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ABSTRACT
Kullback–Leibler (KL) control enables efficient numerical methods for nonlinear optimal control
problems. The crucial assumptionof KL control is the full controllability of transitiondistributions.
However, this assumption is often violated when the dynamics evolves in a continuous space.
Consequently, applying KL control to problems with continuous spaces requires some approxi-
mation, which leads to the loss of the optimality. To avoid such an approximation, in this paper,
we reformulate the KL control problem for continuous spaces so that it does not require unre-
alistic assumptions. The key difference between the original and reformulated KL control is that
the formermeasures the control effort by theKLdivergencebetweencontrolledanduncontrolled
transitiondistributionswhile the latter replaces theuncontrolled transitionbyanoise-driven tran-
sition. We show that the reformulated KL control admits efficient numerical algorithms like the
original one without unreasonable assumptions. Specifically, the associated value function can
be computed by using a Monte Carlo method based on its path integral representation.
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1. Introduction

Optimal control theory is a powerful mathematical tool
for achieving control objectives while considering, for
example, energy efficiency and sparsity of control [1,2].
Optimal control problems arise in a variety of physi-
cal, biological, and economic systems, to name a few.
Recently, optimal control has also become increas-
ingly important in machine learning [3,4]. It is well
known that finding an optimal feedback control law
boils down to solving the (Hamilton–Jacobi) Bellman
equation [5,6], which suffers from the curse of dimen-
sionality and is difficult to solve in general.

In [7,8], a special class of stochastic optimal con-
trol problems was introduced in which the associ-
ated Bellman equation can be converted into a linear
equation resulting in efficient numerical methods. For
continuous state/input spaces and continuous time, the
work [7] considers a control-affine diffusion with a
quadratic control cost and assumes the noise and con-
trol act in the same subspace. Then, the optimal con-
trol admits a path integral representation, which can
be approximated by forward sampling of an uncon-
trolled diffusion process. This stochastic control frame-
work is called a path integral control and has many
applications, e.g. reinforcement learning [9,10], model
predictive control [11], multi-agent systems [12], con-
trollability quantification [13].

For discrete-time cases, the work [8] deals with
general dynamics and makes the key assumptions as

follows: (A1) the controller can change the distri-
bution of the next state given the current state as
desired; (A2) the control cost is quantified by the Kull-
back–Leibler (KL) divergence between the controlled
and uncontrolled state distributions. This formulation
is referred to as linearly solvable Markov decision pro-
cesses (MDPs) or KL control. The KL control frame-
work shares nice properties with the path integral con-
trol including a path integral representation of the KL
optimal control [14], compositionality of optimal con-
trol laws [15], and duality with Bayesian inference [16].
For the connection between the path integral control
and KL control, see [17]. Moreover, the special struc-
ture of KL control enables the convex formulation of
inverse reinforcement learning [18].

However, it should be emphasized that the assump-
tion (A1) of KL control is too restrictive in practice,
especially for continuous state spaces. Indeed, as men-
tioned in [19], even for discrete-time linear systems
driven by Gaussian noise, (A1) is violated because the
variance of the one step transition distribution given
the current state is uncontrollable under the causality
of controllers. Therefore, applying KL control to prac-
tical problems with continuous spaces requires some
approximation, which leads to the loss of the optimality.
For instance, if the system of interest is derived from the
Euler–Maruyama discretization of a control-affine dif-
fusion, using a smaller time step results in the smaller
approximation error [20,21]. However, to the best of
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our knowledge, there is no discussion of approxima-
tion in other cases, e.g. the system originally evolves in
discrete time.

Contributions: In this paper, we reformulate KL con-
trol for continuous state spaces so that its assump-
tion is more realistic than the conventional formulation
of KL control. This enables us to apply KL control
to discrete-time and continuous space problems with-
out any approximation of dynamics. As a byproduct,
we reconsider what the assumption (A1) implies for
practical problems. Specifically, we clarify that (A1)
essentially requires the controller to know the value of
noise to be injected to the system together with control
inputs. Moreover, we show that our KL control formu-
lation enjoys the nice properties which the original one
has as mentioned above.

Organization: The remainder of this paper is orga-
nized as follows. In Section 2, we briefly review KL
control. In Section 3, we reformulate KL control for
continuous spaces. Section 4 is devoted to the general
analysis of the reformulated KL control. In Section 5,
we focus on linear systems with a quadratic state cost.
In Section 6, numerical examples are presented. Some
concluding remarks are given in Section 7.

