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The stress-strain curve of two-dimensional frictional dispersed grains interacting with a harmonic potential
without considering the dynamical slip under a finite strain is determined by using eigenvalue analysis of the
Hessian matrix. After the configuration of grains is obtained, the stress-strain curve based on the eigenvalue
analysis is in almost perfect agreement with that obtained by the simulation, even if there are plastic deformations
caused by stress avalanches. Unlike the naive expectation, the eigenvalues in our model do not indicate any
precursors to the stress-drop events.
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I. INTRODUCTION

Amorphous materials consisting of dispersed repulsive
grains, such as powders, colloids, bubbles, and emulsions,
behave as fragile solids above jamming density [1–5]. When
we consider a response of such materials to an applied strain
γ , the rigidity G is independent of the strain in the linear
response regime, whereas it exhibits softening in the nonlinear
regime [6–15]. Above the yielding points, there are some
plastic events, such as stress avalanches in the collection of
grains.

The Hessian matrix determined by the configuration of
grains is commonly used for amorphous solids consisting
of frictionless grains [3,4,16–21]. To determine the rigid-
ity, eigenvalue analysis of the Hessian matrix [22–28] is
commonly used, but we have only obtained semiquantitative
agreements between the theory and simulation so far [27,28].
Recently, some researchers examined the applicability of the
instantaneous normal mode analysis to systems that are not
fully equilibrated and found qualitative agreement between
the analysis and simulation [29,30], although they could not
get quantitatively accurate results. Some studies have sug-
gested that the decrement of the nonzero smallest eigenvalue
of the Hessian matrix with the strain is a precursor of an
avalanche or stress drop near a critical strain γc [24,25,31–
33]. Correspondingly, some studies indicated that the rigidity
G and the stress σ should behave as G − Greg ∝ −1/

√
γc − γ

and σ − σreg ∝ √
γc − γ near γc, where Greg and σreg are the

regular parts of the rigidity and stress conversing to constants
at γc, respectively [24,25,34,35].

In general, the frictional force between the grains can-
not be ignored in physical situations. Because the frictional
force generally depends on the contact history, Hessian anal-
ysis is not applicable to such systems. Thus, Chattoraj et al.
adopted the Jacobian matrix instead of the Hessian matrix to
discuss the stability of the configuration of frictional grains
under strain [36]. They performed eigenvalue analysis under
athermal quasistatic shear processes and determined the ex-

istence of oscillatory instability originating from interparticle
friction at a certain strain [36–38]. Moreover, some studies
have performed an analysis of the Hessian matrix with the aid
of an effective potential for frictional grains [39,40]. Recently,
Liu et al. suggested that Hessian matrix analysis with another
effective potential can be used, even if slip processes exist
[41]. Previous studies [39,40] have reported that the friction
between grains causes a continuous change in the functional
form of the density of states (DOS), which differs from that
of frictionless systems. So far, there have been few theoretical
studies to determine the rigidity of the frictional grains.

In our previous study [42], we developed an analysis of the
Jacobian matrix to determine the rigidity of two-dimensional
amorphous solids consisting of frictional grains interacting
with the Hertzian force in the linear response to an infinitesi-
mal strain. In the study, we ignore the dynamic friction caused
by the slip processes of contact points. We found that there
are two modes in the DOS for a sufficiently small tangential-
to-normal stiffness ratio. Rotational modes exist in the region
of low-frequency or small eigenvalues, whereas translational
modes exist in the region of high-frequency or large eigenval-
ues. The rigidity determined by the translational modes is in
good agreement with that obtained by the molecular dynamics
simulations, whereas the contribution of the rotational modes
is almost zero. Nevertheless, there are several shortcomings in
the previous analysis. (i) The analysis can be used only in the
linear response regime, where the base state is not influenced
by the applied strain. (ii) As a result, we cannot discuss the
behavior of plastic deformations or avalanches of grains. (iii)
Even if we restrict our interest to the linear response regime,
we cannot include the effect of tangential contact for the
preparation of the initial configuration. (iv) We also ignored
the effect of Coulomb’s slip between the contacted grains [42].

The purpose of this study is to overcome the shortcomings
of our previous study except for point (iv) [42]. Thus, we an-
alyze a collection of two-dimensional grains interacting with
repulsive harmonic potentials within the contact radius, with-
out considering Coulomb’s slip between the grains. Owing to
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the special properties of the harmonic potential, the eigenvalue
analysis of the Jacobian matrix becomes equivalent to that of
the Hessian matrix. Subsequently, using the eigenvalue analy-
sis of the Hessian matrix, we demonstrate that the theoretical
rigidity under a large strain agrees with that obtained by the
simulation.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the model to be analyzed in this study.
In Sec. III, we summarize the theoretical framework for de-
termining the rigidity of an amorphous solid consisting of
frictional grains without considering Coulomb’s slip process.
In Sec. IV, we present the results of the stress-strain rela-
tion obtained using the theory formulated in Sec. III. We
also compare the theoretical results with the simulation re-
sults to demonstrate the relevancy of our theoretical analysis.
In Sec. V, we summarize the obtained results and address
future tasks to be solved. In Appendix A, we numerically
demonstrate the absence of history-dependent tangential de-
formations in our system. In Appendix B, we explain the
detailed behavior of the eigenvalue near the stress-drop points.
In Appendix C, we present some detailed properties of the
Hessian matrix in a harmonic system. In Appendix D, we
present some properties of the Jacobian matrix in a harmonic
system and demonstrate its equivalency to the Hessian matrix.
Appendix E presents the detailed properties of rigidity.

II. MODEL

Our system contains N frictional circular disks embed-
ded in a two-dimensional space. To prevent the system from
crystallization, it contains an equal number of grains with
diameters d and d/1.4 [43]. We assume that the mass of grain
i is proportional to d2

i , where di is the diameter of ith grain.
For later convenience, we introduce m as the mass of grain
having a diameter d . In this study, xi, yi, and θi denote x and y
components of the position of ith grain, and the rotational an-
gle of the ith grain, respectively. We introduce the generalized
coordinates of the ith grain as follows:

qi := (
rT

i , �i
)T

, (1)

where ri := (xi, yi )T, �i := diθi/2, and the superscript T de-
notes the transposition.

Let the force and z component of the torque acting on the
ith grain be F i := (F x

i , F y
i )T and Ti, respectively. Then, the

equations of motion of ith grain are expressed as

mi
d2ri

dt2
= F i, (2)

Ii
d2θi

dt2
= Ti, (3)

with mass mi and momentum of inertia Ii := mid2
i /8 of ith

grain. In a system without volume forces, such as gravity, we
can write

F i =
∑
j �=i

f i j − miηDṙi, (4)

Ti =
∑
j �=i

Ti j − IiηDθ̇i, (5)

where we have adopted the notation Ȧ := dA/dt for arbitrary
variable A such as A = ri and θi. Here, f i j and Ti j are the force
and z component of the torque acting on the ith grain from the
jth grain, respectively. As a simplified description of the drag
terms from the background fluid, ηD is a damping constant
uniformly acting on grains, and Ti j is given by

Ti j = −di

2

(
nx

i j f y
i j − ny

i j f x
i j

)
, (6)

where we have introduced the normal unit vector between
ith and jth grains as ni j := ri j/|ri j | := (ri − r j )/|ri − r j |. The
force f i j can be divided into the normal part f N,i j and tangen-
tial part f T,i j as

f i j = ( f N,i j + f T,i j )H (di j/2 − |ri j |), (7)

where di j := di + d j and H (x) is Heaviside’s step function,
taking H (x) = 1 for x > 0, and H (x) = 0 otherwise. We as-
sume that the contact force is expressed as

f N,i j : = kNξN,i jni j, (8)

f T,i j : = kT ξT,i jt i j, (9)

where kN and kT are the stiffness parameters of normal and
tangential contacts, respectively. The contact force can be
derived from the harmonic potential. In Eqs. (8) and (9) we
have introduced ξN,i j := di j/2 − |ri j | and

