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ABSTRACT: Thermally induced thunderstorm simulations were conducted with the Weather Research and Forecasting
(WRF) Model in an idealized configuration to investigate the associated error growth and predictability. We conducted
identical twin experiments with different topography and background winds to assess the impacts of these factors. The re-
sults showed that mountain topography restrains error growth at the early stage of convection development. This topo-
graphic effect is sensitive to mountain geometry and background winds: it was more noticeable in cases with higher and
narrower mountains and difficult to see without background wind. The topographic effect and its sensitivity resulted from
the different natures of convection initiation. However, the topographic effect became less apparent when moist convec-
tion continued growing and triggered rapid error growth. The predictability of thunderstorms is then limited at the timing
after the convective activity reached its maximum. A smaller initial error or starting a simulation at a later time did not
break this timing of predictability limit. Mountain topography also limitedly affected the timing of the maximum convec-
tive activity and the predictability limit. In contrast, background flows changed the convection evolution and the following
predictability. The predictability limit assessed by rainfall suggested other aspects of the topographic effect. The domain-
scale rainfall distribution and the intense accumulated rainfall can be adequately captured in the presence of mountains.
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1. Introduction

The atmosphere is a chaotic system with limited predict-
ability. In numerical weather prediction (NWP), due to the
error growth nature of a chaotic system, the predictable
time range cannot be extended infinitely, even by minimiz-
ing model initial errors toward an infinitesimally small value
(but not exactly equal to zero) (Palmer et al. 2014). Since
Lorenz (1969) proposed a scale-dependent predictability
concept of multiscale flows, atmospheric predictability has
been widely investigated at different scales of atmospheric
motion with various numerical models, from relatively ide-
alized models of turbulent flows (Rotunno and Snyder 2008;
Durran and Gingrich 2014; Sun and Zhang 2020) to compli-
cated global (Ngan and Eperon 2012; Froude et al. 2013; Judt
2020) or regional (Leoncini et al. 2010; Weyn and Durran
2018; Potvin et al. 2017) numerical weather prediction models.

In the past two decades, benefiting from the improvement
in computing power and NWP model, studies have extensively
investigated error growth and predictability using convection-
permitting models that allow moist convection to be explicitly
represented (e.g., Melhauser and Zhang 2012; Nielsen and
Schumacher 2016; Weyn and Durran 2017; Sun et al. 2017;
Judt 2020; Zhuang et al. 2020). Many of these studies have in-
dicated that moist convection is crucial for characterizing rapid
error growth. Zhang et al. (2003) conducted numerical experi-
ments for a snowstorm and showed that errors grow slowly
when the latent heat of condensation is artificially set to zero.

Subsequently, Hohenegger et al. (2006), Selz and Craig (2015),
and Zhang et al. (2016) showed that rapid initial error growth
is associated with moist convection development or precipita-
tion. The rapid error growth associated with moist convection
limits atmospheric predictability (Sun and Zhang 2016; Judt
2018; Zhang et al. 2019).

Besides the error growth associated with moist convection
that limits predictability at synoptic scales, error growth and
predictability at meso- and convective scales have been receiv-
ing increasing attention. Several studies have investigated the
error growth dynamics in simulations of various phenomena at
meso- and convective scales (Hohenegger and Schär 2007a,b;
Leoncini et al. 2010; Durran and Weyn 2016; Miglietta et al.
2016; Zhuang et al. 2020). Zhang et al. (2007) explored meso-
scale error growth dynamics in idealized moist baroclinic
waves. They indicated that errors growing from a small scale
saturate at convective scales in approximately one hour and
subsequently grow to larger scales, limiting the predictability
of weather at synoptic scales. On the other hand, Durran and
Weyn (2016) and Weyn and Durran (2017) evaluated the
growth of initial errors introduced at different spatial scales us-
ing simulations of convective systems. They emphasized the
need to reduce errors at a larger scale.

While different error growth dynamics have been proposed,
most previous studies showed a convective-scale predictability
limit of several hours (Hohenegger and Schär 2007a; Selz and
Craig 2015; Weyn and Durran 2017; N. Wu et al. 2020). How-
ever, the predictability at meso- and convective scales is
highly flow dependent and varies from case to case (Walser
et al. 2004; Done et al. 2012; Johnson et al. 2014). The under-
lying dynamics, such as background flows (Zhang and TaoCorresponding author: Pin-YingWu, pyingwu12@gmail.com
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2013; Weyn and Durran 2017) or synoptic-scale weather con-
ditions (Weyn and Durran 2019; Zhuang et al. 2020), affect
convection development and the associated error growth
properties and predictability. It is difficult to reach a universal
predictability estimation applicable to various weather phe-
nomena at convective scales. While increasing attention has
been being paid, further investigations are still needed to ex-
plore convective-scale predictability for different weather
phenomena and assess factors that may affect predictability at
convective scales.

In the previous studies that investigated the predictability of
convective-scale phenomena, minimal attention has been given
to thermally induced thunderstorms in solar radiation diurnal
cycles. A thermally induced thunderstorm is a universal phe-
nomenon in the warm seasons under weakly forced synoptic-
scale conditions (e.g., Wallace 1975; Kerns et al. 2010; Nomura
and Takemi 2011); it is characterized by a short-lived time of
one to a few hours and horizontally localized spatial extent at
O(10) km. Thunderstorms can bring sudden localized rainfall
or strong winds on fair weather days, influencing people’s daily
lives and sometimes inducing property and human life losses
(Changnon 2001). Predicting thunderstorms using NWPmodels
could suffer from insufficient resolution (Schmidli et al. 2018)
or incorrect initial conditions (Cheng et al. 2020) and is chal-
lenging in operational weather centers nowadays. However,
through continuous improvement of computing power and the
ongoing development of NWP models (Bauer et al. 2015), bet-
ter simulation of weathers at convective scales are expected.
With improved NWP models, future predictions of thunder-
storms should also advance. Despite, the intrinsically limited
predictable range for thunderstorms, which cannot be over-
come even with nearly perfect models and initial conditions, is
considered short because of their small characteristic scale and
the rapid error growth associated with moist convection. The
predictability limits must be understood to develop and utilize
NWP efficiently and achieve optimum performance in predict-
ing localized phenomena, such as thunderstorms. Thus, further
investigation is desirable.

Besides exploring the limits of predicting thunderstorms,
different factors affecting convection development and pre-
dictability must be examined to advance our understanding.
For example, topography is a factor affecting the develop-
ment of moist convection and probably the associated pre-
dictability (Carbone et al. 2002). Topography could induce
different heating and cooling between elevated mountains
and the surrounding valley or plain, driving diurnally vary-
ing circulation (Vergeiner and Dreiseitl 1987; Whiteman
1990; Demko et al. 2009) and affecting the generation and
development of thermally induced thunderstorms in a diur-
nal cycle. During warm seasons, clear rainfall diurnal cycles
are usually observed around mountain areas (Kerns et al.
2010; Nomura and Takemi 2011; Takemi 2014). However, in
previous studies on predictability, the impact of topography
has not been sufficiently addressed.

Recently, Bachmann et al. (2019, 2020) investigated the im-
pact of topography on the predictability of moist convection
from a practical perspective. They evaluated the forecast skills
of rainfall with scores at different scales and showed that with

topography, reliable rainfall predictions are available at a finer
scale. Wu and Takemi (2021, hereafter WT21) also showed
the impact of mountain topography on decreasing the error
growth associated with moist convection. Overall, topography
is expected to impact error growth and rainfall predictability
at a convective scale. However, the impact of topography on
the predictability limit of thunderstorms remains unanswered.
Also, the impact of the different sizes of mountains on error
growth or predictability has been unexamined. The moun-
tain’s height or width impacts the development of moist
convection and the accompanying rainfall amount and dis-
tribution (Flesch and Reuter 2012; Imamovic et al. 2019;
Mulholland et al. 2020). A study should assess whether this
sensitivity to mountain geometry is reflected in the error
growth or predictability limit.

Furthermore, the presence of prevailing winds complicates
influences of topography on the development of thunder-
storms. Background flow conditions affect the organization of
convective clouds (Takemi and Rotunno 2003; Fu and Guo
2012; Muller 2013) and the generation of thunderstorms over
mountainous areas (Banta and Schaaf 1987; Carbone et al.
1995; Chen and Lin 1997). The impacts of topography and
background flows are intertwined; mountain topography
could change the distribution of flows to trigger convection,
and the effects of background flow on convection could differ
with different topography. Thus, it is desirable to examine the
impact of topography and background flows on the predict-
ability of thunderstorms simultaneously.

To address the above concerns, identical twin experi-
ments were conducted using simulations of thermally
induced thunderstorms in idealized configurations with dif-
ferent topography and background winds. The twin experi-
ments were initialized before convection initiation (CI) to
investigate the error growth dynamics associated with the
entire development process of thunderstorms. By using
identical twin experiments in a perfect model context, an
upper limit for predicting thunderstorms was examined.
Focusing on the impact of topography and background
flows, the following issues were assessed:

• The topographic effects on error growth shown in WT21
and its sensitivity to mountain geometry and background
winds

• The predictability limit of thermally induced thunderstorms
and the accompanying rainfall estimated by the error
growth of model state variables and the difference in rain-
fall field

The rest of this paper is organized as follows: Section 2 pro-
vides the model configuration, experimental settings, and the
metrics used to assess predictability, together with a brief in-
troduction to the simulation results. The sensitivity of error
growth to mountain geometry and background flow condi-
tions is assessed in section 3. Section 4 investigates the pre-
dictability limit of thermally induced thunderstorms and the
accompanying rainfall. Section 5 discusses the cause of the to-
pographic effect on error growth and its sensitivity in more
detail. The summary is presented in section 6.
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2. Numerical simulations and metrics for assessing
predictability

a. Model configuration and experimental settings

The model configurations in this study followed those used
in WT21. The Weather Research and Forecasting (WRF)
Model version 4.2.1 is utilized with the same dynamics options
and physics parameterizations as in WT21. The computational
domain covers a horizontal area of 300 km3 300 km resolved
at 1-km grid spacing (i.e., 300 3 300 horizontal grid points).
The model top is 25 km, and the number of vertical levels is
50. At the lateral boundaries, a doubly periodic condition is
imposed. The thunderstorm simulations were initialized from
the sounding data used in WT21 (Fig. 1; also refer to Fig. 1 in
WT21). The temperature and moisture profiles from the
sounding data provide a favorable condition for the develop-
ment of deep convection with almost zero convective inhibi-
tion (CIN), and the height of the lifted condensation level is
almost the same as the level of free convection (LFC), which
is around 1-km height.