Notation: Let R denote the set of real numbers and
Z>0 (resp. Z≥0) denote the set of positive (resp. non-
negative) integers. The set of integers {0, 1, . . . ,N} is
denoted by [[N]]. The identity matrix is denoted by I,
and its dimension depends on the context. For symmet-
ric matrices A,B ∈ Rn×n, we write A � B if A − B is
positive definite. The determinant of a square matrix
A is denoted by det(A). The block diagonal matrix
with diagonal entries {Ai}Ni=1,Ai ∈ Rm×n is denoted by
diag(A1, . . . ,AN). Let (�,F ,P) be a complete proba-
bility space where F is the σ -field on �, and P : F →
[0, 1] is a probability measure. The space (�,F ,P) is
equipped with a natural filtration {Fk}k≥0. The expec-
tation is denoted by E. The probability density func-
tion of a continuous random variable x with respect
to the Lebesgue measure is denoted by ρx. The sup-
port of the density function ρx is defined as the smallest
closed set S such that P(x ∈ S) = 1. The conditional
density of x given y = y is denoted by ρx|y(·|y). Denote
by DKL

(
ρx‖ρy

)
the KL divergence between probabil-

ity densities ρx and ρy. The Dirac delta function is
denoted by δ(·). For an Rn-valued random vector w,
w ∼ N (μ,�)means thatwhas amultivariateGaussian
distribution with mean μ ∈ Rn and covariance matrix
�. When� � 0, the density function of w ∼ N (μ,�)

is denoted byN (·|μ,�).

2. Brief introduction of KL control

Here, we briefly review KL control [8]. Let X ⊆ Rn be
a state space and U ⊆ Rm an input space. Throughout
the paper, X and U are assumed to be Borel mea-
surable. Consider an MDP with a transition density

function ρxk+1|xk,uk where {xk} is anX-valued state pro-
cess and {uk} is a U-valued control process. In this
section, we implicitly assume the existence of prob-
ability density functions. Nevertheless, we can apply
the same argument for discrete random variables by
replacing densities by probabilities. Let ρx0 be the den-
sity of the initial state x0. Denote by ρ

πk
k+1(·|x) the

conditional density of xk+1 given xk = x induced by
a stochastic policy (control law) πk(·|x) := ρuk|xk(·|x).
Letρ0

k+1(·|x) := ρxk+1|xk,uk(·|x, 0) be the transition den-
sity for the uncontrolled dynamics. Note that when
we assume the existence of the density functions
ρ

πk
k+1(·|x),πk(·|x), the state spaceX and the input space

U must have positive Lebesgue measure in Rn and Rm,
respectively. Hence, we assume thatX andU have posi-
tive measure when dealing with densities. Then, the KL
control problem is formulated as follows.

Problem 2.1: Find a policy π = {πk}N−1
k=0 that solves

minimize
π

E

[
�N(xN) +

N−1∑
k=0

{
�k(xk)

+ DKL
(
ρ

πk
k+1(·|xk)‖ρ0

k+1(·|xk)
)} ]

, (1)

where �k : Rn → R is the running cost (k= 0, . . . ,N −
1) and terminal cost (k = N) for the state, respectively,
and N ∈ Z>0 is the terminal time. ♦

Here, we assume that the infimumof (1) is finite. The
KL divergence measures the difference between two
probability distributions. Hence, Problem 2.1 penalizes
the deviation of the transition density ρ

πk
k+1(·|xk) from

the uncontrolled transition density ρ0
k+1(·|xk). Denote

the support of ρ0
k+1(·|x) by X

0
x,k+1.

Now, we introduce the most important assumption
of KL control.

Assumption 2.2: For any (k, x) ∈ [[N − 1]] × X and
any density ρ̌ whose support is given by X

0
x,k+1, there

exists a policy πk such that ρ̌(x′) = ρ
πk
k+1(x

′|x) for
almost all x′ ∈ X

0
x,k+1.

The above assumption says that the controller can
change the transition density ρ

πk
k+1(·|x) as desired.

Under this assumption, the Bellman equation for (1)
becomes linear by an exponential transformation:

z(k, x) = exp(−�k(x))Aρ0
k+1

[z](k, x),

(k, x) ∈ [[N − 1]] × X, (2)

z(N, x) = exp(−�N(x)), x ∈ X, (3)

where Aρ0
k+1

[z](k, x) := ∫
X
z(k + 1, x′)ρ0

k+1(x
′|x)dx′.

The solution of (2), (3) is given by the so-called desir-
ability function z(k, x) := exp(−v(k, x)), and the value
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function v associated with (1) is defined by

v(k, x) := inf
{πs}N−1

s=k

E

[
�N(xN) +

N−1∑
s=k

{
�s(xs)

+ DKL
(
ρ

πs
s+1(·|xs)‖ρ0

s+1(·|xs)
)}∣∣∣ xk = x

]
,

(k, x) ∈ [[N − 1]] × X,

v(N, x) := �N(x), x ∈ X.