ξT,i j (t ) : =
∫

Ci j (t ′ )
dt ′vT,i j (t

′)

−
[(∫

Ci j (t ′ )
dt ′vT,i j (t

′)

)
· ni j (t )

]
ni j (t ), (10)

where we have used

vT,i j := ṙi j − ξ̇N,i j + ui j (diθ̇i + d j θ̇ j )/2 (11)

with ui j := (ny
i j,−nx

i j )
T, t i j := −ξT,i j/|ξT,i j |, ξT,i j := |ξT,i j |,

and the integration over the duration time of contact between
ith and jth grains

∫
Ci j (t ′ ) dt ′ with the trajectory Ci j (t ′) of the

contact point between ith and jth grains at t ′. As shown in
Appendix A, we have confirmed that the second term on
the right-hand side (RHS) of Eq. (10) is zero for harmonic
systems, although we do not have any mathematical proof for
this statement thus far. For simplicity, we consider neither the
effects of Coulomb’s slip in the tangential equation of motion
nor the dissipative contact force, where the tangential forces
f C

T,i j including the effect of Coulomb’s slip process, satisfy

f C
T,i j :=

{
f T,i j ( f T,i j < μ| f N,i j |),

μ| f N,i j |t i j (otherwise),
(12)

where μ is the friction constant.
We impose the Lees-Edwards boundary conditions [44,45],

where the direction parallel to the shear strain is the x direc-
tion. After generating a stable grain configuration via isotropic
compression starting from a random configuration by using
Eqs. (2)–(10) without strain (see detail in Ref. [42]), we apply
a step strain �γ to all grains, where x coordinate of the
position of the ith grain is shifted by an affine displacement
�xi(�γ ) := �γ yFB

i (0). Here, the superscript FB denotes the
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force-balance (FB) state at which F i = 0 and Ti = 0 for ar-
bitrary i. As shown in Sec. III A, the FB state is equivalent
to the potential minimum for harmonic grains. Subsequently,
the system is relaxed to an FB state. We further apply the step
strain �γ associated with the subsequent relaxation process
again to obtain the state at 2�γ . By repeating this process, we
can reach a deformed state with the strain γ .

The plastic deformations for a large γ depend on the
choice of �γ [21]. Moreover, the theoretical formulation
assumes �γ → 0. Therefore, we adopt the backtracking
method [46,47]. If a plastic event is encountered under a fixed
�γin, then the system is restored to its original state without a
plastic event. Subsequently, we apply a new strain, 0.1�γin, to
the system. Even if we encounter a plastic event with 0.1�γin,
we further examine the smaller step strain of 0.01�γin.
We repeat this procedure until we reach �γ < �γTh (see
Appendix B).

We introduce the rate of nonaffine displacements for
rFB,ζ

i (γ ) with ζ = x or y and �FB
i (γ ) as

dr̊ζ
i (γ )

dγ
: = lim

�γ→0

rFB,ζ
i (γ + �γ ) − rFB,ζ

i (γ )

�γ
− δζxyFB

i (γ ),

(13)

d �̊i(γ )

dγ
: = lim

�γ→0

�FB
i (γ + �γ ) − �FB

i (γ )

�γ
. (14)

Our system is characterized by the generalized coordi-
nate q(γ ) := (qT

1 (γ ), qT
2 (γ ), · · · , qT

N (γ ))T. The configuration
in the FB state at strain γ is denoted by qFB(γ ) :=
((qFB

1 (γ ))T, (qFB
2 (γ ))T, . . . , (qFB

N (γ ))T)T. The shear stress
σ (γ ) at qFB(γ ) for one sample is given by

σ (qFB(γ )) = − 1

2L2

∑
i

∑
j>i

[
f x
i j (q

FB(γ ))ry
i j (q

FB(γ ))

+ f y
i j (q

FB(γ ))rx
i j (q

FB(γ ))
]
. (15)

The rigidity g for one sample is defined as

g := dσ (q(γ ))

dγ

∣∣∣∣
q(γ )=qFB(γ )

, (16)

where the differentiation on the RHS of Eq. (16) is defined as
follows:

dσ (q(γ ))

dγ

∣∣∣∣
q(γ )=qFB(γ )

:= lim
�γ→0

σ (qFB(γ + �γ )) − σ (qFB(γ ))

�γ
. (17)

In the numerical calculation, we use a nonzero but sufficiently
small �γ for the evaluation of g. Then, the averaged rigidity
G is defined as

G := 〈g〉, (18)

where 〈·〉 is the ensemble average.

III. THEORETICAL ANALYSIS

In this section, we introduce Hessian matrix in Sec. III A
and theoretical expressions of rigidity in Sec. III B.

A. Hessian matrix for frictional grains

Because the Hessian matrix is equivalent to the Jacobian
matrix for harmonic grains, as shown in Appendices C 1 and
D 3, in this study, we adopt the Hessian matrix (H), where the
element is given by [48]

Hαβ
i j := ∂2δei j (q(γ ))

∂qα
i ∂qβ

j

∣∣∣∣∣
q(γ )=qFB(γ )

, (19)

where α and β are any of x, y and �, while i and j express the
grain indices. Here, we have introduced the effective potential
energy δei j between the contacted ith and jth grains as

δei j := kN

2
(δri j · ni j )

2 + kT

2
δr2

i j,⊥, (20)

where δri j,⊥ is defined as

δri j,⊥ := δri j − (δri j · ni j )ni j − δ�i j × ni j, (21)

with

δri j : = δri − δr j, (22)

δ�i j : = (δ�i + δ� j )ez (23)

under the virtual displacements δri and δ�i from the FB state
at rFB

i and �FB
i , respectively.

The Hessian matrix introduced in Eq. (19) can be written
as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H11 · · · H1i · · · H1 j · · · H1N
...

. . .
...

...
...

Hi1 · · · Hii · · · Hi j · · · HiN
...

...
. . .

...
...

H j1 · · · H ji · · · H j j · · · H jN
...

...
...

. . .
...

HN1 · · · HNi · · · HN j · · · HNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

where Hi j is a 3 × 3 submatrix of the Hessian H for a pair of
grains i and j satisfying

Hi j =

⎡
⎢⎢⎣
Hxx

i j Hxy
i j Hx�

i j

Hyx
i j Hyy

i j Hy�
i j

H�x
i j H�y

i j H��
i j

⎤
⎥⎥⎦. (25)

See Appendix C 1 for an explicit expression of each compo-
nent of the Hessian matrix. Note that Hαβ

i j = 0 if the ith and
jth grains are not in contact with each other.

Because H is a real symmetric matrix, its eigenvalues and
eigenvectors are also real. Using the decomposition of the
potential, the Hessian matrix can be divided into

Hαβ
i j = Hαβ

N,i j + Hαβ
T,i j, (26)

where

Hαβ
N,i j : = ∂2δeα

N,i j (q(γ ))

∂qα
i ∂qβ

j

∣∣∣∣∣
q(γ )=qFB(γ )

, (27)

Hαβ
T,i j : = ∂2δeα

T,i j (q(γ ))

∂qα
i ∂qβ

j

∣∣∣∣∣
q(γ )=qFB(γ )

(28)
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for i �= j and

Hαβ
N,i j : = ∂2δeα

N,ik (q(γ ))

∂qα
i ∂qβ

i

∣∣∣∣∣
q(γ )=qFB(γ )

, (29)

Hαβ
T,i j : = ∂2δeα

T,ik (q(γ ))

∂qα
i ∂qβ

i

∣∣∣∣∣
q(γ )=qFB(γ )

(30)

for i = j. Here, we have introduced

δeN,i j : = kN

2
(δri j · ni j )

2, (31)

δeT,i j : = kT

2
δr2

i j,⊥. (32)

To determine the explicit expression of each component of the
Hessian matrix, refer to Appendix C 1.