The design of identical twin experiments follows that of
WT21. The horizontally homogeneous conditions derived
from the sounding data were used to start a control simulation
at 0000 local time (LT) 22 June. After the control simulation
is spun up for 30 h, a perturbed simulation is initialized at
0600 LT before the initiation of moist convection. The per-
turbed simulation is initialized by randomly adding uncorre-
lated small differences to the water vapor mixing ratio of the
control simulation at each model grid point. These small dif-
ferences belong to a Gaussian distribution with zero mean
and variance equal to 0.01 g kg21. Additional sensitivity tests
with the perturbation only added to low levels below 2 km

showed similar error growth dynamics in the experiment with
and without topography (figure not shown). The initial pertur-
bation on water vapor is commonly used to investigate the
predictability associated with moist convection (e.g., Weyn
and Durran 2017, 2019). Also, the initial condition of the
moisture field is crucial for predicting heavy rainfall (e.g.,
P.-Y. Wu et al. 2020). Since the phenomena of interest here
are moist convection and the accompanying rainfall, we
added perturbation to water vapor to evaluate the error
growth caused by initial uncertainty in the moisture field.
There were experiments with initial error on potential tem-
perature, and the results show similar relative performance
among experiments with different topography and back-
ground winds.

To assess predictability limit, we also performed the per-
turbed simulations with the initial perturbation of 0.1 and
10 times 0.01 g kg21, and the perturbed simulations started at
later times of 0800 and 1000 LT with the original (0.01 g kg21)
initial error magnitude. For convenience, the term “experiment”
will be used for a simulation group that contains a control
simulation and its perturbed simulation(s). For each experi-
ment, the control simulation was initialized with a pre-
scribed topography and a specific wind profile, and the
perturbed simulation(s) were initialized by adding perturba-
tions to the control simulation. The errors of each perturbed
simulation were assessed using their differences from the
corresponding control simulation.

Several experiments were conducted to investigate the im-
pact of mountain geometry and background flows (Table 1).
First, the original wind profile of the sounding data (ORI)
was used, and different topography settings were performed.
The first two experiments are without and with mountain

FIG. 1. (a) The profiles of temperature (gray) and dewpoint temperature (red) from the sounding data. (b) The profile
of (left) wind direction and (right) wind speed from the sounding data (gray) and the ideal ones used in NS5 (dotted
blue) and U00 (dashed yellow) experiments. The dashed black curve in (a) shows a reference for the adiabatic lapse
rate of a parcel rising from the surface with the same temperature and moisture fields as the sounding data.
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topography corresponding to the experiment FLAT and
TOPO in WT21, respectively. In this study, we will refer to
FLAT and TOPO as ORI_H00W00 and ORI_H10W50, re-
spectively, to maintain a consistent naming scheme for all the
experiments with different topography and background
winds. The mountain in ORI_H10W50 is a 1000-m-height
Gaussian-shaped mountain with around 50-km width embed-
ded to the southwest of the domain (centered at x 5 75 km,
y 5 100 km; see Fig. 2e). The location of the mountain was
determined following the northeast movement of convective
clouds to keep the clouds developing near the mountain re-
maining in the domain as long as possible. This made the anal-
ysis more intuitive. The choice of mountain height was based
on the overall elevation of the Kii Peninsula, Japan, where
the sounding data are located; in the Kii area, there is a pro-
nounced diurnal cycle of thunderstorm-associated precipita-
tion in the summer (Takemi and Tsuchida 2014). To examine
the impact of mountain geometry, we changed the height or
volume of the mountain here, inspired by Imamovic et al.
(2019), who showed the mountain volume’s impact on moist
convection and accompanying rainfall amount. For example,
the experiment having the mountain with the same height but
halved and doubled volume (i.e.,

����
0:5

√
and

��
2

√
times the

width) of the mountain compared to ORI_H10W50 were re-
ferred to as ORI_H10W35 and ORI_H10W70, respectively.
Additionally, ORI_H05W70 was the experiment in which the
mountain height was reduced by half while maintaining the
same volume (i.e., the width is

��
2

√
times) as in ORI_H10W50.

To investigate the impact of background flow conditions,
besides the ORI experiments, the wind profile used to initial-
ize the control simulation was replaced with either zero (U00)
or westerly 5 m s21 uniformly in the vertical direction (NS5),
representing the conditions of no background wind and no
vertical wind shear, respectively (Fig. 1b). The initial wind
field in the control simulations was equal to zero in the U00

experiments and to 5 m s21 in the NS5 experiments at all three-
dimensional model grid points. These experiments with differ-
ent background winds were also performed with and without
mountain topography (Table 1). The wind field in the NS5 ex-
periments was maintained westerly during the computation pe-
riod, making the convective clouds move toward the east.
Therefore, the mountain here is located within the western part
of the domain (centered at x 5 50 km, y 5 150 km; see
Fig. 2h), differing from the ORI experiments. The mountain
location in the U00 experiment follows the NS5 one.

b. Metrics for assessing error growth and predictability

The predictability limit of thermally induced thunderstorms
and the accompanying rainfall is evaluated by comparing the
differences in model state variables and the simulated rainfall,
respectively, between the control and perturbed simulations
in each twin experiment. A proposed metric called convective
moist difference total energy (CMDTE) was used to estimate
the differences in model states. The fractions skill score (FSS;
Roberts and Lean 2008) was applied to assess the difference
in rainfall field. Detailed descriptions of the two metrics are
provided subsequently.

The CMDTE used here follows the metric in WT21 but
includes the differences in vertical velocity to consider the
distinction of the convective cores. It is calculated at three-
dimensional model grid points using the differences in the
three-dimensional wind (u′, y ′, w′), temperature (T′), water
vapor mixing ratio (qy), and surface pressure (p′s) as follows:

CMDTE 5
1
2

u′2 1 y ′2 1 w′2 1
cp
Tr

T′2 1
L2

y

cpTr

q′2y 1 RTr

p′s
pr

( )2[ ]
:

(1)

Here, Tr and pr are the reference temperature (270 K) and
reference pressure (1000 hPa), respectively, following the

TABLE 1. Experiment names and their topography settings, and the initial wind profiles.

Wind profile for
initial conditions Expt

Mountain
height (m)

Mountain
volume

Mountain location
(km)

Original sounding (ORI) ORI_H00W00 (same as
FLAT in WT21)

} } }

ORI_H10W50 (same as
TOPO in WT21)

1000 } x 5 75, y 5 100

ORI_H10W35 Halved x 5 75, y 5 100
ORI_H10W70 Doubled x 5 75, y 5 100
ORI_H05W70 500 } x 5 75, y 5 100
ORI_H05W50 Halved x 5 75, y 5 100
ORI_H05W100 Doubled x 5 75, y 5 100

Zero wind (U00) U00_H00W00 } } }

U00_H10W50 1000 } x 5 50, y 5 150
U00_H10W35 Halved x 5 50, y 5 150
U00_H10W70 Doubled x 5 50, y 5 150

Constant wind 5 5 m s21

(NS5)
NS5_H00W00 } } }

NS5_H10W50 1000 } x 5 50, y 5 150
NS5_H10W35 Halved x 5 50, y 5 150
NS5_H10W70 Doubled x 5 50, y 5 150
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FIG. 2. The CMDTE at the time when the cloudy-point ratio is equal to 0.1% (color shaded) in (a) ORI_H00W00, (b) ORI_H05W70,
(c) ORI_H05W50, (d) ORI_H10W35, (e) ORI_H10W50, (f) ORI_H10W70, (g) NS5_H00W00, (h) NS5_H10W50, (i) U00_H00W00, and
(j) U00_H10W50. The contours depict vertically integrated hydrometeors equal to 0.7 kg m22 (i.e., the definition of the cloud grid point)
when the cloudy-point ratio is equal to 0.1%, 1%, and 5% (black, gray, and light gray contours, respectively). The times of the contours
are depicted by the numbers with the same color in the upper right of each panel. The green dashed–dotted contours depict terrain heights
of 100, 500, and 900 m. The red dotted lines show the location of the cross section depicted in Figs. 11–13. The dark-blue dashed boxes de-
pict the subdomains for producing Figs. 5 and 14 and the mountain areas in Fig. 7; the dark-blue dotted boxes depict the subdomains for
the plain areas in Fig. 7.
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values used for the moist total energy norm in Ehrendorfer
et al. (1999); cp, Ly, and R are the specific heat capacity at
constant pressure (1004.9 J kg21 K21), the latent heat of con-
densation (2.4359 3 106 J kg21), and the specific gas constant
of dry air (287.04 J kg21 K21), respectively. Compared with
the metrics used in previous studies, such as the difference to-
tal energy (Zhang et al. 2003), CMDTE involves the differ-
ences in vertical wind and water vapor, which are important
components for developing moist convection, to better repre-
sent the error growth associated with predicting thunder-
storms. The CMDTE presented in the following sections was
calculated at each model grid point in the context that small
displacements of convection were considered errors.