In particular, a policy {π∗
k } satisfying

ρ
π∗
k

k+1(x
′|x) = ρ0

k+1(x
′|x)z(k + 1, x′)

Aρ0
k+1

[z](k, x)
,

∀x′, x ∈ X, ∀k ∈ [[N − 1]] (4)

is an optimal policy of Problem 2.1, and its existence
is ensured by Assumption 2.2. It is remarkable that an
optimal transition density can be written analytically
given the desirability function unlike the conventional
MDPs [5]. However, as mentioned in the Introduction,
Assumption 2.2 is typically violated for continuous state
spaces, and there is no policy satisfying (4). To see this,
as an example, we consider a linear system driven by
Gaussian noise:

xk+1 = Axk + Buk + wk, wk ∼ N (0,�), (5)

where {wk} is an independent sequence and � � 0.
Then, the transition density ρ

πk
k+1(·|x) cannot be shaped

to the density N (·|Ax,�′) where � � �′. This is
because any causal controller πk cannot decrease the
variance of xk+1 due to the noisewk. A similar argument
applies to general nonlinear stochastic systems. That is,
it is impossible to decrease the uncertainty of the state
at time k + 1 due to the noise at time k. As a result, the
assumption of controllability of the transition distribu-
tions is violated in general, and the Bellman equation
cannot be linearized.

Then, does the KL control framework work well
for deterministic systems without probabilistic uncer-
tainty? To answer this, let us consider a general nonlin-
ear system of the form:

xk+1 = f (xk, uk), f : X × U → X.

Then, the reference distribution ρ0
k+1(x

′|x) is given by
the uncontrolled transition distribution δ(x′ − f (x, 0)).
Hence, to make the cost DKL(ρ

πk
k+1(·|xk)‖ρ0

k+1(·|xk))
finite, we are only allowed to choose the trivial transi-
tion distributionρ

πk
k+1(x

′|xk) = δ(x′ − f (xk, 0)). Other-
wise, the KL divergence diverges to infinity. Of course,
the above situation is meaningless.

3. Reformulation of KL control for continuous
spaces

In the previous section, we have observed that the
KL control framework has severe problems for both
stochastic and deterministic general systems. Then, are
there situations in which the linearization of the Bell-
man equation is possible and for which a meaningful
solution exists? In this section, we answer this ques-
tion. The same notation as in Section 2 is employed.We
consider general deterministic nonlinear systems of the
form:

xk+1 = f (xk, uk), k ∈ Z≥0, (6)

x0 ∼ ρx0 , (7)

where {xk} is an X-valued state process, {uk} is a U-
valued control process, and f : X × U → X. The exten-
sion of the results in this paper to the time-varying case
xk+1 = fk(xk, uk) is straightforward.Next, we introduce
the associated noise-driven dynamics:

x̄k+1 = f (x̄k,wk), k ∈ Z≥0, (8)

x̄0 ∼ ρx0 , (9)

where {wk} is a sequence of independent (not nec-
essarily identically distributed) random variables, and
wk has the density function ρwk with the support W.
Denote the conditional density of x̄k+1 given x̄k = x by
ρ̄k+1(·|x). Now, we are ready to state our problem.

Problem 3.1: Find a policy π = {πk}N−1
k=0 that solves

minimize
π

E

[
�N(xN) +

N−1∑
k=0

{
�k(xk)

+ DKL
(
ρ

πk
k+1(·|xk)‖ρ̄k+1(·|xk)

)}]

subject to (6) and (7).
(10)

We emphasize that Problem 3.1 employs noise-
driven dynamics (uk = wk) as a reference transi-
tion density ρ̄k+1(·|xk) while Problem 2.1 employs
uncontrolled dynamics (uk = 0). This allows us to
choose ρ

πk
k+1(·|x) other than a delta function despite

the deterministic dynamics (6). Consequently, Prob-
lem 3.1 admits a non-trivial solution. Note that for a
deterministic policy uk = K(xk), i.e. πk(u|x) = δ(u −
K(x)), DKL

(
ρ

πk
k+1(·|xk)‖ρ̄k+1(·|xk)

)
is infinite because

ρ
πk
k+1(·|xk) is not absolutely continuous with respect

to ρ̄k+1(·|xk). Therefore, an optimal policy for Prob-
lem 3.1 must be stochastic. This is in contrast to
the conventional optimal control problems without
the KL divergence cost whose optimal policy is
deterministic [5].
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For x ∈ X, let fx(u) := f (x, u) and Xx := {fx(u) :
u ∈ U}. Recall that since we are dealing with densities,
we assume that X and U have positive Lebesgue mea-
sure inRn andRm, respectively. In addition, we assume
the following conditions.

Assumption 3.2: (i) W ⊆ U;
(ii) m = n;
(iii) For all x ∈ X, fx : U → Xx is bijective, and it and

its inverse are both continuously differentiable;
(iv) For all k ∈ [[N]], E[�k(x̄k)] is finite.

Assumptions 3.2-(ii),(iii) with the fact that uk given
xk = x has the density ensure the existence of the den-
sity ρ

πk
k+1(·|x); see, e.g. [22, Chapter 6, Theorem 5].

