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The anisotropic Kepler problem is a model of the motion of free electrons
on an n type semiconductor, and is known to be a non-integrable Hamiltonian
system. In this paper, we first show that the action functional of the anisotropic
Kepler problem has a minimizer under a fixed region condition with boundary
conditions on a vertical half-line. Next, we identify the smallest collision trajec-
tory that satisfies the same boundary conditions. By constructing an orbit with
an action functional smaller than this collision orbit via local deformation, we
show that the collision solution does not become the minimizer. Reversibility
allows the periodic orbit to be constructed from the minimizer obtained via the
action functional.

1 Introduction

The n-body problem, which has been studied since Newton discovered universal
gravitation, is concerned with the motion when n mass points are gravitation-
ally attracted to each other. Poincare showed that the three-body problem
cannot be solved under various settings. Therefore, it is not possible to find a
general solution of the n-body problem, but it may be possible to find a special
solution, in particular, a periodic solution. One way to find such a solution
is the variational method. For example, Chenciner and Montgomery famously
proved the existence of the figure-eight solution to the 3-body problem with
equal masses[6]. In this paper, we apply this method to the anisotropic Kepler
problem(AKP).

Equations of motion of a two-dimensional potential system are defined by:

ẍ = −∂V

∂x
, ÿ = −∂V

∂y
(1.1)

where V (x, y) is a potential function. The potential of the AKP is represented
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by:

V (x, y) = − 1√
x2 + µy2

(µ > 0)

and the Lagrangian by:

L(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2)− V (x, y). (1.2)

Gutzwiller introduced this problem [9] as an equation modeling free electrons
in n type semiconductors. The AKP is non-integrable for µ ̸= 1 [13] and has a
horseshoe in the range of µ > 9/8 or µ < 8/9 [7].

A number of approximate periodic solutions of the AKP have been obtained
via numerical calculation, but none have been mathematically proved to exist.
Variational approach has been done by [1, 2, 3, 4]. In this paper, we use the
variational method to prove the existence of simple periodic orbits with certain
properties in the AKP. Our main result is the following.

Main result. For any T > 0 and any µ, there exists a periodic orbit q(t) =
(x(t), y(t)) that has period 4T and satisfies the following properties in the AKP:

• ẋ(0) = ẏ(T ) = 0

• x(−t) = x(t), y(−t) = y(t), x(t+ T ) = −x(−t+ T ), y(t+ T ) = −y(t+ T )

• q(t) is orthogonal to the x- and y- axis at t = 0 and t = T , respectively;

• For all t ∈ (0, T ), x(t) decreases monotonically and y(t) increases mono-
tonically.

We organize this paper as follows. Section 2 introduces preliminaries for our
proof, including reversibility and the conditions for the action functional to have
the minimizer. In section 3, we formulate the AKP by the variational method.
Section 4 shows that the minimizer has no collision. In section 5, we show the
result of numerical calculation using AUTO.

2 Preliminaries

2.1 Reversibility

Consider the following ordinary differential equation:

q̇ = F (q), q ∈ Rd (2.1)

Definition 2.1 (Reversibility). Let R be an involutory linear map from Rd to
Rd, i.e. R2 = En. If (2.1) satisfies:

F (Rx) +R(Fx) = 0

then (2.1) is said to be reversible with respect to R.
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With a simple calculation,we obtain the following lemma.

Lemma 2.2. Assume that (2.1) satisfies reversibility. Then if q(t) is a solution
of (2.1), then so is to Rq(−t).

We define
Fix(R) := {q ∈ Rd | Rq = q}

Lemma 2.3. For a solution q(t) of (2.1), q(T ) ∈ Fix(R) is satisfied if and only
if q(T + t) = Rq(T − t).

Proof. If q(T + t) = Rq(T − t), then q(T ) ∈ Fix(R) by substituting t = 0.
Conversely, we assume that q(T ) ∈ Fix(R). From Lemma 2.2, if q(T + t)
is a solution, then so is to Rq(T − t). Since the initial values match from
q(T ) = Rq(T ), the lemma follows owing to the uniqueness of the solution.

