)

−xNm(p)

)
as well as the pass-through matrix by:

ρm(λ) =





∂x1m
∂p1m

(p) 0 · · · 0

0
∂x2m
∂p2m

(p) 0

...
. . .

...

0 0 · · · ∂xNm
∂pNm

(p)


K−1(p) for λ < 1



∂x1m
∂p1m

(p∗m) 0 · · · 0

0
∂x2m
∂p2m

(p∗m) 0

...
. . .

...

0 0 · · · ∂xNm
∂pNm

(p∗m)


H−1m (p∗m) for λ = 1

as in the case of firm symmetry (recall the definition in Subsubsection 3.2).46

Hence, the three sufficient statistics under price discrimination are given by θ∗m ≡ θm(p∗m),

µ∗m ≡ µm(p∗m), and ρ∗m ≡ ρm(1). Similarly, those under uniform pricing are θm ≡ θm(p)

µm ≡ µm(p), and ρm ≡ ρm(0).

We are now able to generalizes Proposition 1 in Section 3 for the case of firm heterogeneity.

Proposition 5. Given the IRCW, if [[θ∗w]T ◦ [µ∗w ]T]ρ∗w > [[θ∗s ]
T ◦ [µ∗s ]

T]ρ∗s holds, where ◦
indicates element-by-element multiplication, then price discrimination increases social welfare.

Conversely, if [[θw]T ◦ [µw ]T]ρw < [[θs ]
T ◦ [µs ]

T]ρs∆, where ∆ ≡ K H
−1
s HwK

−1
is defined for

adjustment, where K ≡ K(p) and Hm ≡ Hm(p), m = s, w, holds, then price discrimination

decreases social welfare.

46Given this definition, θm is rewritten as

θT
m =

( ∑N
k=1 Lkmεk1,m (−xkm/x1m) . . .

∑N
k=1 Lkmεki,m (−xkm/xim) . . .

∑N
k=1 LkmεkN,m (−xkm/xNm)

)
,

which implies that it can be expressed in terms of the sufficient statistics. Note also that ρm can be expressed
in terms of the sufficient statistics as well because ∂xim/∂pim = −(xim/pim)εii,m holds for i = 1, 2, ..., N .
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Proof. Using the definition of θm(p), we can rewrite:

Zm[pm(λ)] = [[θm [pm(λ)]]T︸ ︷︷ ︸
1×N

◦ (−x1m[pm(λ)], ...,−xjm[pm(λ)], ...,−xNm[pm(λ)])︸ ︷︷ ︸
1×N

]H−1m [pm(λ)]︸ ︷︷ ︸
N×N

= [[θm [pm(λ)]]T◦[µm [pm(λ)]]T]



∂x1m
∂p1m

[pm(λ)] 0 · · · 0

0
∂x2m
∂p2m

[pm(λ)] 0

...
. . .

...

0 0 · · · ∂xNm
∂pNm

[pm(λ)]


H−1m [pm(λ)],

where

µm(p)T =

(
−x1m(p)

∂x1m(p)/∂p1m
. . .

−xim(p)

∂xim(p)/∂pim
. . .

−xNm(p)

∂xNm(p)/∂pNm

)
is used.

Then, for the first part of the proposition, it is immediate to see that

Zm(p∗m) = [[θm(p∗m)]T ◦ [µm(p∗m)]T]ρm(p∗m),

which is interpreted as a result of applying the implicit function theorem to g(pm , cm) = 0,

where

g( pm︸︷︷︸
N×1

, cm︸︷︷︸
N×1

) =



∂p1mπ1m(pm; c1m)
...

∂pimπim(pm; cim)
...

∂pNmπNm(pm; cNm)


so that ρm(p∗m) = −[Dpmg]−1[Dcmg]. Now, note that W ′(1) > 0 if the inequality in this

proposition holds. Thus, given the IRCW, W (λ) is strictly increasing in [0, 1], meaning that

social welfare is higher under price discrimination than under uniform pricing. This complete

the proof for the first part of the proposition.

For the second part, we proceed:

Zm(λ) = [[θTm(λ) ◦ µT
m(λ)]ρm(λ)[K(λ)H−1m (λ)],
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for λ < 1, and thus

W ′(λ) =
{

[θTw ◦ µT
w ]ρw [KH−1w K−1]− [θTs ◦ µT

s ]ρs [KH−1s K−1]
}

(KΓt∗)︸ ︷︷ ︸ .
<<0

Then, it is verified that

W ′(0) < 0⇔ [θ
T

w ◦ µT
w ]ρw [K H

−1
w K

−1
] > [θ

T

s ◦ µT
s ]ρs [K H

−1
s K

−1
]

⇔ [θ
T

w ◦ µT
w ]ρw < [θ

T

s ◦ µT
s ]ρs [K H

−1
s K

−1
][K H

−1
w K

−1
]−1

⇔ [θ
T

w ◦ µT
w ]ρw < [θ

T

s ◦ µT
s ]ρs [K H

−1
s HwK

−1
],

which completes the proof.