Note that when U is an open set, Assumption 3.2-(iii)
means that for all x ∈ X, fx is a C1-diffeomorphism. In
addition, Assumption 3.2-(i) implies that there exists
a feasible control process that replicates a given noise
process. Consequently, the transition density ρ

πk
k+1(·|x)

can be shaped to a desired formwith the support X̄x :=
{fx(w) : w ∈ W} by an appropriate policy; see the proof
of Theorem 4.1 in the next section. Conversely, if the set
difference W\U has positive Lebesgue measure, then
the support of ρπk

k+1(·|x) cannot be X̄x for any πk under
the injectivity of f (x,w) with respect to w ∈ U ∪ W.
Therefore, Assumption 3.2-(i) with the injectivity can
be seen as playing the same role as Assumption 2.2.
Lastly, Assumption 3.2-(iv) is a technical assumption
that ensures there exists a policy that makes (10) finite.
For instance, if �k is bounded for all k ∈ [[N]], Assump-
tion 3.2-(iv) is satisfied.

Remark 3.1: Consider the control-affine case f (x, u) =
f̄ (x) + g(x)u where f̄ : Rn → Rn, g : Rn → Rn×m.
Then, Assumptions 3.2-(ii),(iii) imply that, for all x ∈
Rn, g(x) is square and invertible. Note that when n <

m and g(x) has full row rank for all x ∈ Rn, we can
introduce an auxiliary system

x̃k+1 = f̃ (x̃k) + g̃(x̃k)uk (11)

where x̃k ∈ Rm−n, f̃ : Rm−n → Rm−n, g̃ : Rm−n →
R(m−n)×m, such that the combined system[

xk+1
x̃k+1

]
=
[
f̄ (xk)
f̃ (x̃k)

]
+
[
g(xk)
g̃(x̃k)

]
uk (12)

satisfies Assumptions 3.2-(ii),(iii). That is, [g(x)
 g̃
(x̃)
]
 is invertible for all [x
 x̃
]
 ∈ Rm. When the
state cost function �k does not depend on x̃k, the intro-
duction of the auxiliary system (11) is explicitly relevant
only for the KL divergence cost of (10).

4. General analysis of KL control for
continuous spaces

In this section, we characterize the value function and
the optimal control of Problem 3.1 and then reconsider
the implication of Assumption 2.2 for Problem 2.1.

4.1. Characterization of the value function and
optimal control

Define the value function associated with (10) as
follows:

V(k, x) := inf
{πs}N−1

s=k

E

[
�N(xN) +

N−1∑
s=k

{
�s(xs)

+ DKL
(
ρ

πs
s+1(·|xs)‖ρ̄s+1(·|xs)

)}∣∣ xk = x

]
,

(k, x) ∈ [[N − 1]] × X,

V(N, x) := �N(x), x ∈ X.

Then the optimal value for Problem 3.1 is given by
E[V(0, x0)]. Also, define the desirability function

Z(k, x) := exp(−V(k, x)). (13)

Similarly to the conventional optimal control, the desir-
ability function or, equivalently, the value function
plays a crucial role in our problem.

Theorem 4.1: Suppose that Assumption 3.2 holds.
Then, the unique optimal policy π∗ = {π∗

k } for Prob-
lem 3.1 is given by

π∗
k (u|x) := ρwk(u)Z(k + 1, f (x, u))

Aρ̄k+1[Z](k, x)
,

k ∈ [[N − 1]], u ∈ U, x ∈ X. (14)

In addition, the desirability function Z satisfies

Z(k, x) = exp(−�k(x))Aρ̄k+1 [Z](k, x),

(k, x) ∈ [[N − 1]] × X, (15)

Z(N, x) = exp(−�N(x)), x ∈ X. (16)

Proof: By the dynamic programming principle [23,
Chapter 3], the value function V satisfies the Bellman
equation

V(k, x) = �k(x) + inf
πk

{
DKL

(
ρ

πk
k+1(·|x)‖ρ̄k+1(·|x)

)
+ A

ρ
πk
k+1

[V](k, x)
}
,

(k, x) ∈ [[N − 1]] × X, (17)

V(N, x) = �N(x), x ∈ X. (18)

In addition, if a policy πk achieves the minimum of the
right-hand side of (17), it is an optimal policy. Note that

DKL
(
ρ

πk
k+1(·|x)‖ρ̄k+1(·|x)

)+ A
ρ

πk
k+1

[V](k, x)

=
∫

X

ρ
πk
k+1(x

′|x) log ρ
πk
k+1(x

′|x)
ρ̄k+1(x′|x)Z(k + 1, x′)

dx′

= DKL
(
ρ

πk
k+1(·|x)‖ρ∗

k+1(·|x)
)− logAρ̄k+1 [Z](k, x),

(19)
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where we defined

ρ∗
k+1(x

′|x) := ρ̄k+1(x′|x)Z(k + 1, x′)
Aρ̄k+1 [Z](k, x)

, x′, x ∈ X.

(20)
The second term in the right-hand side of (19) does not
depend on πk. Therefore, if a policy πk satisfies

ρ
πk
k+1(x

′|x) = ρ∗
k+1(x

′|x), ∀x, x′ ∈ X, (21)

it is an optimal policy at time k. For any x ∈ X, by
Assumption 3.2 and the change of variables x′ = fx(u)
for πk(u|x) [22, Chapter 6, Theorem 5], we obtain

ρ
πk
k+1(x

′|x) = πk
(
f−1
x (x′)|x) ∣∣∣det (Jf−1

x
(x′)

)∣∣∣ ,
where Jf−1

x
denotes the Jacobian matrix of the inverse

function f−1
x . Similarly, we have

ρ̄k+1(x′|x) = ρwk

(
f−1
x (x′)

) ∣∣∣det (Jf−1
x

(x′)
)∣∣∣ .