The eigenequation of the Hessian matrix H is given by

H |�n〉 = λn |�n〉 , (33)

where |�n〉 is the right eigenvector corresponding to the nth
eigenvalue λn of H. Because the Hessian matrix is a real sym-
metric matrix, its left eigenequation is equivalent to its right
eigenequation. Such properties remain unchanged even under
the Lees-Edwards boundary conditions (see Appendix C 2).
If all eigenstates are nondegenerate, then |�n〉 satisfies
the orthonormal relation 〈�m|�n〉 = δmn with normalization
〈�n|�n〉 = 1, where 〈�n|�n〉 := ∑N

i=1

∑
α=x,y,�(�α

n,i )
2.

B. Expressions of the rigidity via eigenmodes

In this subsection, we consider the rigidity g introduced in
Eq. (18). See Appendix E for the detailed properties of g.

Let us introduce F̃ i := (F̃ x
i , F̃ y

i , F̃ �
i )T := (F x

i , F y
i , 2Ti/di )T

and |F̃ (q(γ ))〉 as

|F̃ (q(γ ))〉 := [
F̃

T
1 (q(γ )), F̃

T
2 (q(γ )), · · · , F̃

T
N (q(γ ))

]T
. (34)

Because the FB state is the minimum state of the poten-
tial energy, as shown in Appendix C 1, |F̃ (q(γ ))〉 |q(γ )=qFB(γ )
satisfies

|F̃ (q(γ ))〉∣∣q(γ )=qFB(γ ) = d |F̃ (q(γ ))〉
dγ

∣∣∣∣
q(γ )=qFB(γ )

= |0〉 ,

(35)

where |0〉 is the ket vector containing 0 for all components.
Introducing

∣∣∣∣ dq̊

dγ

〉
:=
[

dr̊x
1

dγ
,

dr̊y
1

dγ
,

d �̊1

dγ
, · · · ,

dr̊x
N

dγ
,

dr̊y
N

dγ
,

d �̊N

dγ

]T

, (36)

one can write

d |F̃ (q(γ ))〉
dγ

∣∣∣∣
q(γ )=qFB(γ )

= − |�〉 + H̃
∣∣∣∣ dq̊

dγ

〉
, (37)

where we have used Eqs. (13) and (14). The first and second
terms on the RHS of Eq. (37) represent the strain derivatives of
the forces for the contributions from the affine and nonaffine
displacements, respectively. In Eq. (37) we have introduced

|�〉, which is defined as

|�〉 :=
∑

j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hxx
N, j1ry

1 j

Hxy
N, j1ry

1 j

Hx�
N, j1ry

1 j

...

Hxx
N, jN ry

N j

Hxy
N, jN ry

N j

Hx�
N, jN ry

N j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

We have used H̃ in Eq. (37), which is defined as

H̃αβ
ii :=

⎧⎪⎪⎨
⎪⎪⎩

−H�x
ii (α = �, β = x)

−H�y
ii (α = �, β = y)

Hαβ
ii (otherwise)

(39)

and

H̃αβ
i j :=

⎧⎪⎪⎨
⎪⎪⎩

−Hx�
i j (α = x, β = �)

−Hy�
i j (α = y, β = �)

Hαβ
i j (otherwise)

(40)

for i �= j. Note that Hαβ
T,i j or H̃αβ

T,i j does not affect |�〉, be-
cause the affine displacements are instantaneously applied to
the system as a step strain. Thus, the integral interval of the
tangential displacement during the affine deformation is zero.

Expanding the nonaffine displacements by the eigenvectors
of H̃ and using the fact that the left-hand side of Eq. (37) is
zero, we obtain ∣∣∣∣ dq̊

dγ

〉
=
∑

n

′ 〈�̃n|�〉
λ̃n

|�̃n〉 , (41)

where λ̃n and |�̃n〉 are the nth eigenvalues of H̃, and the
eigenvector corresponding to λ̃n, respectively. Here,

∑′
n on

the RHS of Eq. (41) excludes low-frequency modes for
λ̃nt2

0 /m � 10−12 to maintain the numerical accuracy. Note
that |�̃n〉 satisfies the orthonormal relation 〈�̃m|�̃n〉 = δmn, if
all eigenstates are nondegenerate. The expression for dq̊/dγ

in Eq. (41) leads to a discontinuous change in dq̊/dγ at a
critical strain γc for a plastic event because the eigenvectors
and eigenvalues are discontinuously changed at this point.

The rigidity is decomposed into two parts:

g := gA + gNA, (42)

where gA and gNA are the rigidities corresponding to the affine
and nonaffine displacements, respectively, for one sample.
With the aid of Eqs. (15), (18), and (40), the expressions for
gA and gNA can be obtained as

gA : = 1

4L2

∑
i, j(i �= j)

ry
i j

[
ry

i jHxx
N, ji + rx

i jH
yx
N, ji

]
, (43)

gNA : = 1

4L2

∑
i, j(i �= j)

[∑
ζ=x,y

(
ry

i jH̃
xζ
i j + rx

i jH̃
yζ
i j

)dr̊ζ
i j

dγ

−
(

ry
i jH̃x�

i j + rx
i jH̃

y�
i j

)d �̊i j

dγ

]
, (44)
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where we have introduced

dr̊ζ
i j

dγ
: = dr̊ζ

i

dγ
− dr̊ζ

j

dγ
, (45)

d �̊i j

dγ
: = d �̊i

dγ
+ d �̊ j

dγ
. (46)

Substituting Eq. (41) into Eq. (44), gNA can be rewritten as

gNA = − 1

L2

′∑
n

〈�̃n|�〉 〈�|�̃n〉
λ̃n

, (47)

where we have introduced

〈�| := 1

2

∑
j

[(
ry

1 jH̃xx
j1 + rx

1 jH̃
yx
j1

)
,
(
ry

1 jH̃
xy
j1 + rx

1 jH̃
yy
j1

)
, . . . ,

(
ry

N jH̃
xy
jN + rx

N jH̃
yy
jN

)
,
(
ry

N jH̃x�
jN + rx

N jH̃
y�
jN

)]
. (48)

The affine rigidity can be also expressed as

gA = 1

L2
〈Y |�〉 , (49)

where

〈Y | := [y1, 0, 0, y2, 0, 0, · · · , yN , 0, 0]. (50)

To verify the validity of the theoretical treatment, we in-
troduce the theoretical stress σ th(γ ) with the aid of Eq.(42)
as

σ th(γ + �γ ) := σ (qFB(γ )) + g(γ )�γ . (51)

IV. RESULTS AND DISCUSSION

We verify the validity of the shear modulus obtained by the
eigenvalue analysis by comparing it with that obtained by the
simulation. First, we have confirmed the quantitative accuracy
of our analysis to obtain the rigidity in the linear response
regime of our system (see Appendix E 2), as in Ref. [42].

For the numerical FB condition, we use the condition
|F̃α

i | < FTh for arbitrary i, where we adopt FTh = 1.0 ×
10−14kN d for the numerical calculation. In our simulation,
we also adopt ηD = √

kN/m. In this study, we present the
results for kT /kN = 1, the area fraction φ = 0.90, and �γin =
1.0 × 10−4 with the ensemble averages of 30 samples, except

FIG. 1. A stress-strain curve for 0 � γ � 0.5 for one sample
of the collection of grains (N = 128), which includes the theoret-
ical results (line) and simulation results (filled symbols) under the
condition�γTh = �γin = 10−4. The inset is a close-up of the stress-
strain curve in the vicinity of a stress-drop event.

for Appendix E 2. Note that the we analyze only the systems
with φ = 0.90 which is sufficiently larger than the jamming
density for a two-dimensional system. We ignore the effect of
dissipation in the eigenequation because the velocity of each
grain is sufficiently small to incur infinitesimal agitation from
the FB state. The time step used for the simulation, �t , is
set to �t = 1.0 × 10−2t0 with t0 := √

m/kN , and numerical
integration is performed using the velocity Verlet method.