2.2 Minimizers of the action functional

We describe the known results of the variational problem of the Lagrangian
system. Let I = [0, T ]. Let D be a configuration space in Rd. We define
A,B ⊂ D as nonempty affine spaces. Let TA and TB be linear spaces created
by translating A andB so that they pass through the origin. We set:

CA,B = {q ∈ C2(I,D)|q(0) ∈ A, q(T ) ∈ B}. (2.2)

The Lagrangian is L(q, q̇) and the action functional is:

A(q) =

∫ T

0

L(q, q̇) dt.

A path q that satisfies A′(q) = 0 is called the critical point of A(q). From
the first variational formula, We consider a Sobolev space;

H1(I,D) =

{
q : I → D|q ∈ L2(I,D),

dq

dt
∈ L2(I,D)

}
and set the norm as:

||q||H1 :=

√∫ T

0

|q|2 + |q̇|2 dt.

Definition 2.4 (coercive). Let Ω ∈ H1(I,D). The action functional A|Ω is
said to be coercive when it satisfies

A(q) → ∞ as ||q||H1 → ∞ (q ∈ Ω)

We set

Ω(A,B) = {q ∈ H1(I,D)|q(0) ∈ A, q(T ) ∈ B}
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Lemma 2.5 (Proposition 2.1 [5]). Let A,B ⊂ D. If there exists C0 < 1 that
satisfies:

a · b ≤ C0|a||b| (2.3)

for any a ∈ A and b ∈ B, then A|Ω is coercive.

Lemma 2.6 ([12]). Suppose that A|Ω is coercive. Then there exists a minimizer
q∗ ∈ Ω. Moreover, if the minimizer q∗ has no collision, then it satisfies q∗ ∈
CA,B , i.e. q

∗ is smooth.

3 Formulation of the AKP by the variational
method

We set D = R2 − {(0, 0)} and consider the boundary condition:

A = {(x, 0) ∈ D|x > 0}, B = {(0, y) ∈ D|y > 0} (3.1)

It is clear that A and B satisfy (2.3). Therefore, from Lemma 2.5 and 2.6,
there exists minimizer in Ω(A,B). Moreover, from the first variational formula,
q̇∗(0) is orthogonal to A and q̇∗(T ) is orthogonal to B. The minimizer q∗ is a
solution of AKP unless q∗ is a collision orbit (Figure 1). The monotonicity will
be shown later.

Figure 1: The minimizer we aim to find.

4 Estimation of collision orbit

Without loss of generality, we can limit the parameter µ in the AKP to 0 < µ < 1
by substituting 1/µ instead of µ and applying appropriate change of variables.
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Now we identify the collision orbit that minimizes the action functional.
Using the polar coordinates q = (r cos θ, r sin θ), the action functional in the
AKP is expressed by:

A(q) =

∫
1

2
(ṙ2 + r2θ̇2) +

1

r
√

cos2 θ + µ sin2 θ
.

From this, we can see the following about the collision orbit that minimizes the
action functional:

• θ̇ = 0 from the minimun of the kinetic energy term. In other words,
the collision satisfying θ̇ ̸= 0 is not a minimizer because the trajectory
transformed into θ̇ = 0 minimize action functional.

• θ = 0 from the minimum of the potential energy term. In other words, the
collision satisfying θ ̸= 0 is not minimizer because the trajectory trans-
formed into θ = 0 minimize action functional.

Therefore, it suffices to show that the collision orbit that starts from positive
part of the x-axis and moves to the origin along x-axis is not a minimizer. In
the following, we discuss the orbit that starts from the origin and moves the to
positive part of the x-axis along the x-axis because both have the same action
functional and the latter is easier to handle.

4.1 Local transformation

We use the following for local evaluation of the collision orbit.

Lemma 4.1 (Sundman’s estimate, [10]). We assume that collition trajectories
q1, · · · , ql in a system with a Kepler-type potential collide with c at t = t0.
Then:

qk = c+ (t− t0)
2/3ak +O(t− t0) (k = 1, . . . , l).

From Lemma 4.1, the collision orbit qcol that starts from the origin and
moves along the positive part of the x-axis is represented by:

qcol = (at2/3 +O(t), 0), a =
3

√
9

2
.