Therefore, π∗
k defined in (14) is a unique policy satisfy-

ing (21). As a result, the Bellman Equation (17) can be
simplified as

V(k, x) = �k(x) − logAρ̄k+1 [Z](k, x), (22)

which completes the proof. �

From Theorem 4.1, similarly to the conventional
optimal control, Problem 3.1 boils down to calculat-
ing the desirability function Z. A notable difference
between them is that thanks to the linearity of (15),
the desirability function for KL control admits the path
integral representation.

Corollary 4.2: Suppose that Assumption 3.2 holds.
Then, the desirability function Z satisfies

Z(k, x) = E

[
exp

(
−

N∑
s=k

�s(x̄s)

)∣∣∣∣∣ x̄k = x

]
,

(k, x) ∈ [[N]] × X, (23)

where {x̄s} is a solution of (8).

Proof: By using (15), (16), and induction on k, we
immediately obtain the desired result. �

The path integral representation (23)motivates us to
compute the desirability function by sampling approxi-
mations. In particular, if one can simulate sample paths
of {x̄k}, the sampling approximations of (23) do not
require the knowledge of f. Hence, (23) enables model-
free approaches for obtaining the optimal policy.

Next, we consider the discrete input space U =
{u(i)}ri=1, u

(i) ∈ Rm, r ∈ Z>0 ∪ {∞}. In this case, den-
sity functions must be replaced by probabilities such

as a policy	k(u(i)|x) := P(uk = u(i)|xk = x). Then,we
obtain the following.

Corollary 4.3: Suppose that Assumptions 3.2-(i),(iv)
hold. Then, for Problem 3.1 with U = {u(i)}ri=1, there
exists a policy {	∗

k} such that for all k ∈ [[N − 1]], x ∈
X, x′ ∈ X̄x = {fx(w) : w ∈ W}, it holds∑

i:f (x,u(i))=x′
	∗

k(u
(i)|x)

= P
(
f (x,wk) = x′)Z(k + 1, x′)∑

x′′∈X̄x
P
(
f (x,wk) = x′′)Z(k + 1, x′′)

. (24)

Here, the desirability function Z satisfies (15) and (16)
whereAρ̄k+1 [Z](k, x) is replaced by

∑
x′∈X̄x

Z(k + 1, x′)
P(f (x,wk)= x′) and admits the representation (23). In
addition, {	∗

k} is an optimal policy for Problem 3.1. Fur-
thermore, if for all x ∈ X, fx : U → Xx is bijective, a
policy satisfying (24) is the unique optimal policy.

Proof: Note that

P(xk+1 = x′|xk = x) =
∑

i:f (x,u(i))=x′
	∗

k(u
(i)|x), (25)

P(x̄k+1 = x′|x̄k = x) = P
(
f (x,wk) = x′) . (26)

Then, by the same argument as in the proof of
Theorem 4.1, we obtain the existence and optimality of
{	∗

k} satisfying (24). Especially when for all x ∈ X, fx
is bijective, {u ∈ U : f (x, u) = x′} is a singleton for all
x ∈ X, x′ ∈ X̄x, which leads to the uniqueness of the
optimal policy. �

The above result clarifies that in Assumption 3.2,
the condition (i) W ⊆ U plays a crucial role in mak-
ing optimal control problems linearly solvable while the
bijectivity of fx ensures the uniqueness of the optimal
policy. Note that Corollary 4.3 does not assumem = n.

4.2. Reconsideration of the controllability
assumption of transition densities

Now, let us go back to the original formulation of KL
control (Problem 2.1) and reconsider the implication of
Assumption 2.2 for stochastic systems. In the rest of this
section, the control-affine system is considered:

xk+1 = f̄ (xk) + g(xk)(uk + wk), wk ∼ ρwk , (27)

where {wk} is a sequence of independent random vari-
ables. For simplicity, let X = Rn,U = Rm. Note that
the continuous-time counterpart of (27) is often con-
sidered in the path integral control. Similarly to the lin-
ear system (5), for the above system, causal controllers
πk(uk|xk) cannot satisfy (4), and therefore the associ-
ated Bellman equation cannot be linearized. To gain
deeper insight into Assumption 2.2 that ensures the
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existence of a policy satisfying (4), we shall introduce
an atypical assumption.

Assumption 4.4: The control input uk is allowed to
depend on wk.

This assumption means that the causality of con-
trollers can be violated. Now the decision vari-
ables for Problem 2.1 are replaced by πw,k(·|x,w) :=
ρuk|xk,wk(·|x,w), k ∈ [[N − 1]]. Then, we have the fol-
lowing result.