To assess the difference in rainfall field, we computed FSS
using the rainfall of the control simulation as “observation”
Or, and the rainfall of the perturbed simulation as “model
forecast” Mr. The rainfall fields Or and Mr were first con-
verted into binary fields Io and IM by setting the value to 1 at
grid points for rainfall amounts above a predefined threshold
and 0 at other points. These binary fields Io and IM are then
used to generate the fractions O(n)(i, j) and M(n)(i, j) with
the following equations:

O(n)(i, j) 5 1
n2
∑
n21

k50
∑
n21

l50
Io(i 1 k, j 1 l), (2a)

M(n)(i, j) 5 1
n2
∑
n21

k50
∑
n21

l50
IM(i 1 k, j 1 l), (2b)

where i and j are the indices of the computation domain in
the x and y directions, respectively; n determines the square
kernel range, whose size is n 3 n, for generating the fractions.
Since the doubly periodic condition is used, the neighborhood
points over the lateral boundary of the computation domain are
accounted for cyclically. The above equations make the square
kernel centered at the point [i 1 (n 2 1)/2, j 1 (n 2 1)/2], but
not (i, j), which is different from the ones in Roberts and Lean
(2008). Since only the domain-averaged FSS was compared, the
different formulas did not affect the results. The FSS is calcu-
lated as follows:

1 2
MSE(n)
MSE(n)ref

,

where

MSE(n) 5
1

NxNy

∑
Nx

i51
∑
Ny

j51
[O(n)i,j 2 M(n)i,j]2,

MSE(n)ref 5
1

NxNy

∑
Nx

i51
∑
Ny

j51
O2

(n)i,j 1 ∑
Nx

i51
∑
Ny

j51
M2

(n)i,j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦:

Here, Nx and Ny are the grid point numbers of the computa-
tion domain in the x and y direction, respectively. A higher
FSS means a better agreement between Or and Mr, and the
best value of FSS is 1. Changing the size of kernel n allows the
calculation of the FSS to consider neighboring rainfall in

different ranges, providing the estimate of rainfall accuracy at
various scales. FSS is widely used to verify the NWP model’s
rainfall prediction and to estimate the predictability of convec-
tive-scale events (Weyn and Durran 2019). Following previous
studies (e.g., Roberts and Lean 2008; Weyn and Durran 2019),
we defined the FSS skillful criterion by 0.51 f0/2, where f0 is the
ratio of points exceeding the predefined rainfall threshold in the
computation domain. A rainfall prediction with an FSS higher
than the skillful criterion is considered useful.

Comparisons using the two metrics, CMDTE and FSS,
complement each other. Weyn and Durran (2019) showed
that the metrics used to estimate the errors of NWP could
change the interpretation of forecast skill and predictability.
In this study, CMDTE is a metric that estimates the difference
in the atmospheric states simulated at each model grid point;
similar measurements are commonly used in predictability
studies (e.g., Lorenz 1969; Zhang et al. 2003; Weyn and Durran
2017). On the other hand, FSS, which estimates the rainfall re-
sulting from the simulated thunderstorms, provides a more
practical view for assessing the predictability of thunderstorms
since rainfall prediction is more often used in daily weather
forecasts or disaster prevention. FSS is also used to assess the
impact of topography and background winds at different spa-
tial scales to complement the analysis of CMDTE at the model
grid spacing scale.

c. Overview of the simulation results and the detection of
cloud areas

Figures 2 and 3 show an overview of convection develop-
ment and rainfall in experiments with different topography
and background winds. All the experiments reproduced the
simulation of thermally induced thunderstorms similar to
those in WT21, while the start time and the patterns of con-
vective clouds differed among the experiments (Fig. 2). Dur-
ing the entire computation period, the wind field in all
experiments generally keep the condition given by the initial
wind profiles, except for the area blocked by the mountain or
where convective clouds were developing. Therefore, in ex-
periments with different background winds, convective clouds
have different orientations and movements corresponding to
the wind conditions provided by the initial wind profile. De-
spite, as shown in WT21, the experiments with mountain to-
pography have terrain-induced convective clouds developing
around the mountain at earlier times, regardless of the back-
ground wind; on the other hand, over the areas away from the
mountain, convection develops similarly to those in nonmoun-
tain experiments at later times.

The rainfall distribution also shows the impacts of back-
ground winds and mountains (Fig. 3). The general orientation
and size of the rain cells are different in the experiment with
different background winds. Meanwhile, regardless of back-
ground wind, heavier and larger rainfall cells were observed
over the mountain areas; in comparison, the rainfall distribu-
tion outside the mountain area was similar to that in the cor-
responding nonmountain experiment.

According to WT21, error growth was influenced by con-
vection development. Over areas where convective clouds
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FIG. 3. The 12-h accumulated rainfall (from 0700 LT) of the control (color shaded) and perturbed (black contours, 5 mm) simula-
tions in (a) ORI_H00W00, (b) ORI_H05W70, (c) ORI_H05W50, (d) ORI_H10W35, (e) ORI_H10W50, (f) ORI_H10W70,
(g) NS5_H00W00, (h) NS5_H10W50, (i) U00_H00W00, and (j) U00_H10W50. The gray dashed–dotted contours depict terrain
heights of 100, 500, and 900 m.
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developed, errors grew quickly and were larger than those
over areas without clouds (Fig. 3 in WT21). Figure 2 also
shows similar CMDTE and convective cloud distributions in
all the experiments. Consequently, the experiments having
earlier convection development also have rapid error growth
starting earlier. Thus, to compare the error growth among
identical twin experiments having distinct features of convec-
tion development, the error growth was investigated in terms
of the timing of moist convection development.

The reference for the timing of moist convection develop-
ment was provided by identifying cloudy grid points repre-
senting where convective clouds were simulated in the model.
Since the start times of convection are similar between the
control and perturbed simulations in each twin experiment
(Fig. 2 in WT21), the cloud grid point is identified using the
control simulation. When a grid point has vertically integrated
hydrometeor contents (i.e., the total of rainwater, cloud wa-
ter, snow, graupel, and ice) larger than 0.7 kg m22, it is identi-
fied as a cloud grid point. The threshold of the vertically
integrated hydrometeor contents corresponds to a simulated
reflectivity of around 30 dBZ. Our additional analysis showed
that changing the threshold to 0.3 or 1.5 kg m22 does not af-
fect the conclusion of this study (figure not shown). The pur-
pose of the identified cloud grid point is not to define the
exact stages of convection development but to provide a ref-
erence for comparing errors among different experiments
with different convection development timings. We also de-
fine the cloudy-point ratio, which is the ratio of the identified
cloud grid points to the total number of grid points over a
computation domain, to represent the degree of convective
activity. In the following, comparison of error will be provided
based on the use of the defined cloud grid point.

3. The topographic effects on error growth

WT21 indicated that mountain topography could decrease
the error growth associated with moist convection in its early
stage of development. In this section, we examined the sensi-
tivity of this topographic effect to mountain geometry and
background flows.

Following the analysis in WT21 (their Fig. 6), the errors
within the areas of individual convective clouds were com-
pared (Fig. 4). A convective cloud area was defined as the
continuous area of the cloud grid point having 10 grid points
or larger. In Fig. 4, the cloud size is represented by the num-
ber of grid points in the detected cloud areas; the error magni-
tude was represented by the mean of the top 10 maxima
vertical mass-weighted averaged CMDTE over the detected
cloud areas. For the experiments with topography, only the
scatter points of convective clouds detected before 1040 LT
are depicted in Figs. 4a and 4b, and only those before
1020 LT are depicted in Figs. 4c and 4d. In the experiments
with topography, free convection developed similarly to that
in the nonmountain experiments at later times, resulting in
similar scatterplots (Fig. 6 in WT21). These scatterplots of the
convective clouds at later times overlap when depicting them
together in Fig. 4, so they are omitted to make the comparison
among the experiments more evident. The results of the

nonmountain experiments were presented in full whenever a
cloud area was detected from 0800 to 1200 LT in a 20-min
interval.

Using Fig. 4, we compared the errors among convective
clouds of a similar size to address the topographic effects on
error growth. Previous studies and our results showed that er-
ror growth is greatly related to the distribution of convective
clouds (WT21; Fig. 2). Since the simulations were conducted
in an idealized framework with the doubly periodic lateral
boundary condition, there was no other considerable source
of error growth comparable to moist convection. Error
growth is presumed to be mainly caused by convection devel-
opment. The convection at a similar stage, which might result
in a similar size of convective clouds, is expected to trigger a
similar error magnitude if the mountain topography has no
impact.

We compared the ORI experiments to investigate the im-
pact of mountain geometry (Figs. 4a,b). Here, ORI_H00W00
is a reference for the relationship between errors and cloud
sizes in the nonmountain ORI case. The topographic effect
was then assessed by how the results of the experiments with
topography depart from the area possessed by ORI_H00W00.
Compared with Fig. 4b, Fig. 4a shows more scatter points
from the experiment with topography located away from the
area possessed by the ORI_H00W00 results. Namely, some
convective clouds in the experiments with 1000-m mountains
triggered less error growth than in ORI_H00W00, while those
in the 500-m mountain experiments resulted in error magni-
tudes comparable to the ones in ORI_H00W00. Figures 4a
and 4b suggest that irrespective of the mountain width, the
impact of mountains with 1000-m height is more pronounced
than that of mountains with 500-m height. Additionally, when
looking at mountains with the same height, the mountain
width, although not as clearly as the mountain height, also af-
fects error growth. For example, Fig. 4a shows that some con-
vective clouds with the size of around 5 km in ORI_H10W70
have slightly larger errors than those in ORI_H10W35 and
ORI_H10W50. Similarly, the errors in ORI_H05W70 tended
to be larger than those in ORI_H05W50 (Fig. 4b).

Furthermore, we investigated error growth in different ver-
tical levels during the time of CI in some ORI experiments
(Fig. 5). To focus on the impact of topography, we calculated
the horizontal average over a subdomain around the moun-
tain topography (Fig. 2e). The same subdomain was used for
ORI_H00W00. The choice of the subdomain barely changes the
result of ORI_H00W00 since the convection in ORI_H00W00
develops fairly over the computation domain. In Fig. 5, the hy-
drometeors represent the development of moist convection in
the vertical direction over time; the CMDTE shows the corre-
sponding error growth. The u anomaly (the differences of the u

at each grid point from the horizontally averaged u) and the up-
ward wind are also depicted to show the thermodynamic and dy-
namic states.