Now, let us consider a nonlinear regime in which there
are many plastic events caused by stress avalanches. Here,
we regard an event as plastic if the condition (i) σ (γ ) −
σ (γ − �γ ) < 0 or (ii) G(γ − �γ ) − G(γ ) > 1.0 × 10−2kN

is satisfied.
Figure 1 shows a typical example of the stress-strain curve

obtained by one sample of the collection of grains based
on both the simulation and eigenvalue analysis developed
in the previous section under the condition �γTh = �γin. It
should be noted that the difference between the theoretical
and simulation results is almost invisible, even in the presence
of avalanches. However, the eigenvalue analysis cannot be
used immediately after plastic events, that is, for γ ≈ γc (see
the inset of Fig. 1), because the stress is not determined by
Eq. (51) immediately after a plastic event.

Figure 2 shows a comparison of the stress-strain curve for
�γTh = 10−4�γin (blue circles) with those for �γTh = �γin

(red triangles). From the figure, we cannot find any �γTh

dependence for γ < 0.08, but some differences for larger γ

can be observed as a result of stress avalanches.

FIG. 2. Stress-strain relations for �γTh = 1.0 × 10−4 (blue cir-
cles) and �γTh = 1.0 × 10−8 (red triangles) with N = 128.
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FIG. 3. Plots of (a) the smallest eigenvalue except for the zero
modes and (b) the rigidity g based on the eigenvalue analysis (open
symbols) and numerical shear stress (filled symbols) against γ for
0.3408 � γ � 0.3413 and N = 128.

We might expect that some precursors of a stress-drop
event can be detected from the behavior of the smallest
nonzero eigenvalue. To verify this expectation, we plot the
smallest nonzero eigenvalues in Fig. 3(a) near a critical
strain with �γTh = 10−8. It can be observed that the eigen-
values changes discontinuously at the critical strain (γc =
0.34102862 for γTh = 10−8), where the critical strain con-
verges if �γTh < 10−6 (see Appendix B for details). Notably,
there is no precursor for the smallest eigenvalue below the
critical strain, in contrast to Refs. [24,25,31,32], where non-
harmonic potentials are used. Correspondingly, we cannot find
any singularity of the rigidity as g − greg ∼ −(γc − γ )−1/2 as
in Fig. 3(b) for γ � γc predicted in Refs. [24,25,34,35]. The
absence of the precursors and singularities in our model can
be understood in the form of the Hessian matrix presented
in Appendix D 3. In nonharmonic systems, some elements
of the Hessian matrix become zero as ξN,i j → 0 when the
contact between the ith and jth grains disappears. This leads
to the precursors and singularities [24,25]. However, in the
harmonic systems, the corresponding element approaches a
nonzero constant in the limit ξN,i j → 0 (see Appendix D 3),
which results in the absence of the precursors.

Figure 4 shows a set of plots of the eigenvectors corre-
sponding to the smallest eigenvalue at (a) γc− and at (b)γc+,

FIG. 4. Plots of eigenvectors at (a) γc− and at (b) γc+ correspond-
ing to the smallest eigenvalue. For visualization, the magnitudes of
the vectors are three times larger than their true values (N = 1024).

where γc+ is the strain immediately after the plastic event,
and γc− := γc+ − �γTh is the strain just before the event. As
shown in Fig. 4, changes in eigenvectors owing to the stress
drop event can be observed. Here, we find the existence of
domains of grains of clockwise rotation and counterclockwise
rotation, and the collective motion of grains between two do-
mains. We may observe the excitation of the quadrupole-like
mode, although its structure is not sufficiently clear.

Figure 5 is the comparison of |dq̊/dγ 〉 obtained by the
eigenvalue analysis (a) with that by the simulation (b) at
γ = γc+, where |dq̊/dγ 〉 in the simulation is evaluated by
(q̊(γc+ + �γTh) − q̊(γc+))/�γTh with �γTh = 1.0 × 10−8. It
is obvious that the difference between the two figures is invis-
ible, though the quadrupole-like structure cannot be clearly
seen as in Fig. 4. Nevertheless, we can find the collective
motion of grains in both figures.

Because we cannot use the eigenvalue analysis at the crit-
ical strain γc for a plastic event, let us analyze the nonaffine
displacement �q̊ between γc− and γc+ caused by an avalanche
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FIG. 5. Plots of |dq̊/dγ 〉 at γ = γc+ for N = 1024 and �γTh =
1.0 × 10−8, where (a) and (b) are based on the eigenvalue analysis
and simulation, respectively. For visualization, we magnify the mag-
nitudes of the vectors with the factor 10.0.

using the simulation

�q̊|c :=

⎡
⎢⎢⎢⎢⎣

�q̊1|c
�q̊2|c

...

�q̊N |c

⎤
⎥⎥⎥⎥⎦, (52)

where

�q̊i|c :=

⎡
⎢⎢⎣

rFB,x
i (γc+) − rFB,x

i (γc−) − �γ rFB,y
i (γc−)

rFB,y
i (γc+) − rFB,y

i (γc−)

�FB
i (γc+) − �FB

i (γc−)

⎤
⎥⎥⎦. (53)

Figure 6 shows a plot of the nonaffine displacement �q̊|c
around a yielding point based on the simulation for N = 1024
at �γTh = 1.0 × 10−8. This figure indicates that (i) grains
move with rotations, which is one of the effects of mutual
frictions between grains, and (ii) the existence of a quadrupole

FIG. 6. Plot of �q̊|c in the simulation for N = 1024 and �γTh =
1.0 × 10−8. For visualization, we magnify �q̊|c with the factor
1.0 × 103.

consisting of four domains of collective rotating grains exists.
In particular, the rotations of the grains are sharply changed
on the boundary between the domains. Unfortunately, �q̊|c
cannot be described by the eigenvalue analysis, because �q̊|c
expresses the configuration change, which is unstable for a
small change in γ .

Figures 7(a) and 7(b) show plots of the rigidity and smallest
eigenvalue from γ = 0 to 0.002, which includes two plastic
events based on the one-sample calculation of the collec-
tion of grains with N = 128. One can find an almost perfect
agreement of the rigidity between the eigenvalue analysis and
simulation, except for the yielding points [see Fig. 7(a)]. We
find discontinuous changes in the smallest eigenvalue at the
yielding point, where the rigidity changes discontinuously
[see Fig. 7(b)]. As expected, the magnitude of the discontin-
uous change in rigidity at the yielding point in Fig. 7(a) for
γ ≈ 0.001 is smaller than that for a point of a stress drop for
γ ≈ 0.341, as shown in Fig. 3.

Figure 8 shows the stress-strain curve corresponding to
Fig. 7. It is difficult to find the plastic events in the main
figure of Fig. 8, but we can find a small stress drop at this
point if we use a close-up figure in the inset. We verify the
creation and annihilation of contacting pairs at the stress drop
points. The stress expression in Eq. (51) cannot be used at
the yielding point; thus a disagreement exists between the
eigenvalue analysis and simulation at the point in the inset
of Fig. 8.

Figure 9 plots the rigidity of G over 30 samples for N =
128, where we have omitted the data if stress drop events
take place. We verify that rigidity based on the eigenvalue
analysis reproduces the results of the simulation. Note that
nonmonotonic changes in G originate from changes in the
contact points and configuration of grains.

V. CONCLUSION

In this paper, we have demonstrated that eigenvalue analy-
sis of the Hessian matrix provides precise descriptions of the
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FIG. 7. Plots of the shear modulus with (a) the theoretical eval-
uation (open symbols) and the simulation results (filled symbols)
except for critical strain with the close-up of g near a yielding point
(inset), and (b) the smallest eigenvalue, except for zero modes against
γ for 0 � γ � 0.002 for N = 128. Note that the rigidity is not
plotted at the yielding points, because it diverges there.

rigidity and stress of dispersed frictional grains in which the
contact force is described by the harmonic potential, in spite
of stress-drop events, such as stress avalanches. However, our
model does not contain any slip processes between contacting

FIG. 8. The plot of the stress-strain curve in the region 0 � γ �
0.002 for N = 128.