Theorem 4.5: Suppose that Assumptions 3.2-(ii),(iii)
and 4.4 hold for fx(u) = f̄ (x) + g(x)u. Then, the unique
optimal policy for Problem 2.1 is given by

π∗
w,k(u|x,w) := ρwk(u + w)z

(
k + 1, f̄ (x) + g(x)u

)
Aρ0

k+1
[z](k, x)

,

k ∈ [[N − 1]], u, x ∈ R
n, w ∈ W.

(28)

In addition, the desirability function z satisfies (2)
and (3).

Proof: Note that

ρ0
k+1(x

′|x) = 1
|det (g(x)) |ρwk

((
g(x)

)−1
(x′ − f̄ (x))

)
(29)

and under a policy πw,k,

ρxk+1|xk,wk(x
′|x,w)

= 1
|det (g(x)) |πw,k

((
g(x)

)−1
(x′ − f̄ (x)) − w

∣∣ x,w) .
(30)

Also, we have

ρ
πw,k
k+1 (x′|x) =

∫
W

ρxk+1,wk|xk(x
′,w|x)dw

=
∫

W

ρxk+1|xk,wk(x
′|x,w)ρwk|xk(w|x)dw

=
∫

W

ρxk+1|xk,wk(x
′|x,w)ρwk(w)dw. (31)

Then, it is straightforward to check that (4) is satisfied
for πw,k = π∗

w,k. �

This theorem shows that for the stochastic sys-
tem (27), Assumption 4.4 for the noncausality of poli-
cies plays the same role asAssumption 2.2. In particular,
the noncausality enables the controller to cancel the
noise wk. Combining this with W ⊆ U = Rn, the con-
troller can shape the transition density ρ

πk,w
k+1 (x′|x) to a

desired form with the support X̄x. Of course, the non-
causality is unrealistic for practical applications. This
clarifies that the reformulated KL control is muchmore
realistic for systems on continuous spaces than the
original formulation of KL control.

5. Linear quadratic Gaussian setting

In this section, we focus on a linear system (f (x, u) =
Ax + Bu) with U = Rm, a quadratic cost

�k(x) = 1
2
x
Qkx, Qk � 0, k = 0, . . . ,N, (32)

and Gaussian noise wk ∼ N (0,�k), �k � 0. Assume
that m = n and B is invertible. Then Assumption 3.2
is satisfied. Now, we calculate the optimal policy for
Problem 3.1 analytically. First, for k = N − 1, we have

π∗
N−1(u|x) ∝ N (u|0,�N−1)Z(N,Ax + Bu)

∝ exp
(

−1
2

(
u
�−1

N−1u

+ (Ax + Bu)
QN(Ax + Bu)
))

∝ exp
(

−1
2

[
u+ (�−1

N−1 +B
QNB)−1B
QNAx
]


× (�−1
N−1 + B
QNB)

×
[
u + (�−1

N−1 + B
QNB)−1B
QNAx
])

,

(33)

which means that

π∗
N−1(u|x)

= N (u∣∣−(�−1
N−1 + B
QNB)−1B
QNAx,

(�−1
N−1 + B
QNB)−1). (34)

On the other hand,

Z(N − 1, x)

= exp
(

−1
2
x
QN−1x

)

×
∫

Rn
N (x′|Ax,B�N−1B
)Z(N, x′)dx′

= [det(I + QNB�N−1B
)]−1/2

× exp
(

−1
2
x
(QN−1

+ A
(I − (I + QNB�N−1B
)−1)

× (B�N−1B
)−1A
)
x
)
, (35)

where we used the formula

E

[
exp

(
−1
2
x
Qx

)]

= [det(I + Q�)]−1/2

× exp
(

−1
2
μ
(I − (I + Q�)−1)�−1μ

)

for Q � 0 and x ∼ N (μ,�),� � 0. Note that

(I − (I + QNB�N−1B
)−1)(B�N−1B
)−1
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= (I − �−1
B (I + Q−1

N �−1
B )−1Q−1

N )�−1
B

= (Q−1
N + B�N−1B
)−1

= QN − QNB(�−1
N−1 + B
QNB)−1B
QN ,

where �B := B�N−1B
. Substituting this into (35), we
obtain

Z(N − 1, x) = [det(I + QNB�N−1B
)]−1/2

× exp
(

−1
2
x
PN−1x

)
, (36)

PN−1 := QN−1 + A
PNA

− A
PNB(�−1
N−1 + B
PNB)−1B
PNA,

PN := QN . (37)

By applying the same argument as above for k = N −
2, . . . , 0, we obtain the following result.