Figure 5 shows the exponential error growth following the
convection development in the vertical direction and the dif-
ferent error growth rates among the experiments. In ORI_
H00W00, moist convection developed upward quickly from
1020 LT. The errors at different vertical levels grow rapidly
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by order of magnitude or greater immediately after the develop-
ment of convective clouds to that level (Fig. 5a). In comparison,
the error growth after convection starts developing is slower in
ORI_H10W50, suggesting the topographic effect of a 1000-m
mountain on restraining error growth over different vertical
levels. For example, throughout the levels below 5 km, it takes
more than 1 h for the error in ORI_H10W50 to grow from 1023

to over 1021 J kg21 after the convective cloud develops, while it
only takes 20–30 min for the growth of error in ORI_H00W00.

The sensitivity of the topographic effect to the mountain ge-
ometry is also seen in Fig. 5. Here, the sensitivity to mountain
height is presented by the comparison between ORI_H10W50
and ORI_H05W70, whose mountain widths are different, to
demonstrate a more distinct difference. In ORI_H05W70, the
exponential growth of error is much more rapid than in ORI_

H10W50 (cf. Figs. 5b,c). Throughout all the heights, the errors
in ORI_H05W70 start exponential growth almost right after
the development of convective clouds. This is similar to that of
ORI_H00W00 (cf. Figs. 5a,c), suggesting less effect on re-
straining error growth. Similar sensitivity to mountain height is
supported by comparing ORI_H10W50 and ORI_H05W50, as
well as ORI_H10W70 and ORI_H05W70. The results of
ORI_H05W50 (figure not shown) are very similar to those of
ORI_H05W70, while the mountain width also played a role,
and errors indeed grow slightly more rapidly in ORI_H05W70
than in ORI_H05W50. Also seen in Fig. 5 is the sensitivity
to mountain width. In ORI_H10W35, while the vertical de-
velopment of convective clouds seems similar to that in ORI_
H10W50, the error grows more slowly than in ORI_H10W50
(cf. Figs. 5b,d). For example, at levels around 3–5 km, the error

FIG. 4. Scatterplots of the convective cloud size (x axis) against CMDTEmagnitude (y axis) in (a) the ORI experiments with 1000-m-height
mountains, (b) the ORI experiments with 500-m-height mountains, (c) the NS5 experiments with 1000-m-height mountains, and (d) the
U00 experiments with 1000-m-height mountains. The corresponding nonmountain (H00W00) experiment was added to each panel. Each scat-
ter point represents the results from a detected cloud area in an experiment, depicted by different markers, at a time represented by the color.
The scatter points with colored thicker edges represent the clouds detected near the mountains where the distance between the detected cloud
center and the mountain top is shorter than 100 km.
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in ORI_H10W35 stays below 1023 J kg21 for 20 min after the
convection develops, while the error in ORI_H10W50 grows ex-
ponentially to 1022.5 J kg21 in 20 min. Figures 5, 4a, and 4b sug-
gest the same sensitivities of the topographic effect: the higher
and narrower mountains have a clear impact on constraining er-
ror growth.

Besides the sensitivity to mountain geometry, the sensitivity
of topographic effects to background winds is further exam-
ined (Figs. 4c,d). Here, we compare the experiments without
topography and with 1000-m mountains to see if the same to-
pographic effect also arises under different background winds.
In the NS5 experiments, the results show a similar topographic
effect to that in the ORI ones (cf. Figs. 4a,c). On the other
hand, the topographic effect is less clear than in the ORI cases
(cf. Figs. 4a,d); only a few points among the topography experi-
ments show smaller errors than those of ORI_H00W00 when
the cloud area sizes are below 10 km.

In this section, we showed the topographic effect, consistent
with WT21, on both the error in individual clouds and the error
over different vertical levels; we further demonstrated the sensi-
tivity of this effect to mountain geometry and background winds.
However, note that along with the development of convective
clouds, the errors among the experiments became more similar
in magnitude. The strong upward winds and enhanced latent
heating promoted error growth in all experiments, even over the
mountain area. In Fig. 5, for instance, when the upward wind and
positive u anomaly, indicating the intensity of moist convection,

reach 15 m s21 and 4 K, respectively, the errors in all the experi-
ments grow to a similar magnitude. Figure 4 also shows that
even in the experiments showing the topographic effect, such as
those in Figs. 4a and 4c, the convective cloud areas detected near
the mountains at later times are likely to have error magnitudes
comparable to those in the nonmountain experiments.

4. Predictability of thermally induced thunderstorms

The error growth natures in a chaotic system limit the pre-
dictability of the system. In other words, there exists an upper
bound on the length of time for meaningful predictions. We
have shown the topographic effect on error growth during the
early stages of convection development and investigated
the sensitivity of this effect. However, it is still not evident if
there is a limit of predicting thermally induced thunderstorms
and how topography and background winds impact the pre-
dictability. This section investigates the predictability limit of
thermally induced thunderstorms and the impacts of topogra-
phy and background winds. The CMDTE and FSS estimate
the limit of predicting convective clouds and accompanying
rainfall, respectively, from different aspects. The former offers
a measure for the limit of predicting instantaneous states of
thunderstorms at each grid point. The latter examines the
limit of predicting rainfall, which is crucial information in
weather forecasts, from a practical aspect and provides the
assessment at various spatial scales.

FIG. 5. The time–height cross section of the horizontally averaged CMDTE (color shaded), and the horizontally maximum of hydrome-
teors (black contours; 0.1 and 7 g kg21), upward wind (red contours; 1.5 and 15 m s21), and u anomaly (yellow and bright yellow contours;
1 and 4 K, respectively) in the control simulation over a subdomain in (a) ORI_H00W00, (b) ORI_H10W50, (c) ORI_H05W70, and
(d) ORI_H10W35. The dark-blue dashed box in Fig. 2e shows the range of the subdomain.
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a. Limit of predicting convective clouds

When the initial error growth reaches saturation, it is a sign
of the limit to providing reliable prediction by NWP models
and is usually used to imply a predictability limit (e.g., Judt
2018; Zhang et al. 2019). Here, we performed additional per-
turbed simulations with different initial error magnitudes and
times to assess the predictability limit by the growth of the
CMDTE. The control simulations in ORI_H00W00 and
ORI_H10W50 are again used. Additional perturbed simula-
tions are conducted by adding small differences in the water
vapor mixing ratio with magnitudes of 0.1 and 0.001 g kg21

(i.e., 10 and 0.1 times the original one, denoted as “_P10” and
“_P01,” respectively) at 0600 LT and with the same magni-
tude (0.01 g kg21) but at 0800 and 1000 LT (denoted as
“_08LT” and “_10LT,” respectively). These additional simu-
lations are designed to examine whether using a smaller initial
error or initializing the simulation later can extend the time of
predictability limit implied by the error saturation (i.e., the
time of losing the capacity to improve predictions).

Figure 6 shows the evolution of domain-averaged CMDTE
between the control simulation and these additional per-
turbed simulations in ORI_H00W00 and ORI_H10W50. In
both experiments, all the perturbed simulations indicated an
error decrease just after the initial time, which is considered a
spinup of random initial errors to get into a growth mode.
After 0800 LT, errors start to grow exponentially. The rapid
exponential error growth phase occurs earlier in the ORI_
H00W00 set of simulations than in ORI_H00W00 due to the
presence of terrain (see also WT21). Meanwhile, for the same
simulation set of ORI_H00W00 or ORI_H10W50, the per-
turbed simulations started with smaller initial error magni-
tudes exhibit growth with larger orders of magnitudes during
the exponential growth phase. This corresponds to Zhang

et al. (2003). Despite the different characteristics in the morn-
ing, error growth in all the perturbed simulations slows down
after 1200 LT and reaches similar magnitudes at around
1300 LT, indicating an error saturation time. The similar error
saturation time of the perturbed simulations with different initial
error magnitudes implies the predictability limit of thermally
induced thunderstorms. Meanwhile, the perturbed simulations
initialized at different times also had a similar saturation time,
resulting in an even shorter predictable range, highlighting the
strong flow-dependent predictability at convective scales.

In Fig. 6, in addition, results of ORI_H00W00 and ORI_
H10W50 show little difference in the timing of error satura-
tion, indicating that the existence of topography affects little
on the predictability limit. Subsequently, we examined the
error saturation times of the experiments with different
mountain geometry using the perturbed simulations initiated
at 0600 LT with an error magnitude equal to 0.01 g kg21. Er-
ror evolutions (Fig. 7b) are depicted together with the cloudy-
point ratio (Fig. 7a) and the ratio of errors to the cloudy-point
numbers (Fig. 7c) to show the evolution of convective activity
and the level of errors triggered by a unit number of convec-
tive clouds, respectively. Results over the mountain and plain
subdomains are also presented separately to compare the
error growth only near the mountain. Over both subdomains
and the entire domain, error evolutions coincided with the
evolution of the cloudy-point ratio for all the experiments.
Over the plain area in the experiments with topography, the
results are similar to that in the nonmountain experiment.
Over the mountain area, Fig. 7c shows that the ratio of error
to convective activity is smaller in the experiments with the
1000-m mountains over the mountain area around 0900 and
1000 LT. However, it becomes comparable to all other experi-
ments and areas later. Namely, consistent with the results in
section 3, over the mountain area, the same cloudy-point
numbers triggered less error growth at early times. Neverthe-
less, the impact become little at a more developed stage of
convective clouds. The fact of that the error growth over the
mountain area is slower at first but becomes normal later
highlights the strong flow-dependent predictability at convec-
tive scales, at which the error growth rate could increase
quickly in response to the development of moist convection.