Note that for each i, Z∗im =
∑N

k=1 θ
∗
kmµ

∗
kmρ

∗
ikm, which is interpreted as the weighted sum of

firm i’s own pass-through (ρ∗iim) and the collection of its cross pass-through (ρ∗ikm, k 6= i). For

aggregate output and consumer surplus, we can readily generalize our previous results to the

case of firm heterogeneity in a similar manner by noting that

Q(λ) =
N∑
i=1

xis[ps(λ)] +
N∑
i=1

xiw[pw(λ)]

and

CS(λ) = Us(xs[ps(λ)]) + Uw(xw[pw(λ)])− [ps(λ)]T · xs[ps(λ)]− [pw(λ)]T · xw[pw(λ)],

respectively. Table 3 summarizes our results for heterogeneous firms given relevant constraints

that are similar to the DMCLC and the IRCQ.

Online Appendix D. Non-constant marginal costs

Notice that our results so far do not crucially depend on the assumption of constant marginal

costs. The only caveat is the definition of pass-through: to properly define pass-through in

accommodation with non-constant marginal costs, we introduce a small amount of unit tax

tm > 0 in market m: the firm’s first-order derivative of the profit with respect to its own price

(Equation 3 in the main text) is now replaced by

∂pπm(p) = qm(p) + (p− tm −mcm[qm(p)])
∂xAm
∂pA

(p, p),
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(a) Social Welfare

If [[θ∗w]T ◦ [µ∗w ]T]ρ∗w > [[θ∗s ]
T ◦ [µ∗s ]

T]ρ∗s , then W ∗ > W.

If [[θw]T ◦ [µw ]T]ρw < [[θs ]
T ◦ [µs ]

T]ρs∆, then W ∗ < W.

(b) Aggregate Output

If [θ∗w ]Tρ∗w > [θ∗s ]
Tρ∗s , then Q∗ > Q.

If [θw]Tρw < [θs]
Tρs∆, then Q∗ < Q.

(c) Consumer Surplus

If [µ∗w ]Tρ∗w > [µ∗s ]
Tρ∗s , then CS∗ > CS.

If [µw ]Tρw < [µs ]
Tρs∆, then CS∗ < CS.

Table 3: Summary of the Sufficient Conditions (with N heterogeneous firms, θm, µm , and
ρm are the conduct vector (N × 1), the profit margin vector (N × 1), and the pass-through
matrix (N × N), respectively, in market m = s, w; asterisks and upper bars indicate price
discrimination and uniform pricing, respectively; and ∆ is a term for adjustment defined in the
text).

where mcm = c′m[qm(p)] is the marginal cost at qm(p). Then, pass-through is defined by

ρm ≡ ∂pm
∂tm

, and no other changes should be made to derive the results above. In fact, the

usefulness of pass-through is that it can easily be accommodated with non-constant marginal

costs (Weyl and Fabinger 2013, and Adachi and Fabinger 2022). An additional caveat is that

θ∗mρ
∗
m is no longer interpreted as quantity pass-through under price discrimination (Weyl and

Fabinger 2013, p. 572): one needs to take into account the “elasticity of the marginal cost”

to approximate the trapezoids of the welfare gain and loss by a deviation from (full) price

discrimination.

Online Appendix E. Reinterpretation of Holmes’ (1989) result on the

output effects in terms of sufficient statistics

The following lemma holds when cost differentials are permitted.

Lemma. Q′(t) > 0 if and only if (suppressing the dependence on pm(t))

Lw ·
αownw + αcrossw

θw
− Ls ·

αowns + αcrosss

θs︸ ︷︷ ︸
adjusted concavity

+
1

θs
− 1

θw︸ ︷︷ ︸
elasticity ratio

> 0, (21)

where, following Holmes (1989), we call the first and the second terms in the left hand side of
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inequality the adjusted-concavity part, and the third and the fourth terms the elasticity-ratio

part.

Proof. It is immediate to see that Q′(t)/2 is also given by

Q′(t)

2
= q′w · p′w + q′s · p′s

= − π′′sq
′
w

π′′s + π′′w
+

π′′wq
′
s

π′′s + π′′w

=

(
− q′sq

′
w

π′′s + π′′w

)
︸ ︷︷ ︸

>0

(
π′′s
q′s
− π′′w
q′w

)
,

where (see Equation 9)

π′′m(p)

q′m(p)
= {2− Lm(p)[αownm (p) + αcrossm (p)]} ε

own
m (p)

εIm(p)︸ ︷︷ ︸
= 1
θm(p)

− εcrossm (p)

εIm(p)︸ ︷︷ ︸
=

1−θm(p)
θm(p)

=
2− Lm · (αownm + αcrossm )− (1− θm)

θm
,

Hence,

Q′(t)

2
=

(
− q′sq

′
w

π′′s + π′′w

)
︸ ︷︷ ︸

>0

[(
Lw ·

αownw + αcrossw

θw
− 1

θw

)
−
(
Ls ·

αowns + αcrosss

θs
− 1

θs

)]
,

which completes the proof. This is also interpreted as a generalization of ACV’s (2010, p. 1608)

Equation (6).