FIG. 9. Plots of the rigidity G based on the eigenvalue analysis
(line) and on the simulation (filled symbols) with �γTh = 1.0 ×
10−4. We have used 30 samples for N = 128, where the error bars
represent the standard deviations for γ . Note that we have omitted
the data if stress-drop events occur.

grains. This success is a natural extension of the previous
studies on frictionless grains [24,25] to frictional grains and
of our previous study on the linear response regime [42] to
the nonlinear response regime. Two remarkable features of
the contacting model are described by the harmonic potential.
First, the tangential contact force in this model is no longer
a history-dependent one. This leads to the significant simpli-
fication of the theoretical analysis. Second, unlike the naive
expectation, the eigenvalues in our model do not indicate any
precursors for the stress-drop events. In essence, stress-drop
events take place suddenly by releasing contact points.

Some future tasks that need to be addressed are as follows.
First, we need to consider the effect of slips, which causes
a significant difference from our model because history-
dependent contacts play important roles in the presence of
slip events. Second, we must extend our analysis to nonlinear
interacting models, such as the Hertzian contact model in a
three-dimensional space. We plan on working on these points
in the future.
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APPENDIX A: ABSENCE OF THE SECOND TERM
ON RHS OF EQ. (10)

Thus far, we could not prove that the second term on RHS
of Eq. (10) can be regarded as zero with numerical accuracy,
but we verify that this term is zero, at least, in the numerical
simulation of harmonic systems as follows: Let us calculate
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FIG. 10. Plot of the maximum Err against γ .

the ratio of the second term in Eq. (10) to the first term using

Err :=
∣∣[( ∫

Ci j
dtvT,i j

) · ni j
]
ni j

∣∣∣∣ ∫
Ci j

dtvT,i j

∣∣ . (A1)

Figure 10 shows the plots of the largest Err in contacting
pairs against γ , which indicates |Err| < 3 × 10−16. As our
calculation is based on double precision, which has only 16
significant digits, Err can be regarded as zero.

APPENDIX B: THE BEHAVIOR OF THE SMALLEST
EIGENVALUE NEAR STRESS-DROP POINTS

In this Appendix, we provide an in-depth explanation of
the behavior of the smallest eigenvalue in the vicinity of the
stress-drop points in detail. We adopt the following protocol
to reduce the step strain small in the vicinity of the stress-drop
point. We adopt �γin = 10−4 in the Appendix. We use �γ =
�γin if there is no plastic event during the strain increment
�γ . If we find a stress drop during the strain from γ to γ +
�γ , then we restore the system to the state γ , and examine
γ + 0.1�γin. If we do not find any stress drop, then we further
add the strain with �γin; if we still have a stress drop, then we
repeat the procedure of restoring and adding strain 0.01�γin.
This protocol is repeated to detect stress drop events until we
reach �γ < �γTh. In this Appendix, we illustrate how the
results depend on the choice of �γTh, where the smallest value
of �γTh is 10−10.

Figure 11 presents the stress-strain curves obtained using
this protocol. The upper branch in Fig. 11 represents the shear
stress below the stress drop, and the lower branch represents
the shear stress above the stress drop. The smallest γ in the
lower branch and the largest γ in the upper branch strongly
depend on �γTh. As shown in Fig. 12, the stress drop takes
place at γ ≈ 0.01330 for �γTh = 10−4, whereas the critical
strain γc for the stress drop approaches 0.013334 as �γTh

decreases, where γc is 0.013334 for �γTh � 10−6.
Figure 13 plots the behavior of the smallest eigenvalue

against γ corresponding to Fig. 11 for �γTh = 10−10 im-
mediately below the stress drop point, where the symbols
correspond to the analysis for the corresponding �γ as in
Fig. 11. We have confirmed that there is no precursor of the

FIG. 11. The stress-strain curve for N = 128, which are the
stress drop points for various �γTh (from �γTh = 10−4 and �γTh =
10−10).

eigenvalues below γc as observed in Hertzian and Lennard-
Jones systems [24,25,31]. Thus, the harmonic system does not
have any precursors in the behavior of the smallest eigenvalue.

APPENDIX C: SOME PROPERTIES OF THE HESSIAN
MATRIX IN A HARMONIC SYSTEM

In this Appendix, we briefly summarize the properties of
the Hessian matrix of the harmonic contact model. In Sec. C 1,
we explicitly express the elements of the Hessian matrix in
this model. In Sec. C 2, we demonstrate that the symmetry of
the Hessian matrix still holds even under the Lees-Edwards
boundary condition.

1. The explicit expression for the Hessian matrix

In this Appendix, we present an explicit expression for the
Hessian matrix. To this end, we return to the effective potential
in Eq. (20). It is straightforward to obtain

∂2δr2
i j,⊥

∂x2
i

= 2 − 2
(
nx

i j

)2
, (C1)

FIG. 12. Plot of the critical strain γc against �γTh for N = 128.
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FIG. 13. The plot of the smallest nonzero eigenvalue in the vicin-
ity of γc for �γTh = 1.0 × 10−10.

∂2δr2
i j,⊥

∂xi∂yi
= −2nx

i jn
y
i j, (C2)

∂2δr2
i j,⊥

∂xi∂�i
= 2ny

i j, (C3)

∂2δr2
i j,⊥

∂yi∂xi
= ∂2δr2

i j,⊥
∂xi∂yi

, (C4)

∂2δr2
i j,⊥

∂y2
i

= 2 − 2
(
ny

i j

)2
, (C5)

∂2δr2
i j,⊥

∂yi∂�i
= 2nx

i j, (C6)

∂2δr2
i j,⊥

∂�i∂xi
= ∂2δr2

i j,⊥
∂xi∂�i

, (C7)

∂2δr2
i j,⊥

∂�i∂yi
= ∂2δr2

i j,⊥
∂yi∂�i

, (C8)

∂2δr2
i j,⊥

∂�2
i

= 2. (C9)

Thus, we obtain

Hxx
i j = ∂2δei j

∂xi∂x j

= −∂2δei j

∂x2
i

= −kN + kN

[
1 + ξN,i j

|ri j |
](

ny
i j

)2 − kT
(
ny

i j

)2
,

(C10)

Hxy
i j = ∂2δei j

∂xi∂y j

= −∂2δei j

∂xi∂yi
= −kN

[
1 + ξN,i j

|ri j |
]

nx
i jn

y
i j + kT nx

i jn
y
i j,

(C11)

Hx�
i j = ∂2δei j

∂xi∂� j
= ∂2δei j

∂xi∂�i
= kT ny

i j, (C12)

Hyy
i j = ∂2δei j

∂yi∂y j
= −∂2δei j

∂y2
i

= −kN + kN

[
1 + ξN,i j

|ri j |
](

nx
i j

)2 − kT
(
nx

i j

)2
, (C13)

Hy�
i j = ∂2δei j

∂yi∂� j
= ∂2δei j

∂yi∂�i
= −kT nx

i j, (C14)

H��
i j = ∂2δei j

∂�i∂� j
= ∂2δei j

∂�2
i

= kT (C15)

for i �= j and

Hxx
ii =

∑
j �=i

∂2δei j

∂x2
i

= −
∑
j �=i

[
−kN + kN

[
1 + ξN,i j

|ri j |
](

ny
i j

)2 − kT
(
ny

i j

)2
]
,

(C16)

Hxy
ii =

∑
j �=i

∂2δei j

∂xi∂yi

= −
∑
j �=i

[
−kN

[
1 + ξN,i j

|ri j |
]

nx
i jn

y
i j + kT nx

i jn
y
i j

]
, (C17)

Hx�
ii =

∑
j �=i

∂2δei j

∂xi∂�i
=
∑
j �=i

kT ny
i j, (C18)

Hyy
ii =

∑
j �=i

∂2δei j

∂y2
i

=
∑
j �=i

[
−kN + kN

[
1 + ξN,i j

|ri j |
](

nx
i j

)2 − kT
(
nx

i j

)2
]
,

(C19)

Hy�
ii =

∑
j �=i

∂2δei j

∂yi∂�i
= −

∑
j �=i

kT nx
i j, (C20)

H��
ii =

∑
j �=i

∂2δei j

∂�2
i

=
∑
j �=i

kT . (C21)

2. Effect of the boundary condition to the Hessian matrix

In this Appendix, we explain the influence of strain and
the boundary condition on the Hessian matrix in detail to
determine whether the symmetry of the Hessian matrix is still
maintained, even if we consider a system with nonzero strain.