Theorem 5.1: Assume that m = n and B is invertible.
Then, the optimal policyπ∗ = {π∗

k } for Problem 3.1with
f (x, u) = Ax + Bu, U = Rn, wk ∼ N (0,�k), �k � 0,
and (32) is given by

π∗
k (u|x) = N (u∣∣−(�−1

k + B
Pk+1B)−1B
Pk+1Ax,

(�−1
k + B
Pk+1B)−1),

k ∈ [[N − 1]], u, x ∈ R
n (38)

where Pk is a solution of the Riccati difference equation

Pk = Qk + A
Pk+1A

− A
Pk+1B(�−1
k + B
Pk+1B)−1B
Pk+1A,

k ∈ [[N − 1]], (39)

PN = QN . (40)

The desirability function is given by

Z(k, x) =
⎛
⎝ N∏

s=k+1

[det(I + PsB�s−1B
)]−1/2

⎞
⎠

× exp
(

−1
2
x
Pkx

)
. (41)

The mean of the optimal policy (38) coincides with
the LQ optimal controller [1]. In other words, the opti-
mal policy is the LQ optimal feedback controller per-
turbed by additive Gaussian noise with zero mean and
covariance matrix (�−1

k + B
Pk+1B)−1.
In the above, we have analysed the desirability func-

tion based on the backward equation (15). Hence, the
obtained representation (41) contains the solution of
the backward Riccati difference equation. For com-
parison, we calculate the desirability function based
on the forward representation (23). Let x̄k+1:N :=
[x̄


k+1 · · · x̄

N ]


 and

Āk :=
[
A
 (A2)
 · · · (Ak)


]

, (42)

�k+1:N := diag(�k+1, . . . ,�N), (43)

Qk+1:N := diag(Qk+1, . . . ,QN), (44)

Lk :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B 0 · · · · · · 0

AB B
. . .

...

A2B AB B
. . .

...
...

...
. . . . . . 0

Ak−1B Ak−2B · · · AB B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(45)

Then, the conditional distribution of x̄k+1:N given x̄k =
x isN (ĀN−kx, LN−k�k+1:NL


N−k). By Corollary 4.2,

Z(k, x) = exp
(

−1
2
‖x‖2Qk

)

E

[
exp

(
−1
2
‖x̄k+1:N‖2Qk+1:N

)∣∣∣∣ x̄k = x
]

= [det(I + Qk+1:NLN−k�k+1:NL

N−k)]

−1/2

× exp
(

−1
2
x
(Qk + Ā


N−k(Q
−1
k+1:N

+ LN−k�k+1:NL

N−k)

−1ĀN−k
)
x
)
, (46)

where ‖x‖Q := (x
Qx)1/2 for Q � 0. The fact that the
desirability function can be expressed in two different
ways (41) and (46) is similar to the fact that the value
function for the LQR problem

VLQR(k, x)

:= inf
{us}

1
2
‖xN‖2QN

+
N−1∑
s=k

1
2

(
‖xs‖2Qs

+ ‖us‖2�−1
s

)

subj. to xs+1 = Axs + Bus, s ∈ [k,N − 1], xk = x

can be written in the following two ways:

VLQR(k, x) =

⎧⎪⎨
⎪⎩

1
2x


Pkx,
1
2x


(Qk + Ā

N−k(Q

−1
k+1:N

+LN−k�k+1:NL

N−k)

−1ĀN−k
)
x.
(47)

6. Numerical examples

In this section,we illustrate the reformulatedKL control
through two examples.

6.1. Linear quadratic case

Consider the linear quadratic case where

A = 0.85, B = 0.10, Qk = 3.0, �k = 1.5,∀k
(48)

and a finite horizon N = 30. First, for comparison we
compute the associated value function in two ways: by
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using the explicit expression (41) and by using a Monte
Carlo method based on the path integral representa-
tion (23). For the Monte Carlo method, we generate S
sample paths {x̄(i)

k }Nk=0, i = 1, . . . , S with x̄0 = x,wk ∼
N (0,�k) and compute

− log

[
1
S

S∑
i=1

exp

(
−

N∑
s=0

�s(x̄(i)
s )

)]

to approximate V(0, x). As shown in Figure 1, V(0, x)
is well approximated by the Monte Carlo estimate with
3000 samples. The computation time for each x is

Figure 1. Monte Carlo estimates of the value function V(0, x)
(red, dashed) with S = 100 (black) and S = 3000 (blue).

about 0.025 s, 0.24 s, and 0.71 s for S = 100, 1000, 3000,
respectively, with MATLAB on MacBook Pro with
Apple M1 Pro. Note that the Monte Carlo simula-
tions can be easily parallelized. Next, three samples
of the optimal state and control processes {xk}, {uk}
for different (Qk,�k) are shown in Figure 2. As can
be seen, as �k increases, the absolute mean and vari-
ance of the optimal control get larger. This is because
for larger �k, the cost of shifting the transition dis-
tribution ρ

πk
k+1(·|xk) from the reference distribution

N (·|Axk,B�kB
) becomes smaller, while the cost of
reducing the variance of the transition distribution
becomes larger. In Figures 2(c,d), the values ofQk/�−1

k
coincide. Therefore themean values of the optimal poli-
cies (38) for the two cases also coincide although the
control process in Figure 2(d) has smaller variance than
in Figure 2(c). On the other hand, for the LQR problem

Figure 3. Cart-pole pendulum.