The little impact of the mountain on error growth at later
times results in the convection development dominating error
growth and the consequent limit of predictability. When as-
sessing the entire domain-averaged CMDTE, all the ORI ex-
periments showed a similar time of error saturation when
convective activity reached the maximum (Figs. 7a,b). It is
considered that the rapid error growth in response to more ac-
tive moist convection near noon eventually results in error
saturation at the time of maximum convective activity. Even
starting the perturbed simulations later did not break this
limit (Fig. 6). Similarly, in the experiments with topography,
the maximum convective activity time decides the timing of
losing predictability. Consequently, mountain topography,
which also rarely affects the time of maximum convective ac-
tivity over the entire domain, shows little impact on the pre-
dictability estimated by the domain-averaged error growth.

FIG. 6. Time evolution of the domain-averaged CMDTE be-
tween the control simulation and the perturbed simulations with
initial error amplitudes equal to 0.1 g kg21 (ORI_H00W00_P10
and ORI_H10W50_P10), 0.01 g kg21 (ORI_H00W00 and ORI_
H10W50; the original ones), and 0.001 g kg21 (ORI_H00W00_P01
and ORI_H10W50_P01) started at 0600 LT and equal to 0.01 g kg21

but started at 0800 LT (ORI_H00W00_08LT and ORI_H10W50_
08LT) and 1000 LT (ORI_H00W00_10LT and ORI_H10W50_
10LT).
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Experiments with different background winds show evi-
dence of the domination of convection development on flow-
dependent predictability (Figs. 7d–f). When comparing the
subdomain-averaged evolutions, the error growth generally
coincides with the convective activity (Figs. 7d,e). The ratio of
the error to convective activity (Fig. 7f) is also smaller over the
mountain area in the mountain-included experiments of NS5 but
not in U00_H10W50, consistent with the sensitivity suggested by
Fig. 4. When comparing the entire domain-averaged evolution,
it is not surprise that both the error and convective activity are
affected by the background wind, considering the impact of flow
conditions on convection development (e.g., Muller 2013; Fu and
Guo 2012). For the NS5 and U00 experiments, the times of max-
imum convective activity were earlier than the ORI ones. The
saturation time was consequently earlier in these experiments,
regardless of whether the mountain existed. Consequently, Fig. 7
suggests that by affecting the convection development, the back-
ground winds have a greater impact on the time of predictability
limit than the topography test in this study.

b. The predictability limit of rainfall brought by
thunderstorms

Precipitation predictions are vital information in day-to-day
weather forecasts. Although the error of model state variables,
such as temperature and wind, are also important metrics for
evaluating the ability of NWPs, assessing the accuracy of rainfall
prediction is even more critical from the practical viewpoint

of providing reliable NWPs for daily weather forecasts. Here,
we used the FSS (see section 2b) for estimating the difference
in rainfall field between the control and perturbed simulations
to assess the predictability of thunderstorm-accompanying
precipitation.

The results of rainfall scores, different from the CMDTE
shown previously, vary greatly in the afternoon when different
initial random perturbations are added. Thus, for robustness,
the results of additional perturbed simulations are included in
this section. Four additional perturbed simulations were con-
ducted against the control simulation by adding different
random perturbations with an amplitude of 0.01 g kg21 at
0600 LT (the same as the original one) using different random
seeds. This provides five perturbed simulations with the same
start time and amplitude of initial error in each identical twin
experiment. The FSS was calculated separately between the
control and the five perturbed simulations. The following pre-
sents rainfall scores using the mean of the five FSS calculated
in each experiment. The skillful criteria of FSS are provided
based on the rainfall fraction in the control simulation. When
comparing the experiments with different background winds,
we will depict the averaged criteria from the experiments hav-
ing the same background wind since the experiments with the
same background wind have similar rainfall evolution.

We first assess the FSSs with a rainfall threshold of 1 mm h21

calculated at each model grid point, i.e., n in Eq. (2) is equal to
1 (solid curves in Fig. 8). In this context, a small shift of rainfall

FIG. 7. Time evolution of (a),(d) the cloudy-point ratio, (b),(e) the CMDTE, and (c),(f) the ratio of CMDTE to
cloudy-point numbers of experiments with different (a)–(c) topography and (d)–(f) background winds. See Table 1
for the settings of each experiment. The solid, dashed, and dotted curves represent the average taken over the entire do-
main, mountain area, and plain area, respectively. The mountain and plain subdomains, depicted in Fig. 2, are the same
in the experiments with the same background wind. The entire domain-averaged results are omitted in (c) and (f).
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distribution is seen as the error caused by the growth of the ini-
tial perturbation; a strict estimate of predictability is provided.
In the ORI experiments (Fig. 8a), the FSSs decreased rapidly
after 1000 LT and become lower than the skillful criterion
around 1200–1300 LT, regardless of the topography settings,
suggesting that topography impacts little on the predictability of
hourly rainfall at the model grid spacing scale. The experiments
with different background winds (Fig. 8b) similarly showed a
rapid decrease in FSSs after 1000 LT and little difference be-
tween the experiments with and without topography. However,
experiments with different background winds have distinct
performances. In NS5 and U00 experiments, the times of the
FSSs becoming lower than the skillful criteria were earlier
than those in the ORI experiments, suggesting a shorter pre-
dictable range in the NS5 and U00 experiments, which is also
consistent with the result of the CMDTE. Overall, the hourly
rainfall at the model grid spacing scale suggest similar conclu-
sion as the CMDTE does; the predictability of thunderstorms
and their accompanying rainfall was affected by background
winds more greatly than the mountain topography tested in
this study.

Conversely, the FSSs of several hours of accumulated rain-
fall at the model grid spacing scale show different sensitivities
to the topographic effects (Figs. 8c,d). Here, the rainfall

threshold for computing FSSs is set to 1 mm h21. For 3-h
accumulated rainfall, for example, the threshold for comput-
ing FSSs is 3 mm. The scores of accumulated rainfall estimate
the predictability of the total rainfall brought by thunder-
storms developing from the morning. An accumulated rainfall
prediction is usually used as a metric for evaluating the poten-
tial for disasters like flooding to occur. Therefore, we assessed
the impact of topography and background winds on this es-
sential information in weather forecasts from a practical view
point of disaster prevention. In the ORI experiments
(Fig. 8c), ORI_H00W00 had lower accumulated rainfall FSSs
throughout the 12-h accumulation period than other experi-
ments with topography. Such topographic effects are also
shown in the NS5 experiments (Fig. 8d). In NS5_H10W50,
the FSSs are even higher than ORI_H00W00, which differs
from hourly rainfall (cf. Figs. 8b,d). The higher FSSs in the ex-
periments with topography, which is not seen in hourly rain-
fall, suggest that with the existence of mountain topography,
the rainfall accumulated for several hours might be better
predicted than in the case of flat topography, while the
hourly rainfall might not. Additionally, the two U00 experi-
ments showed fewer distinct FSSs of accumulated rainfall,
highlighting that the impact of topography is intertwined
with the background wind.

FIG. 8. FSS evolution of (a),(b) hourly rainfall and (c),(d) rainfall accumulated from 0700 LT. The FSSs with neigh-
borhood sizes of 1, 10, and 40 grids are depicted in solid, dotted–dashed, and dotted curves. The scores were calcu-
lated in a 10-min interval from 0700 LT in all experiments. The x axis in (a) and (b) depicts the start time of hourly
rainfall. The light gray, gray, and dark-gray curves show the skillful criteria in the ORI, NS5, and U00 experiments,
respectively.
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Besides the scores at the model grid spacing scale, we also
compared the FSS using different neighborhood sizes. Rain-
fall prediction with small spatial shifts is sometimes acceptable
and could provide useful information in weather forecasts.
For FSSs at the 10-km scale (dashed–dotted curves in Fig. 8),
those of accumulated rainfall kept higher than the skillful
criteria through the computation period in all the experi-
ments; those of hourly rainfall also became lower than the
skillful criteria at later times than the model-grid-scale FSSs,
suggesting a longer predictable time at a larger scale. In the
ORI experiments (Fig. 8a), all the experiments with mountain
topography tended to have their FSSs higher than ORI_
H00W00 at the 10-km scale. The FSSs of the experiments
with topography generally continue keeping higher or compa-
rable to the skillful criteria until 1700 LT. The experiments
with different background winds also showed more distinct
FSSs between the experiments with and without topography
at 10 km than the model grid spacing scale. Meanwhile, the
difference between the experiments with different back-
ground winds is also less clear compared to the FSSs at the
model grid spacing scale.

In the U00 or NS5 experiments, the FSSs at larger scales
were comparable to or higher than the ORI experiments
when the experiments with the same topography setting were
compared, different from those at the model grid spacing
scale. The higher rainfall scores at larger scales in the NS5
and U00 experiments might result from the smaller character-
istic spatial scale of convective cells and the rainfall pattern in
these experiments (see Figs. 2 and 3). In this case, accounting
for neighbor girds away from a grid point might include rain-
fall brought by different convective cells, making the estimate
of large-scale rainfall distribution less punished. The higher
scores of the NS5 and U00 experiments at larger scales could
be interpreted as the rainfall at a larger scale is better pre-
dicted. However, it is difficult to certify the usefulness of this
higher score at larger scales in the practical use of rainfall pre-
diction when the characteristic spatial scale of rainfall is rela-
tively small. The FSSs calculated on a larger scale (40 km)

suggest similar relative performance among the experiments
as in the case of 10-km scale, while almost all experiments had
higher FSSs than the skillful criteria until 1800 LT (dotted
curves in Figs. 8a,b).