First, let us consider the case in which particle i interacts
with the particle j through a mirror image in x direction, as
shown in Fig. 14. In this case, ri j is given by

ri j := ri − r j − Lex, (C22)

where ex := (1, 0)T. Similarly, r ji is given by

r ji := r j − ri + Lex. (C23)

Thus, ri j satisfies

r ji = −ri j . (C24)
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FIG. 14. A schematic of the case where the particle i interacts
with the particle j through the mirror image in x direction.

Then, we obtain

ξN,i j : = di + d j

2
− |ri j |

= di + d j

2
− |r ji|

= ξN, ji. (C25)

Thus, the result is independent of the strain, and the symmetry
of the Hessian is still valid in this case.

Next, let us consider the case in which the particle i in-
teracts with the particle j through a mirror image in the y
direction (see Fig. 15). In this case, ri j is given by

ri j := ri − r j + Ley + γ Lex, (C26)

where ey := (0, 1)T. Similarly, r ji is given by

r ji := r j − ri − Ley − γ Lex. (C27)

Since the relation

r ji = −ri j, (C28)

we obtain

ξN,i j : = di + d j

2
− |ri j |

= di + d j

2
− |r ji|

= ξN, ji. (C29)

Thus, ξN,i j and ξN, ji depend on γ in the same way. With the aid
of Eqs. (C26), (C27), and (C29), the Hessian matrix depends
on γ if the particle interacts with another particle through the
mirror image in y direction, although the symmetry of the
Hessian is still maintained.

APPENDIX D: SOME PROPERTIES OF THE JACOBIAN
MATRIX IN A HARMONIC SYSTEM AND ITS
EQUIVALENCY TO THE HESSIAN MATRIX

In this Appendix, we briefly summarize the properties
of the Jacobian matrix for the harmonic contact model that
was previously used in the description of frictional grains
[36–38,42]. In Sec.D 1, we present explicit forms of the di-
agonal and nondiagonal blocks of the Jacobian matrix. In
Sec. D 2, we present the derivation of the Jacobian for the
harmonic contact model. In Sec. D 3, we explicitly write the
elements of the Jacobian matrix in the model.

1. Jacobian block elements

Let us write a 3 × 3 submatrix Ji j , which is the (i j) block element of the Jacobian obtained from Eq. (19):

[
J αβ

i j

]
:=
[
−∂F̃α

i

∂qβ
j

]
=

⎡
⎢⎢⎣

−∂qx
j
F x

i −∂qy
j
F x

i −∂q�
j
F x

i

−∂qx
j
F y

i −∂qy
j
F y

i −∂q�
j
F y

i

−∂qx
j
T̃i −∂qy

j
T̃i −∂q�

j
T̃i

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−∑N
k=1;k �= j ∂qx

j
f x
ik −∑N

k=1;k �= j ∂qy
j
f x
ik −∑N

k=1;k �= j ∂q�
j
f x
ik

−∑N
k=1;k �= j ∂qx

j
f y
ik −∑N

k=1;k �= j ∂qy
j
f y
ik −∑N

k=1;k �= j ∂q�
j
f y
ik

−∑N
k=1;k �= j ∂qx

j
T̃ik −∑N

k=1;k �= j ∂qy
j
T̃ik −∑N

k=1;k �= j ∂q�
j
T̃ik

⎤
⎥⎥⎦

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

−∂qx
j
f x
i j −∂qy

j
f x
i j −∂q�

j
f x
i j

−∂qx
j
f y
i j −∂qy

j
f y
i j −∂q�

j
f y
i j

−∂qx
j
T̃i j −∂qy

j
T̃i j −∂q�

j
T̃i j

⎤
⎥⎥⎦(i �= j)

⎡
⎢⎢⎣

−∑N
k=1;k �=i ∂qx

i
f x
ik −∑N

k=1;k �=i ∂qy
i
f x
ik −∑N

k=1;k �=i ∂q�
i
f x
ik

−∑N
k=1;k �=i ∂qx

i
f y
ik −∑N

k=1;k �=i ∂qy
i
f y
ik −∑N

k=1;k �=i ∂q�
i
f y
ik

−∑N
k=1;k �=i ∂qx

i
T̃ik −∑N

k=1;k �=i ∂qy
i
T̃ik −∑N

k=1;k �=i ∂q�
i
T̃ik

⎤
⎥⎥⎦(i = j)

, (D1)

where the superscripts α and β correspond to x, y, � components, and i and j are the particle numbers. Here, f ζ
i j, T̃i j are ζ

component of f i j and scaled torque that the ith particle receives from the jth particle, respectively. The submatrix for i = j is
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given by

[
J αβ

ii

] =

⎡
⎢⎢⎣
∑N

k=1;k �=i ∂qx
k

f x
ik

∑N
k=1;k �=i ∂qy

k
f x
ik −∑N

k=1;k �=i ∂q�
k
f x
ik∑N

k=1;k �=i ∂qx
k

f y
ik

∑N
k=1;k �=i ∂qy

k
f y
ik −∑N

k=1;k �=i ∂q�
k
f y
ik∑N

k=1;k �=i ∂qx
k
T̃ik

∑N
k=1;k �=i ∂qy

k
T̃ik −∑N

k=1;k �=i ∂q�
k
T̃ik

⎤
⎥⎥⎦, (D2)

where we have used ∂qκ
i

f ζ

ik = −∂qκ
k

f ζ

ik, ∂qκ
i
T̃ik = −∂qκ

i
T̃ik,

∂q�
i
f ζ

ik = ∂q�
k
f ζ

ik , and ∂q�
i
T̃ik = ∂q�

i
T̃ik . Here, the superscripts ζ

and κ correspond to x, y components.

2. Derivation of Jacobian matrix in the harmonic system

Let us consider only the normal and tangential elastic con-
tact forces

f N,i j = kNξN,i jni j, (D3)

f T,i j = −kT ξT,i j, (D4)

where the integration of dξT,i j ,

ξT,i j :=
∫

Ci j

dξT,i j, (D5)

FIG. 15. A schematic of the case that the particle i interacts with
the particle j through the mirror image in y direction.

is performed during the contact between the ith and jth grains.
Since Eq. (D5) does not contain the second term on RHS of
Eq. (10), ξT,i j may not be perpendicular to ξN,i j . Nevertheless,
we adopt Eq. (D5) for simplicity. Here, dξT,i j is defined as

dξT,i j = dri j − (dri j · ni j )ni j − d�i j × ni j, (D6)

where �i j is defined as

�i j :=
⎡
⎣ 0

0
�i + � j

⎤
⎦. (D7)

Each component of Eq. (D6) is written as

dξ x
T,i j = drx

i j − (dri j · ni j )n
x
i j + d�i jn

y
i j, (D8)

dξ
y
T,i j = dry

i j − (dri j · ni j )n
y
i j − d�i jn

x
i j . (D9)

The derivative of the normal force is given by

∂rζ
i

f κ
N,i j = kN

[
ξN,i j

ri j
δζκ −

(
1 + ξN,i j

ri j

)
nζ

i jn
κ
i j

]
, (D10)

∂�i f κ
N,i j = 0, (D11)

where Kronecker’s δ, δζκ , satisfies δζκ = 1 for ζ = κ and
δζκ = 0 otherwise. We have used

∂nζ
i j

∂rκ
i

= 1

ri j

(
δζκ − nζ

i jn
κ
i j

)
, (D12)

∂ri j

∂rζ
i

= nζ
i j (D13)

to obtain Eq. (D10).
The derivative of the tangential force is written as

∂rζ
i

f κ
T,i j = −kT

(
δζκ − nζ

i jn
κ
i j

)
, (D14)

∂�i f κ
T,i j = −εκkT nνκ

i j , (D15)

where εζ and νζ are defined, respectively, as

εζ : =
{

1 (ζ = x)
−1 (ζ = y), (D16)

νζ : =
{

y (ζ = x)
x (ζ = y). (D17)

Here, ∂rζ
i
ξκ

T,i j and ∂�iξ
κ
T,i j in Eqs. (D14) and (D15) satisfy

the following:

∂ξκ
T,i j

∂rζ
i

= δζκ − nζ
i jn

κ
i j, (D18)

∂ξκ
T,i j

∂�i
= εκnνκ

i j . (D19)
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The derivation of Eqs. (D18) and (D19) are as follows [36].
From Eq. (D6), dξ

ζ
T,i j can be written as

dξ
ζ
T,i j = drζ

i j − (dri j · ni j )n
ζ
i j + (−1)ζ (d�i + d� j )n

νζ

i j .