Figure 2. Three samples of the optimal state and control processes {xk}, {uk} for different (Qk ,�k): (a) Qk = 3.0, �k = 0.5. (b)
Qk = 3.0, �k = 1.5. (c) Qk = 3.0, �k = 10.0 and (d) Qk = 30, �k = 1.0.
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Figure 4. 30 sample paths of the optimal state process
{(x̄k , θk)}.

whose cost is given by

1
2
Qx2N +

N−1∑
k=0

1
2
(Qx2k + �−1u2k),

the optimal control depends on Q,� only via Q/�−1.
This is in clear contrast to KL control.

6.2. Cart-pole pendulum

We now proceed to apply our result to a nonlinear
system. Specifically, we consider the cart-pole inverted
pendulum in Figure 3. The system consists of a cart of
mass M = 1.0 kg moving horizontally, a massless rod
of length L = 0.5m attached to the cart and rotating
around a pivot point in the x̄y-plane only, and a point
mass m = 0.1 kg at the end of the rod. The input u is
the horizontal force applied to the cart to maintain the
pendulum in a balanced and upright position. Here, we
neglect the influence of friction. Let x̄, θ be the posi-
tion of the cart and the angle of the rod (θ = 0 for the
upright position and θ = π for the downward position
of the pendulum), respectively.

We then have the following continuous-time model
of the cart-pole system:

¨̄x = −mL(θ̇)2 sin θ + mg sin θ cos θ + u
M + m sin2 θ

=: h1(θ , θ̇ , u), (49)

Figure 5. Three sample paths of the optimal state and control processes for the cart-pole pendulum. The same color indicates the
correspondence between the sample paths of the state process and the control process.
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θ̈ = 1
L
(h1(θ , θ̇ , u) cos θ + g sin θ) =: h2(θ , θ̇ , u),

(50)

where g = 9.8m/s2 is the gravitational acceleration. By
the Euler method, we obtain the discrete-time system:

xk+1 = f (xk, uk) =

⎡
⎢⎢⎣

x̄k + τ ˙̄xk˙̄xk + τh1(θk, θ̇k, uk)
θk + τ θ̇k

θ̇k + τh2(θk, θ̇k, uk)

⎤
⎥⎥⎦ , (51)

where xk = [x̄k ˙̄xk θk θ̇k]
 and τ is a step size. Here, we
consider the discrete input space U = {2i N}10i=−10. For
a cost function, let

�k(xk) = q1|x̄k| + q2| ˙̄xk| + q3|θk| + q4|θ̇k|
with q1 = 11.5m−1, q2 = 3.0 s/m, q3 = 11.5 rad−1,
q4 = 3.0 s/rad. In addition, the noise wk for the ref-
erence transition distribution is designed to follow a
discretized Gaussian distribution

P(wk = w) ∝ exp
(

− 1
2σ 2 w

2
)
, w ∈ W = U (52)

with σ = 5.0 N. The initial state is given by x̄0 =
2.0m, ˙̄x0 = 0m/s, θ0 = 0.5 rad, θ̇0 = 0 rad/s.

Suppose that the state value at the current time k
is xk = x. Then by Corollary 4.3, the optimal policy at
time k is given by

	∗
k(u|x) ∝ P (wk = u)Z

(
k + 1, f (x, u)

)
, u ∈ U,

(53)
where the desirability function Z(k + 1, f (x, u)) for
each u ∈ U can be computed by the Monte Carlo
method based on (23). In this example, we use 20, 000
samples for the sampling approximation of Z.

Figure 4 shows 30 sample paths of the optimal state
process in the x̄θ-plane. The sampling time for simulat-
ing the cart-pole system (49), (50) is τ = 0.1ms while
the sampling time for determining control inputs is
τ = 0.05 s. The optimal policy balances the pendulum
around the upright position while the cart-pole sys-
temfluctuates around the origin due to the stochasticity
of the policy. The detailed behaviour of the optimal
state and control processes is illustrated in Figure 5.
One can see that the cart and pole velocity shows large
fluctuations while as time evolves, their mean values
approach zero. If one takes larger values of q2, q4, their
fluctuations are reduced.

7. Conclusion

In this paper, we reformulated KL control to make
its assumption reasonable for continuous spaces and
remove the approximation of dynamics. Then, we anal-
ysed the associated optimal control via the desirability
function. In particular, we showed that the reformu-
latedKL control admits sampling approximations of the

desirability function. We emphasize that the Bellman
equation for the infinite horizon KL control can also be
linearized by the same argument as in the finite horizon
case, and the associated inverse reinforcement learn-
ing can be formulated as a convex optimization [18]. In
addition, we revisited the original KL control and clar-
ified that the assumption of controllability of transition
densities implies the noncausality of controllers. For
linear systems with a quadratic state cost and Gaussian
noise, we derived the optimal policy analytically. Lastly,
we illustrated our KL control via numerical examples.
Future work will focus on weakening Assumptions 3.2-
(ii),(iii) by analysing the problem without using
densities.
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