To further assess the rainfall predictability at different
scales, Fig. 9 provides the FSSs at other scales and the assess-
ment of a “useful scale,” which is the minimum scale on which
the FSS becomes higher than the skillful criteria. Figure 9 cor-
responds with Fig. 8. The experiments with topography have
higher FSSs at large scales than those without topography.
The NS5 and U00 experiments also have higher scores at
larger scales than the ORI experiment. The FSSs in the U00
experiments increase rapidly when the scale is larger than
5 km, especially in the afternoon. This inverse performance at
scales smaller and larger than 5 km supports the previous as-
sumption that a smaller typical spatial scale of convection re-
sults in less punishment of the FSSs at larger scales since the
rainfall in the U00 experiments is distributed in cells with a
5–10-km range (Fig. 3). In ORI experiments (Fig. 9a), the
assessed useful scale is larger in the nonmountain one than
in others in the afternoon, implying that the experiments
with topography have better prediction at a finer scale,
which is consistent with Bachmann et al. (2019). At the
scales over the useful scale, the distinction between the ex-
periments with and without topography becomes even
clearer at larger scales at 1700 LT, suggesting that topogra-
phy plays a role in constraining the large-scale rainfall
distribution.

The topographic effect at larger-scale rainfall distribution
could come from the constraint of mountain topography on
the overall generation and distribution of thunderstorms.
While the exact location and structure of individual convec-
tive clouds are almost unpredictable in the afternoon, the con-
vective clouds in the experiments with topography occur only
outside the mountain area in the afternoon (Fig. 2 in WT21).
The lack of CI around the mountain resulted from the evapo-
rative cooling of rainfall in the morning, which generated rela-
tively cool air at low levels. The cool air and the mountain as

FIG. 9. The FSSs of hourly rainfall from 1100 (dotted), 1400 (solid), and 1700 LT (dashed–dotted). The x axis
depicts the neighborhood sizes used to calculate the FSS. The square, triangle, and plus sign markers represent
the measured useful scale at 1100, 1400, and 1700 LT, respectively.
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a block restrain CI and the movement of convective clouds
near the mountain. Consequently, the domain-scale rainfall
distribution was constrained. This constraint on domain-scale
rainfall also explains the distinct performance of accumulated
rainfall scores between experiments with and without topog-
raphy. The accumulation of rainfall smoothed out small-scale
structures, so the topographic effect on domain-scale rainfall
distribution is highlighted in the distribution of accumulated
rainfall.

Given the importance of accumulated rainfall predictions
on practical utilization, such as disaster prevention and heavy
rainfall warnings, we further calculated the FSSs of 6-h accu-
mulated rainfall at different scales with varied predefined
rainfall thresholds and assessed the impacts of topography.
Figure 10 shows that experiments with topography have higher
FSSs when the rainfall threshold is larger, regardless of the back-
ground winds. Higher scores for larger rainfall thresholds mean
that the distribution of heavier rainfall is better captured. In the
experiments with topography, convective clouds developed vig-
orously over the mountain area and brought heavier rainfall in
the morning. This terrain-affected rainfall is distributed more
similarly in the control and perturbed simulations than the rain-
fall over plain areas (Fig. 3), which could be the main cause of
the higher FSSs for larger rainfall thresholds. Besides the topo-
graphic effect on large-scale rainfall distribution, Fig. 10 suggests
that, with the existence of mountain topography, the heavy rain-
fall could be better predicted.

Overall, the assessment using the FSS of rainfall comple-
ments the estimation of the predictability limit provided by
the CMDTE. Although topography minimally affects the pre-
dictability of hourly rainfall at the model grid spacing scale,
similar to the estimation using the CMDTE, the topographic
effect is shown on large-scale rainfall distribution and heavy
rainfall prediction. In a comparison using the CMDTE spec-
tra, the experiments with and without topography have
comparable unsaturated CMDTE at large scales (figure not
shown). However, the experiments with topography resulted in
higher scores of rainfall at larger scales, providing a different
point of view on the topographic effect on predictability. Terrain-
affected precipitation is a worldwide phenomenon. The examina-
tion of the predictability of rainfall here suggests that the model
might better capture heavy rainfall near mountains than over
plain areas. Meanwhile, the prediction of accumulated rainfall,
rather than hourly rainfall, could be more predictable near
mountains.

5. Discussion about the topographic effects on
error growth

We investigated the impacts of topography and background
winds on error growth and the predictability limit of thunder-
storms. The impact of background winds is understandable
because the background flow conditions determine the degree
of the chaotic nature of a dynamical system. In comparison,

FIG. 10. The FSSs of the rainfall accumulated from 1000 to 1600 LT using different neighborhood sizes (y axis) and rainfall thresholds
(x axis) in the experiment (a) ORI_H00W00, (b) ORI_H10W50, (c) NS5_H00W00, (d) NS5_H10W50, (e) U00_H00W00, and
(f) U00_H10W50. The numbers in each grid depict the value of FSSs in black and white for those higher and low than the skillful
criteria, respectively.
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the impacts of topography are less straightforward. Previous
results showed that mountain topography constrains the error
growth associated with moist convection in the early stages of
convection development, while this impact on error growth
did not continue to later times, and thus, the range of predict-
ability limit is affected little by topography. Thus, in this sec-
tion, we investigate the experiment with topography in more
detail to determine possible reasons for the topographic effect
and its sensitivity to mountain geometry and background
winds.

In the following, we will show a series of cross sections of u
anomaly and wind of the control simulation during CI in each
experiment. The positive u anomaly represents warmer air
compared to the horizontally average u at the same vertical
level. In the cross-section figures, some wind vectors could
point upward visibly, which might result from a very small
horizontal wind but not a strong vertical wind. Therefore, we
note that the contours of vertical winds are also depicted to
reference the convective core.

First, we examined the sensitivity of the topographic effect
to mountain heights. To show a more obvious difference be-
tween the experiments with different mountain heights, we
compared ORI_H10W50 with ORI_H05W70 (Fig. 11). Simi-
lar conclusions can be drawn by comparing ORI_H10W50
and ORI_H05W50, as well as ORI_H10W70 and ORI_
H05W70. In the cross sections of both ORI_H10W50 and
ORI_H05W70, there is a positive u anomaly on the lee side
(i.e., west) of the mountain with respect to the prevailing
low-level easterly wind resulting from the initial wind profile
(Fig. 1). Simultaneously, the wind on the lee side is weak be-
fore sunrise because of the mountain block; this weak wind
area is clearer in ORI_H10W50 than in ORI_H05W70
(figure not shown). After the sun rises at around 0450 LT in
the early morning, the solar heating on the surface of the
mountain slope leads to the difference in temperature

between the air near the mountain slope surface and the air
away from the mountain at the same altitude, which gener-
ates positive buoyancy over the mountain slope and drives
upslope wind. On the lee (i.e., west) side of the mountain in
ORI_H10W50, a clearer temperature difference (Fig. 11a),
accompanied by a condition of weaker wind than ORI_
H10W70, drive the thermally driven upslope wind near the
surface. This thermally driven upslope wind on the lee side
blows to the east and encounters the prevailing low-level
easterly wind over the mountain slope, generating convec-
tive clouds (e.g., at x 5 65 km in Fig. 11a). Similar mecha-
nisms of CI have also been indicated by previous studies
(e.g., Banta and Schaaf 1987; Chen et al. 2002; Hagen et al.
2011; Hassanzadeh et al. 2016).

In ORI_H05W70 (Fig. 11b), however, the mountain is not
high enough to trigger the thermally driven upslope wind on
the lee side and is lower than the LFC. LFC is an altitude at
which a saturated parcel diabatically lifted following the satu-
rated adiabatic lapse rate becomes warmer than the environ-
ment. The warmer parcel can continue the upward motion
without other external force. If the mountain is higher than
the LFC, the air might have a chance to be lifted over the
LFC and continue developing deep moist convection, while
this is not the case in ORI_H05W70. Therefore, the prevailing
easterly wind cannot trigger deep convection on the windward
side either. Consequently, the deep convection was not initi-
ated until the absolute unstable layer in which u decreases
with height due to solar heating becomes sufficiently thick.
With such a deep, unstable layer, the low-level air parcels are
lifted above the LFC and hence become convective clouds
even with weaker upward wind triggered by the positive u

anomaly. This CI process over a heated mountain is consid-
ered to result in higher uncertainty of upward wind than in
ORI_H10W50, leading to more rapid error growth. We note
that the CI time in ORI_H05W70 was indeed earlier than

FIG. 11. Cross section in the x direction (see red dotted lines in Figs. 2c,e) of u anomaly (color shaded), wind
(arrows) in the control simulation of (a) ORI_H10W50 at 0810 LT and (b) ORI_H05W70 at 0840 LT. The blue
solid and red dashed–dotted contours show the hydrometeors (0.1 g kg21) and updraft (0.5 m s21), respectively.
The purple and green curves represent the height of the LFC and the thickness of the absolute unstable layer,
respectively. The gray curves show the u distribution. The red arrow and text in (a) show the scales for the
purely horizontal and vertical wind vectors.
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that in ORI_H00W00, while the error growth in these two ex-
periments was comparable (Figs. 4b and 5a,c). In other words,
Fig. 11 suggests that it is the nature, rather than the time, of
CI that causes slower error growth in the experiment with a
1000-m mountain.

We then compared the experiment with different mountain
widths. To clearly illustrate the difference, ORI_H10W35 and
ORI_H10W70 were examined. In both ORI_H10W35 and
ORI_H10W70, deep moist convection was initiated on the lee
side by the thermally driven westerly wind converging with
the prevailing easterly wind along the x direction (Figs. 12a,b).
The difference is shown in the cross section along the y direction
(Figs. 12c,d). In ORI_H10W70, the area of positive u anomaly is
broader than that in ORI_H10W35, and the convergence area in
the y direction also seems to be wider. Consequently, low-level
air parcels have more chances to rise, which implies more uncer-
tainty about the location of CI, resulting in more chances of
triggering error growth in ORI_H10W70. In comparison, the
narrower convergence area of ORI_H10W35 could result in
lower uncertainty of updraft within a concentrated area, leading
to a smaller error at the early stage of convection development
(refer to Fig. 4a or Fig. 7c).