(D20)

Then, dξ x
T,i j satisfies

dξ x
T,i j = drx

i j −
∑
κ=x,y

drκ
i jn

κ
i jn

x
i j + ny

i j (d�i + d� j )

= (
1 − (

nx
i j

)2)
drx

i j − nx
i jn

y
i jdry

i j + ny
i j (d�i + d� j )

= (
ny

i j

)2
drx

i j − nx
i jn

y
i jdry

i j + ny
i j (d�i + d� j )

= (
ny

i j

)2
(dxi − dx j ) − nx

i jn
y
i j (dyi − dy j )

+ ny
i j (d�i + d� j ). (D21)

Similarly, dξ
y
T,i j also satisfies

dξ
y
T,i j = −nx

i jn
y
i j (dxi − dx j ) + (

ny
i j

)2
(dyi − dy j )

− nx
i j (d�i + d� j ). (D22)

Here, dξ
ζ
T,i j is the function of xi, yi, �i, x j, y j, and � j . We ob-

tain the differential form of dξ
ζ
T,i j :

dξ
ζ
T,i j

=
(

∂ξ
ζ
T,i j

∂xi

)
(yi,�i,x j ,y j ,� j )

dxi +
(

∂ξ
ζ
T,i j

∂x j

)
(xi,yi,�i,y j ,� j )

dx j

+
(

∂ξ
ζ
T,i j

∂yi

)
(xi,�i,x j ,y j ,� j )

dyi +
(

∂ξ
ζ
T,i j

∂y j

)
(xi,yi,�i,x j ,� j )

dy j

+
(

∂ξ
ζ
T,i j

∂�i

)
(xi,yi,x j ,y j ,� j )

d�i +
(

∂ξ
ζ
T,i j

∂� j

)
(xi,yi,�i,x j ,y j )

d� j .

(D23)

Next, we obtain Eqs. (D18), (D19), by comparing Eqs. (D21)
and (D22) using Eq. (D23).

Because the scaled torque T̃i j satisfies

T̃i j := 2Ti j

di
= −nx

i j f y
T,i j + ny

i j f x
T,i j, (D24)

we obtain

∂rζ
i
T̃i j = −(∂rζ

i
nx

i j

)
f y
T,i j − nx

i j∂rζ
i

f y
T,i j + (

∂rζ
i
ny

i j

)
f x
T,i j

+ ny
i j∂rζ

i
f x
T,i j

= −
(

δζx

ri j
− nζ

i jn
x
i j

ri j

)
f y
T,i j + kT nx

i j

(
δζy − nζ

i jn
y
i j

)

+
(

δζy

ri j
− nζ

i jn
y
i j

ri j

)
f x
T,i j − kT ny

i j

(
δζx − nζ

i jn
x
i j

)

= −εκ

nνκ

i j

ri j
(ni j · f T,i j ) − εκnνκ

i j (ni j · ni j ) − εκnνκ

i j ,

(D25)

∂�i T̃i j = −nx
i j∂�i f y

T,i j + ny
i j∂�i f x

T,i j

= −nx
i jkT nx

i j − ny
i jkT ny

i j

= −kT , (D26)

where we have used f T,i j · ni j = 0 and ni j · ni j = 1.

3. Explicit form of Jacobian for particles interacting with
harmonic force

From Sec. D 2, the off-diagonal elements of the Jacobian
matrix J αβ

i j := −∂qs
j
F̃ r

i (α, β = x, y, �) with i �= j are given
by

J xx
i j = −kN + kN

[
1 + ξN,i j

ri j

](
ny

i j

)2 − kT
(
ny

i j

)2
, (D27)

J xy
i j = −kN

[
1 + ξN,i j

ri j

]
nx

i jn
y
i j + kT nx

i jn
y
i j, (D28)

J x�
i j = −kT ny

i j, (D29)

J yx
i j = −kN

[
1 + ξN,i j

ri j

]
nx

i jn
y
i j + kT nx

i jn
y
i j, (D30)

J yy
i j = −kN + kN

[
1 + ξN,i j

ri j

](
nx

i j

)2 − kT
(
nx

i j

)2
, (D31)

J y�
i j = kT nx

i j, (D32)

J �x
i j = kT ny

i j, (D33)

J �y
i j = −kT nx

i j, (D34)

J ��
i j = kT . (D35)

Notably, the elements of the Jacobian matrix are independent
of ξT,i j .

With the aid of Eq. (D1), the elements in the diagonal block
J rs

ii are given by

J xx
ii = −

∑
j �=i

{
−kN + kN

[
1 + ξN,i j

ri j

](
ny

i j

)2 − kT
(
ny

i j

)2
}
,

(D36)

J xy
ii = −

∑
j �=i

{
−kN

[
1 + ξN,i j

ri j

]
nx

i jn
y
i j + kT nx

i jn
y
i j

}
, (D37)

J x�
ii =

∑
j �=i

kT ny
i j, (D38)

J yx
ii = −

∑
j �=i

{
−kN

[
1 + ξN,i j

ri j

]
nx

i jn
y
i j + kT nx

i jn
y
i j

}
, (D39)

J yy
ii = −

∑
j �=i

{
−kN + kN

[
1 + ξN,i j

ri j

](
nx

i j

)2 − kT
(
nx

i j

)2
}
,

(D40)

J y�
ii = −

∑
j �=i

kT nx
i j, (D41)

J �x
ii =

∑
j �=i

kT ny
i j, (D42)

J �y
ii = −

∑
j �=i

kT nx
i j, (D43)
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FIG. 16. The plot of the rigidity G0 in the linear response regime
for various kT /kN and φ, where open symbols and filled symbols are
results of the theory and simulation, respectively.

J ��
ii =

∑
j �=i

kT . (D44)

The expressions in Eqs. (D27)–(D44) are equivalent to
Eqs. (C10)–(C21) for a Hessian matrix. Thus, we conclude

that the Jacobian matrix is equivalent to the Hessian matrix
for the harmonic system without considering Coulomb’s slip.

APPENDIX E: THE DETAILED PROPERTIES OF
RIGIDITY

This Appendix consists of two sections. In Appendix E 1,
we present the detailed expressions of rigidity g. In Ap-
pendix E 2, we demonstrate the quantitative accuracy of the
Hessian analysis in the linear response regime by comparing
the theoretical evaluation of the rigidity with that obtained by
the numerical simulation as in Ref. [42].

1. The expression of g

The symmetrized shear stress in Eq. (15) is expressed as

σ (qFB(γ )) = σxy(qFB(γ )) + σyx(qFB(γ ))

2
, (E1)

where

σαβ (qFB(γ )) := − 1

2L2

∑
i, j(i �= j)

f α
i j (q

FB(γ ))rβ
i j (q

FB(γ )).