The main term of the action functional A(qcol) at t ∈ [0, ϵ] is :(
2

3
a2 +

3

a

)
ϵ1/3

We define a local tramsformation δϵ at t ∈ [0, ϵ] as follows, where n,m ∈ N and
free for the moment.

qcol + δϵ(t) =


(aϵ−1/3t, cϵm) (0 ≤ t ≤ ϵn)(
aϵ−1/3t, cϵm ϵ−t

ϵ−ϵn

)
(ϵn ≤ t ≤ ϵ)

qcol(t) (t > ϵ)
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Figure 2: Collision orbit that minimizes
the action functional.

Figure 3: Local transformation.

We can estimate the action functional at t ∈ [0, ϵ] after transformation by:

A(qcol + δϵ) <

(
1

2
a2 +

√
2

a

)
ϵ1/3 +

1
√
µc

ϵn−m +
c2

2
ϵ2m−1

Therefore, by choosing n,m so that:

m ≥ 2/3, n ≥ m+ 1/3,

we obtain A(qcol) > A(qcol + δϵ). The above remarks demonstrate that the
collision orbit is not a minimizer.

4.2 Constructing a periodic solution

We discuss how to construct a periodic solution from the minimizer in the main
theorem.

Lemma 4.2. We assume that q = (x(t), y(t)) is a minimizer of AKP under the
boundary conditon Ω(A,B). Then x(t) and y(t) are monotone.

Proof. From (3.1), x(0) > x(T ) = 0 and it is monotonically dicreasing if it is
monotone. Assume that x(t) is not monotonically dicreasing. Then there exist
a, b ∈ [0, T ] such that a < b and x(a) < x(b). Then, by the mean value theorem,
there exist c ∈ [a, b] and d ∈ [b, T ] such that ẋ(c) > 0 and ẋ(d) < 0. From the
intermediate value theorem, there exists e ∈ (c, d) such that ẋ(e) = 0. Therefore
we find that x(t) takes a local maximam value at t = e. We set

x∗(t) =

{
max(x(t), x(e)) (t ∈ [0, e])
x(t) (t ∈ (e, T ])

.

6



Since x(t) ≤ x∗(t), we see that |x′(t)| ≥ |x∗′(t)| and A(x, y) > A(x∗, y). This is
contrary to the fact that x(t) is a minimizer. Similar arguments apply for the
case of y.

The AKP can be represented by:

ẋ = px, ẏ = py, (4.1)

ṗx = −∂V

∂x
, ṗy = −∂V

∂y
(4.2)

and (4.2) has reversibility with respect to:

R1 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , R2 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


We assume that q(t) = (x(t), y(t)) is a solution at t ∈ I. Then, from Proposition
2.2, q1(t) = (−x(−t), y(−t)), q2(t) = (x(−t),−y(−t)), q3(t) = (−x(t),−y(t))
are also solutions, as illustrated in Figure 4.

Figure 4: Reversible solutions.

The following lemma shows that these solutions are connected smoothly:

Lemma 4.3. ẋ(0) = 0 and ẏ(T ) = 0

Proof. From [8], the variation in t ∈ [0, T ] is

δA =

∫ T

0

(
Lx − d

dt
Lẋ

)
hx(t)dt+

∫ T

0

(
Ly −

d

dt
Lẏ

)
hy(t)dt+ (Lẋδx+ Lẏδy) |t=T

t=0

(4.3)

where hx(t) and hy(t) are increments and δx(0), δx(T ), δy(0), δy(T ) are the
boundary coordinate increments. Since q is a minimizer, δJ = 0. From the
boundary conditions, δx(T ) = 0 and δy(0) = 0. Therefore, by substituting
them in (4.3), we obtain:

ẋ(0)δx(0) = 0, ẏ(T )δy(T ) = 0

for any increment.
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Figure 5: Periodic solutions.

From the above lemma, we obtain a smooth periodic solution like Figure 5.

5 Numerical calculation

Figure 6 shows the results of numerical calculation of the periodic solution of
the AKP using AUTO.The initial solution is the solution of the Kepler problem
with µ = 1:

x(t) =
(π
2

)− 2
3

cos
πt

2
, y(t) =

(π
2

)− 2
3

sin
πt

2
, 0 ≤ t ≤ 1.

We continuate by reducing µ from 1 to 0. The boundary conditions are:

x(1) = y(0) = ẋ(0) = ẏ(0) = 0.
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