The findings of the different mechanisms for CI and its im-
pact on error growth induced an investigation of the convec-
tive processes in the experiments with different background
winds (Fig. 13). In U00_H10W50, the convection is triggered
by the thermally driven upslope winds from both sides of the
mountain and develops over the mountain top (Fig. 13b); the
convective cloud almost stays at the same location and keeps
developing vertically (Fig. 13d). With the convective cloud de-
veloping at the same place, the latent heat release from the
condensation of water vapor keeps heating the air, resulting
in a large positive u anomaly. A positive u anomaly means
warmer air than the horizontally surrounding air, indicating
positive buoyancy. Positive buoyancy could further enhance
upward motion, inducing stronger convection, which triggers
more error growth. Therefore, a small initial difference in the
location of upward motion and cloud formation could rapidly
grow during convection development. In this way, diabatic
heating from moist convective processes provides positive
feedback on error growth. This positive feedback triggered
rapid error growth in U00_H10W50 when convection kept de-
veloping at the same place. Therefore, although the convec-
tion in U00_H10W50 is also initiated by the convergence of

FIG. 12. As in Fig. 11, but for (a),(c) ORI_H10W35 and (b),(d) ORI_H10W70 and for (c),(d) the y direction. Refer to the red dotted lines
in Figs. 2d and 2f for the location of the cross section.
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thermally induced circulations caused by the mountain, which
could be a less uncertain process than the nonmountain case,
the errors are still comparable in U00_H10W50 and U00_
H00W00 (Fig. 4d).

In NS5_H10W50 (Figs. 13a,c), on the other hand, the lifting
forced by the mountain on the windward (i.e., west) side induced
the formation of clouds at an earlier time, around 0600 LT. The
clouds keep developing and moving downstream without heat-
ing the air at the same place by latent heat release, resulting in a
weaker positive u anomaly and hence weaker upward wind than
U00_H10W50. Meanwhile, similar to ORI_H10W50, the pre-
vailing westerly flow in NS5_H10W50 encounters with the ther-
mally induced upslope wind on the lee (i.e., east) side of the
mountain (at around x 5 70 km in Fig. 13a), triggering deep
convection. With this similar CI mechanism and without the
positive feedback of latent heating, NS5_H10W50 consequently
results in topographic effects comparable to ORI_H10W50
(cf. Figs. 4a,c).

The time–height cross section of the error and convective
clouds further links the relationship between diabatic heating

and the rapid error growth in NS5_H10W50 and U00_H10W50
(Fig. 14). In U00_H10W50, the amount of cloud increases rap-
idly, and the maximum upward wind reaches 15 m s21, indicat-
ing stronger moist convection only 1 h after the cloud formed.
Simultaneously, the positive u anomaly also reaches 4 K, and the
error grows with an order of magnitude, from 1023 to over
1022 J kg21 (Fig. 14b). In NS5_H10W50, on the other hand, the
cloud amount, upward wind, and positive u anomaly did not
reach the same level as in U00_H10W50 until 0900 LT, and the
error grew slowly before that time (Fig. 14a). A similar trend of
the error and cloud amounts was also seen in the ORI experi-
ments (Fig. 5). The present analysis of NS5_H10W50 and
U00_H10W50 suggests that latent heat release is critical for trig-
gering the rapid error growth associated with moist convection.
When convection continues developing, the positive feedback
from diabatic heating could make the impact of topography on
error growth almost negligible. The rapid error growth domi-
nated by convection development eventually limits predictability
at the maximum convective activity time, as shown in the previ-
ous section, regardless of the presence of topography.

FIG. 13. As in Fig. 11, but for (a),(c) NS5_H10W50 and (b),(d) U00_H10W50 at (a),(b) 0800 and (c),(d) 0830 LT, respectively. Refer to
the red dotted lines in Figs. 2h and 2j for the location of the cross section.
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6. Summary

This study assessed the impact of topography and back-
ground flows on error growth and the predictability associated
with thermally induced thunderstorms. We conducted simula-
tions of thunderstorms under different topography conditions
and background flows using the Weather Research and Fore-
casting (WRF) Model in an idealized framework. Using these
simulations, identical twin experiments were performed to in-
vestigate error growth and predictability. The predictability of
thunderstorms was evaluated using the differences between
the simulations in model state variables and rainfall. The dif-
ference in model states is estimated by a proposed metric,
convective moist different total energy (CMDTE), and that of
rainfall is assessed by the fractions skill score (FSS).

The topographic effect on error growth triggered by moist
convection was assessed. The convection initiated under the
impact of mountains triggered less error growth than the case
with flat topography, showing a topographic effect on con-
straining error growth. This topographic effect is sensitive to
mountain heights and widths. The mountain of 1000-m height
shows the impact on error growth, while the experiments with
500-m height tend to have comparable errors to those without
topography. For mountains of the same height, the topo-
graphic effects of a narrower mountain tend to be clearer.

The topographic effect and its sensitivity to mountain ge-
ometry are caused by different natures in the convection initi-
ation (CI) induced by mountains with different widths and
heights. For a higher mountain that can trigger thermally in-
duced upslope wind on the lee side with respect to the pres-
ence of background flow, the error grows less rapidly at first
when the moist convection is initiated by the thermally in-
duced upslope wind converging with the background flow.
For a lower mountain that cannot trigger the thermally driven
upslope wind on the lee side, moist convection does not de-
velop until the absolute unstable layer built by solar heating
becomes thick enough to push the air over the level of free
convection. The underlying convective instability is then con-
sidered to contribute to rapid error growth, similar to the case
without a mountain. Mountain width also plays a role. A nar-
rower mountain would build a narrower area for convection

to develop, resulting in less uncertainty about the location of
forming convective clouds. Consequently, errors grow less
rapidly compared to the case of a wider mountain when con-
vection is initiated. Our findings regarding the different CI
mechanisms and their impact on error growth highlight the
different chaotic natures of the moist convection that devel-
ops in the presence of mountain topography, which is seldom
discussed in previous studies. Further studies should investi-
gate the uncertainty of different CI mechanisms in mountain
areas.

The results also indicate the sensitivity of the topographic
effect on error growth to background winds. For experiments
with different background winds, a similar restraining effect
of topography on error growth is less clear in experiments
with zero background wind. Further analysis revealed that the
diabatic heating caused by latent heat release in convective
clouds might be a key component that triggers rapid error
growth in the no-wind case. For the experiments with moun-
tain topography and zero background wind, the convective
clouds stayed at the same place and keep heating the air. The
diabatic heating in clouds results in a positive anomaly of tem-
perature that provides further buoyancy forcing and facilitates
the development of convective clouds and the subsequent er-
ror growth. The differences in convection development led to
more different diabatic heating and, thus, more differences in
the continuous development of convection, resulting in posi-
tive feedback on error growth. This positive feedback makes
the topographic effects on error growth unclear in experi-
ments without a background wind.

The positive feedback of diabatic heating is also considered
to be the process that dominates error growth so greatly that
the mountain topography used in this study has little impact
at later times. The results showed that, regardless of the exis-
tence of the mountain, the errors became comparable among
the experiments after the convection continued developing. It
is considered that after convection becomes more active, to-
pography stops affecting the nature of moist convection and
the rapid error growth. The rapid error growth accompanying
the convection development then leads to the error satura-
tion, implying the loss of predictability after the activity of

FIG. 14. As in Fig. 5, but for (a) NS5_H10W50 and (b) U00_H10W50.
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thermally induced thunderstorms reaches the maximum. Con-
sequently, the mountain topography used here affects little of
this predictability limit. Similarly, smaller initial errors or
starting the simulation later did not break the limit of predict-
ability determined by the time of the maximum convective ac-
tivity. In comparison, the background flows, which change the
evolution of convection itself, influence the predictability limit
of thermally induced thunderstorms more than the topogra-
phy tested in this study. This impact of background flows is
consistent with existing knowledge about flow-dependent pre-
dictability. The perturbed simulations that were started later
but showed the same timing of losing predictability further
serve to emphasize the strong flow-dependent properties at
convective scales. It is also worth noting that our investigation
of the impact of topography showed a unique feature of
strongly flow-dependent predictability at convective scales
differing from that at synoptic scales: slow error growth at first
does not necessarily result in longer predictable time.

We also examined the predictability of the rainfall caused
by thunderstorms using the FSS. The predictability limit sug-
gested by the scores of hourly rainfall on the model grid spac-
ing scale is similar to that estimated by the CMDTE.
Background winds show a greater impact on hourly rainfall
performance than topography. In comparison, the hourly
rainfall FSS at larger scales tended to become less noticeable
between the experiments with different background winds,
while the impact of topography was more apparent at larger-
scale rainfall distribution. The useful scale suggested by the
skillful criteria of the FSS is generally finer in the experiment
with topography than without. The impact of mountains on
the large-scale rainfall distribution is considered as one of the
reasons for the topographic effect in terms of several-hour ac-
cumulated rainfall. Even at the model grid spacing scale, ex-
periments with topography can have higher scores throughout
the 12-h accumulation period than the nonmountain case. Ad-
ditionally, the experiments with topography showed higher
scores when larger rainfall thresholds were used, implying the
impact of topography on heavier rainfall. The effects of topog-
raphy on accumulated and strong rainfalls are also sensitive to
the different background winds, highlighting the intertwined
effects of topography and background winds.

In this study, the rapid error growth dynamics associated
with moist convection and the highly limited predictability are
generally consistent with previous studies (Zhang et al. 2003;
Zhang et al. 2016; Weyn and Durran 2017, 2019; Bachmann
et al. 2019). We note that in the current study, the idealized
model configurations were used, and only one atmospheric
stability condition provided by the sounding data was consid-
ered, which might limit the universality of our results. Never-
theless, although only one atmospheric stability condition is
considered here, our simulations of moist convection near
mountain topography resemble those presented in previous
studies (e.g., Hassanzadeh et al. 2016; Bachmann et al. 2019;
Mulholland et al. 2020). Thus, we believe that our results
showed one common scenario of how moist convection devel-
ops around mountains and can be used to assess the impact of
topography on error growth and predictability associated with
moist convection. Further studies could be done with other

combinations of background flows and topography or even
with more realistic model configurations.