Consider the adjusted-concavity part. A larger αownw and/or αcrossw make a positive Q′(t)

more likely. A larger αownw means that the firm’s own part of the demand in the weak market

(∂xA,w/∂pA) is more convex (“the output expansion effect”). Similarly, a larger αcrossw means

that how many of the firm’s customers switch to the rival’s product as a response to the firm’s

price increase is not so much affected by the current price level (“the countervailing effect”). In

this sense, the strategic concerns in the firm’s pricing are small. Thus, both a larger αownw and a

larger αcrossw indicate that the weak market is competitive. Even if ∂xA,w/∂pA is not so convex,

a larger αcrossw can substitute it. Here, the intensity of market competition, 1/θw, magnifies

both effects, resulting in αownw /θw and αcrossw /θw. A similar argument also holds for αowns and

αcrosss .

Additionally, we are able to show that Holmes’ (1989) expression for Q′(t) (expression (9)

in Holmes 1989, p. 247) is equivalent to the left hand side of Inequality (21) above. First,
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Holmes (1989, p. 247), who assumes no cost differentials (c ≡ cs = cw) as in most of the papers

on third-degree price discrimination, derives a necessary and sufficient condition for Q′(t) > 0

under symmetric oligopoly. It is (using our notation) written as:

ps − c
q′s(ps)

· d
dps

(
∂xA,s(ps, ps)

∂pA

)
− pw − c
q′w(pw)

· d

dpw

(
∂xA,w(pw, pw)

∂pA

)
︸ ︷︷ ︸

adjusted-concavity condition (Robinson 1933)

+
εcrosss (ps)

εIs(ps)
− εcrossw (pw)

εIw(pw)︸ ︷︷ ︸
elasticity-ratio condition (Holmes 1989)

> 0.

Recall that
1

θs
− 1

θw
=
εcrosss

εIs
− εcrossw

εIw
.

Then, the first and the second terms in the left hand side of Holmes’ (1989) inequality is

rewritten as:

ps − c
q′s(ps)

· d
dps

(
∂xA,s(ps, ps)

∂pA

)
− pw − c
q′w(pw)

· d

dpw

(
∂xA,w(pw, pw)

∂pA

)
= Lw(pw) ·

[(
− pw
q′w(pw)

)
d

dpw

(
∂xA,w(pw, pw)

∂pA

)]
−Ls(ps) ·

[(
− ps
q′s(ps)

)
d

dps

(
∂xA,s(ps, ps)

∂pA

)]
.

Now, it is also observed that

αownm + αcrossm

θm
=

∂xAm/∂pA
q′m

(
− pm
∂xAm/∂pA

∂2xAm
∂p2A

− pm
∂xAm/∂pA

∂2xAm
∂pB∂pA

)
= −pm

q′m

(
∂2xAm
∂p2A

+
∂2xAm
∂pB∂pA

)
.

=

(
− pm
q′m(pm)

)
d

dpm

(
∂xAm(pm, pm)

∂pA

)
.

Therefore, Inequality (21) above is another expression for Holmes’ (1989, p. 247) Inequality (9)

because

ps − c
q′s
· d
dps

(
∂xA,s
∂pA

)
− pw − c
q′w(pw)

· d

dpw

(
∂xA,w
∂pA

)
= Lw ·

αownw + αcrossw

θw
− Ls ·

αowns + αcrosss

θs
.
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Online Appendix F. Why the exogenous quantity method does not

work under firm heterogeneity

Weyl and Fabinger (2013) and Miklós-Thal and Shaffer (2021a) use what they the exogenous

quantity method to study the welfare effects of price discrimination (see Footnote 29 in the main

text, but refer to their original papers for more details). However, this method is not readily

extendible to the case of firm heterogeneity. To see this, note that their welfare arguments rely

on the deadweight loss (DWL) in market m ∈ {s, w} under xm = (x1m, x2m, ..., xNm) by

DWLm(xm) = Um(xFBm )− Um(xm)−
N∑
i=1

cim · (xFBim − xim)

=

∫ xFB1m

x1m

· · ·
∫ xFBNm

xNm

∂NU(s1, s2, ..., sN)

∂s1 · · · ∂sN
ds1 · · · dsN

−
N∑
i=1

cim · (xFBim − xim), (22)

where xFBm = (xFB1m , x
FB
2m , ..., x

FB
Nm) is the first-best output pair that satisfies:

∂Um
∂x1m

(xFBm ) = c1m

· · ·
∂Um
∂xNm

(xFBm ) = cNm.

Under firm symmetry, the DWL expression (22) is simplified to

DWLm(x) =

∫ xFB

x

[
∂U

∂s
(s)− c

]
ds

=

∫ xFB

x

[p(s)− c] ds, (23)

where p(q) is the inverse demand, as Weyl and Fabinger (2013, p. 537) and Miklós-Thal and

Shaffer (2021a, p. 325) define. This expression has a nice feature in that p(s)− c is the markup

value. However, under firm heterogeneity, the DWL expression (22) cannot be as simple as

(23): this is the reason why the exogenous quantity method cannot be utilized as it draws on

this expression.

22