(E2)

Substituting Eq. (E1) into Eq. (17), we obtain

g(γ ) = lim
�γ→0

1

2�γ
[σxy(qFB(γ + �γ )) + σyx(qFB(γ + �γ )) − {σxy(qFB(γ )) + σyx(qFB(γ ))}]

= − lim
�γ→0

1

4�γ L2

[
f x
i j (q

FB(γ + �γ ))ry
i j (q

FB(γ + �γ )) + f y
i j (q

FB(γ + �γ ))rx
i j (q

FB(γ + �γ ))

−{ f x
i j (q

FB(γ ))ry
i j (q

FB(γ )) + f y
i j (q

FB(γ ))rx
i j (q

FB(γ ))
}]

. (E3)

Substituting Eq. (E3) into Eq. (E1), the rigidity g is expressed as

g(γ ) = − lim
�γ→0

1

4�γ L2

[
f x
i j (q

FB(γ + �γ ))ry
i j (q

FB(γ + �γ )) + f y
i j (q

FB(γ + �γ ))rx
i j (q

FB(γ + �γ ))

− {
f x
i j (q

FB(γ ))ry
i j (q

FB(γ )) + f y
i j (q

FB(γ ))rx
i j (q

FB(γ ))
}]

. (E4)

By expanding rα
i j (q

FB(γ + �γ )) in Eq. (E4) by �γ from the finite strain γ , we obtain

rα
i j (q

FB(γ + �γ )) = rα
i (qFB(γ + �γ )) − rα

j (qFB(γ + �γ ))

� rα
i j (q

FB(γ )) + �γ

{
δαx(yi(qFB(γ )) − y j (qFB(γ ))) + dr̊α

i (qFB(γ ))

dγ
− dr̊α

j (qFB(γ ))

dγ

}

= rα
i j (q

FB(γ )) + �γ

{
δαxyi j (qFB(γ )) + dr̊α

i j (q
FB(γ ))

dγ

}
. (E5)

Similarly, by expanding f α
i j (γ + �γ ) in Eq. (E4) from the zero strain state, we obtain

f α
i j (q

FB(γ + �γ )) � f α
i j (q

FB(γ )) +
N∑

k=1

∑
ζ=x,y

�γ
∂ f α

i j

∂rζ

k

drζ

k

dγ
+

N∑
k=1

�γ
∂ f α

i j

∂�k

d�k

dγ

= f α
i j (q

FB(γ )) +
∑
ζ=x,y

�γ

[
∂ f α

i j

∂rζ
i

(
δζxyi(qFB(γ )) + dr̊ζ

i (qFB(γ ))

dγ

)
+ ∂ f α

i j

∂rζ
j

(
δζxy j (qFB(γ )) + dr̊ζ

j (qFB(γ ))

dγ

)]

+ �γ

[
∂ f α

i j

∂�i

(
δ�xyi(qFB(γ )) + d �̊i(qFB(γ ))

dγ

)
+ ∂ f α

i j

∂� j

(
δ�xy j (qFB(γ )) + d �̊ j (qFB(γ ))

dγ

)]
. (E6)
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Moreover, using ∂ f α
i j/∂rζ

j = −∂ f α
i j/∂rζ

i and ∂ f α
i j/∂� j = ∂ f α

i j/∂�i, and f α
i j can be written as

f α
i j (q

FB(γ + �γ )) = f α
i j (q

FB(γ )) +
∑
ζ=x,y

�γ
∂ f α

i j

∂rζ
i

(
δζxyi j (qFB(γ )) + dr̊ζ

i j (q
FB(γ ))

dγ

)
+ �γ

∂ f α
i j

∂�i

(
d �̊i(qFB(γ ))

dγ
+ d �̊ j (qFB(γ ))

dγ

)
.

(E7)

Substituting Eqs. (E5) and (E7) into Eq. (E4), we obtain

g(γ ) = − 1

4L2

∑
i, j(i �= j)

[
f x
i j (q

FB(γ ))
dr̊y

i j (q
FB(γ ))

dγ
+ f y

i j (q
FB(γ ))

dr̊x
i j (q

FB(γ ))

dγ

+
∑
ζ=x,y

(
∂ f x

i j (q
FB(γ ))

∂rζ
i

ry
i j (q

FB(γ )) + ∂ f y
i j (q

FB(γ ))

∂rζ
i

rx
i j (q

FB(γ ))

)(
δζxyi j (qFB(γ )) + dr̊ζ

i j (q
FB(γ ))

dγ

)

+
(

∂ f x
i j (q

FB(γ ))

∂�i
ry

i j (q
FB(γ )) + ∂ f y

i j (q
FB(γ ))

∂�i
rxx

i j (qFB(γ ))

)(
d �̊i(qFB(γ ))

dγ
+ d �̊ j (qFB(γ ))

dγ

)]
. (E8)

Because
∑

i(i �= j) f α
i j (q

FB(γ )) = 0 in the FB state, the first and second terms on the RHS of Eq. (E8) can be written as

∑
i, j(i �= j)

f α
i j (q

FB(γ ))
dr̊κ

i j (q
FB(γ ))

dγ
=

∑
i, j(i �= j)

f α
i j (q

FB(γ ))

(
dr̊κ

i (qFB(γ ))

dγ
− dr̊κ

j (qFB(γ ))

dγ

)

=
∑

j

⎛
⎝∑

j( j �=i)

f α
i j (q

FB(γ ))

⎞
⎠dr̊κ

i (qFB(γ ))

dγ
−
∑

i

⎛
⎝∑

i(i �= j)

f α
i j (q

FB(γ ))

⎞
⎠dr̊κ

j (qFB(γ ))

dγ

= 0. (E9)

Thus, g is expressed as

g(γ ) = − 1

4L2

∑
i, j(i �= j)

[∑
ζ=x,y

(
∂ f x

i j (q
FB(γ ))

∂rζ
i

ry
i j (q

FB(γ )) + ∂ f y
i j (q

FB(γ ))

∂rζ
i

rx
i j (q

FB(γ ))

)(
δζxyi j (qFB(γ )) + dr̊ζ

i j (q
FB(γ ))

dγ

)

+
(

∂ f x
i j (q

FB(γ ))

∂�i
ry

i j (q
FB(γ )) + ∂ f y

i j (q
FB(γ ))

∂�i
rxx

i j (qFB(γ ))

)(
d �̊i(qFB(γ ))

dγ
+ d �̊ j (qFB(γ ))

dγ

)]
. (E10)

Using Hαβ
i j = J αβ

i j := −∂qβ
j

f α
i j for i �= j in the case of the harmonic contact model, we can express g as

g(γ ) = 1

4L2

∑
i, j(i �= j)

⎡
⎣∑

ζ=x,y

(
yi j (qFB(γ ))Hxζ

ji (qFB(γ )) + xi j (qFB(γ ))Hyζ
ji (qFB(γ ))

)(
δζxyi j (qFB(γ )) + dr̊ζ

i j (q
FB(γ ))

dγ

)

+ (
yi j (qFB(γ ))Hx�

ji (qFB(γ )) + xi j (qFB(γ ))Hy�
ji (qFB(γ ))

)(d �̊i(qFB(γ ))

dγ
+ d �̊ j (qFB(γ ))

dγ

)]

= 1

4L2

∑
i, j(i �= j)

[
yi j
(
yi j (qFB(γ ))Hxx

ji (qFB(γ )) + xi j (qFB(γ ))Hyx
ji (qFB(γ ))

)

+
∑
ζ=x,y

(
yi j (qFB(γ ))Hxζ

ji (qFB(γ )) + xi j (qFB(γ ))Hyζ
ji (qFB(γ ))

)dr̊ζ
i j (q

FB(γ ))

dγ

+ (
yi j (qFB(γ ))Hx�

ji (qFB(γ )) + xi j (qFB(γ ))Hy�
ji (qFB(γ ))

)(d �̊i(qFB(γ ))

dγ
+ d �̊ j (qFB(γ ))

dγ

)]
. (E11)
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Thus, using Eqs. (39) and (40), we obtain Eqs. (42)–(44).

2. The rigidity of the harmonic model in the linear response
regime

In this Appendix, we verify the validity of our method
to evaluate the rigidity G0 for frictional harmonic grains in

the linear response regime for various kT /kN and φ as in
Ref. [42]. Figure 16 presents the results of the rigidity, in
which G0 obtained by the eigenvalue analysis (filled symbols)
is in perfect agreement with that obtained by the simulation
(open symbols). Here we take the average over five ensembles
for each φ and kT . This figure confirms the validity of the
theoretical method in the linear response regime.
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