Regardless of the limit of an idealized configuration, this
study systematically demonstrates the impact of topography
and background flow on the predictability limit of thunder-
storms and accompanying rainfall, providing new insights into
convective-scale predictability. Summarily, the rapid error
growth and the subsequent loss of predictability of thunder-
storms are highly related to the properties of moist convec-
tion, from the initiation mechanism to the processes during
development. The factors that can change the mechanisms
during convection initiation and development can also result
in different error growth and predictability. Regarding back-
ground flow conditions, the impact on the duration of convec-
tion life cycles results in different levels of predictability. In
terms of topography, when the topography plays a role in in-
ducing the CI less uncertainly, errors grow less rapidly at first.
However, this topographic effect may not be maintained
when the latent heat released by the moist processes in clouds
triggers more intense convective activities. Dominated by the
underlying dynamics of moist convection, error growth is
strongly flow dependent that slower error growth at first does
not change the timing of losing predictability. Consequently,
mountain topography affects little on the predictability limit
estimated by the error saturation of the model state variables.

When trying to improve the prediction of thunderstorms,
the chaotic nature of thunderstorms might limit the space for
improving instantaneous deterministic dynamical predictions
even with better initial conditions or model configuration.
Rather than improving deterministic dynamical predictions,
we can focus on developing ensemble prediction systems that
better represent the uncertainty of convection development.
For example, our results showing the topographic effect sug-
gested the possibility of less uncertain CI over mountains as
long as the mechanism is accurately captured in numerical
models. Nevertheless, in more realistic cases, the represen-
tation of atmospheric conditions is usually less accurate
over complex terrains because of the model deficiency. En-
vironmental conditions are also usually not perfectly cap-
tured, providing an additional source of errors. From this
aspect of real-life NWP models, our results imply that
the uncertainty of predicting CI over mountains might
be underestimated by an ensemble prediction system whose
perturbation is only added to the initial condition. Because
the ensemble spread could grow slower during CI over
mountains, while the model barely represents the real atmo-
sphere, leading to the overly optimistic estimation of the
forecast error estimated by the ensemble spread. In this case,
other perturbations, such as those on model parameterization
or boundary conditions, must be considered to build a more ef-
fective ensemble prediction system.

Other efforts could statistically analyze the environmental
conditions favored by deep moist convection to guide the occur-
rence of thunderstorms (e.g., Lin et al. 2012; Chen et al. 2016;
Chang et al. 2017) or even to indicate the flow-dependent pre-
dictability of a specific day. Meanwhile, the estimation using
rainfall provides another aspect of the impact of topography.
The results of topographic effects on rainfall encourage more
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confident use of accumulated rainfall, rather than hourly rain-
fall, over mountain areas. Additionally, predictions of heavy
rainfall produced by thunderstorms near mountains could be
trusted more than those over plain areas.

Acknowledgments. This study was partly supported by the
Japan Society for the Promotion of Science (JSPS) Scientific
Research Grants 20H00289 and 21H01591 and by the Japan
Ministry of Education, Culture, Sports, Science and Technology
(MEXT) under the “Program for Promoting Researches on
the Supercomputer Fugaku” (Large Ensemble Atmospheric
and Environmental Prediction for Disaster Prevention and
Mitigation, JPMXP1020200305, ID: hp210166, hp220167). Some
of the content in this work was based on the doctoral disserta-
tion of Pin-Ying Wu, which can be found at https://doi.org/10.
14989/doctor.k24124. The authors thank Dr. Takuya Kawabata
from the Meteorological Research Institute for his valuable
discussions.

Data availability statement. The sounding data used for
initializing the simulation are available from the Japan Mete-
orological Agency (JMA) at https://www.data.jma.go.jp/obd/
stats/etrn/upper/index.php?year=2019&month=8&day=19&hour=
9&atm=&point=47778.

REFERENCES

Bachmann, K., C. Keil, and M. Weissmann, 2019: Impact of radar
data assimilation and orography on predictability of deep
convection. Quart. J. Roy. Meteor. Soc., 145, 117–130, https://
doi.org/10.1002/qj.3412.

}}, }}, G. C. Craig, M. Weissmann, and C. A. Welzbacher,
2020: Predictability of deep convection in idealized and oper-
ational forecasts: Effects of radar data assimilation, orogra-
phy, and synoptic weather regime. Mon. Wea. Rev., 148, 63–
81, https://doi.org/10.1175/MWR-D-19-0045.1.

Banta, R. M., and C. B. Schaaf, 1987: Thunderstorm genesis zones
in the Colorado Rocky Mountains as determined by traceback
of geosynchronous satellite images. Mon. Wea. Rev., 115,
463–476, https://doi.org/10.1175/1520-0493(1987)115,0463:
TGZITC.2.0.CO;2.

Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution
of numerical weather prediction. Nature, 525, 47–55, https://
doi.org/10.1038/nature14956.

Carbone, R. E., W. A. Cooper, and W.-C. Lee, 1995: Forcing
of flow reversal along the windward slopes of Hawaii.
Mon. Wea. Rev., 123, 3466–3480, https://doi.org/10.1175/
1520-0493(1995)123,3466:FOFRAT.2.0.CO;2.

}}, J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Infer-
ences of predictability associated with warm season precipita-
tion episodes. J. Atmos. Sci., 59, 2033–2056, https://doi.org/10.
1175/1520-0469(2002)059,2033:IOPAWW.2.0.CO;2.

Chang, H.-L., B. G. Brown, P.-S. Chu, Y.-C. Liou, and W.-H.
Wang, 2017: Nowcast guidance of afternoon convection initi-
ation for Taiwan. Wea. Forecasting, 32, 1801–1817, https://doi.
org/10.1175/WAF-D-16-0224.1.

Changnon, S. A., 2001: Damaging thunderstorm activity in the
United States.Bull. Amer. Meteor. Soc., 82, 597–608, https://doi.
org/10.1175/1520-0477(2001)082,0597:DTAITU.2.3.CO;2.

Chen, C.-S., and C.-Y. Lin, 1997: A numerical study of airflow
over Taiwan Island. Atmos. Environ., 31, 463–473, https://doi.
org/10.1016/S1352-2310(96)00191-4.

}}, }}, Y.-J. Chuang, andH.-C.Yeh, 2002:A study of afternoon
heavy rainfall in Taiwan during the mei-yu season.Atmos. Res.,
65, 129–149, https://doi.org/10.1016/S0169-8095(02)00061-3.

Chen, T.-C., J.-D. Tsay, and E. S. Takle, 2016: A forecast advisory
for afternoon thunderstorm occurrence in the Taipei basin dur-
ing summer developed from diagnostic analysis.Wea. Forecast-
ing, 31, 531–552, https://doi.org/10.1175/WAF-D-15-0082.1.

Cheng, H.-W., S.-C. Yang, Y.-C. Liou, and C.-S. Chen, 2020: An
investigation of the sensitivity of predicting a severe rainfall
event in northern Taiwan to the upstream condition with a
WRF-based radar data assimilation system. SOLA, 16, 97–
103, https://doi.org/10.2151/sola.2020-017.

Demko, J. C., B. Geerts, Q. Miao, and J. A. Zehnder, 2009:
Boundary layer energy transport and cumulus development
over a heated mountain: An observational study. Mon. Wea.
Rev., 137, 447–468, https://doi.org/10.1175/2008MWR2467.1.

Done, J. M., G. C. Craig, S. L. Gray, and P. A. Clark, 2012: Case-
to-case variability of predictability of deep convection in a
mesoscale model. Quart. J. Roy. Meteor. Soc., 138, 638–648,
https://doi.org/10.1002/qj.943.

Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability:
Why butterflies are not of practical importance. J. Atmos.
Sci., 71, 2476–2488, https://doi.org/10.1175/JAS-D-14-0007.1.

}}, and J. A. Weyn, 2016: Thunderstorms do not get butterflies.
Bull. Amer. Meteor. Soc., 97, 237–243, https://doi.org/10.1175/
BAMS-D-15-00070.1.

Ehrendorfer, M., R. M. Errico, and K. D. Raeder, 1999: Singular-
vector perturbation growth in a primitive equation model
with moist physics. J. Atmos. Sci., 56, 1627–1648, https://doi.
org/10.1175/1520-0469(1999)056,1627:SVPGIA.2.0.CO;2.

Flesch, T. K., and G. W. Reuter, 2012: WRF Model simulation of
two Alberta flooding events and the impact of topography. J.
Hydrometeor., 13, 695–708, https://doi.org/10.1175/JHM-D-11-
035.1.

Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2013: Atmo-
spheric predictability revisited. Tellus, 65A, 19022, https://doi.
org/10.3402/tellusa.v65i0.19022.

Fu, D., and X. Guo, 2012: A cloud-resolving simulation study on
the merging processes and effects of topography and environ-
mental winds. J. Atmos. Sci., 69, 1232–1249, https://doi.org/10.
1175/JAS-D-11-049.1.

Hagen, M., J. van Baelen, and E. Richard, 2011: Influence of the
wind profile on the initiation of convection in mountainous
terrain. Quart. J. Roy. Meteor. Soc., 137, 224–235, https://doi.
org/10.1002/qj.784.

Hassanzadeh, H., J. Schmidli, W. Langhans, L. Schlemmer, and C.
Schär, 2016: Impact of topography on the diurnal cycle of
summertime moist convection in idealized simulations. Me-
teor. Z., 25, 181–194, https://doi.org/10.1127/metz/2015/0653.

Hohenegger, C., and C. Schär, 2007a: Atmospheric predictability
at synoptic versus cloud-resolving scales. Bull. Amer. Meteor.
Soc., 88, 1783–1794, https://doi.org/10.1175/BAMS-88-11-1783.

}}, and }}, 2007b: Predictability and error growth dynamics in
cloud-resolving models. J. Atmos. Sci., 64, 4467–4478, https://
doi.org/10.1175/2007JAS2143.1.
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