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A computation method was proposed for the interactions between Newtonian fluids and deformable solid
objects which swell by absorbing the surrounding fluids. The direct-forcing immersed boundary method
and mass-spring model are used to estimate the fluid-solid interactive forces and deformations of the solid.
The swelling of the object is simulated by changing the natural lengths of the spring models. In addition, the
solid-solid interaction is treated by utilizing the distinct element method. The proposed method was applied
to three numerical experiments. As a result, it was shown that the basic behaviors of the swelling-deformable
objects are reasonably calculated with the present method.
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1. INTRODUCTION

The main target in this study is on the computational
method for the interactions between Newtonian fluids
and swelling deformable solid objects. Swelling, a
process where solid objects expand as they absorb flu-
ids especially in liquid form, can be found in many
natural materials such as clays,1) food gels,2) biologi-
cal tissues,3) and industrial materials such as absorbent
polymers in hygienic products,4) and preformed par-
ticle gel used in water shutoff treatment,5) and hydro-
gel.6) In industrial materials, such swelling polymers
are commonly made from Super Absorbent Polymer
(SAP). When modeling such objects, there are four
important points to be considered: (1) interaction be-
tween the fluid and objects, (2) deformation of the ob-
jects, (3) solid interaction (contact) between objects,
and (4) absorption and size increase of the objects.

In some conditions these 4 points affect each other.
Such phenomenon is reported by Jockusch et al.7)

When fluid flow on a bed of SAP particles, the swelling
on the upper layer inhibits the fluid flow and absorp-

tion of fluid in the lower parts. This is caused by
the deformation of SAP particles which decreases the
porosity of the bed of SAP particles on the top layer.
Another study on mixture of soil and SAP particles
used in agriculture fields by Misiewicz et al8) reports
how the swelling rate of SAP particles is also influ-
enced by the pressure deformation. Higher pressure
by coarser soil surrounding the SAP particles are re-
ported to reduce the swelling rate compared to when
fine-grained soil are mixed.

In our investigation, very few studies focus on the
all 4 points. Some of the studies are focusing only
on the combination between the 4 points to make
the computation simple, such as a study employing
a macro-scale model to investigate the behavior of a
bed of swelling SAP particles9), 10) (focusing on point
(1), (2), and (4)), a study using a grain-scale model
based on the Discrete Element Method (DEM) and
pore finite volume method11) (points (3) and (4)), and
a study of absorbent particles in free-surface flows12)

(points (1) and (4)).
In order to be able to reproduce the closest con-
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dition to this complicated phenomena, a method that
is able to simulate the 4 main processes is proposed
in this study. A coupling of the Direct Forcing Im-
mersed Boundary (DF/IB) method and Mass-Spring
Model (MSM) is used to solve points (1) and (2). The
mass-spring model13) is one useful method used to
predict the deformation of the solid due to its sim-
plicity and low computational cost. In recent years,
various applications of the mass-spring model were
studied such as in cloth simulations14)15)and soft tis-
sues simulations.16)17)18) While the coupled DF/IB
and Mass-Spring Model (MSM-DF/IB) is simple and
has low computational cost, the method shows reason-
able results for the computation.19)20)

In the computation of DF/IB, multiple Lagrangian
points are arranged on the solid surface to calculate the
fluid-solid interaction forces. In the proposed method,
a different DF/IB scheme from the original DF/IB for
rigid bodies21) is used. Instead of solving the equation
of motion for the center point of the rigid body using
the total value of fluid-solid interaction forces, the
motion is calculated separately on each Lagrangian
point. The same Lagrangian points are also used for
the calculation of the mass-spring model. The mass
(Lagrangian) points are connected with springs and
dashpot which compress and extend as the objects de-
form. In addition, when contact between solid objects
is considered (point (3)), the implementation of the
DEM22) for the computation is fairly easy as the same
points is used for the placement of the Contact De-
tection Spheres (CDS). The CDS are treated as rigid
bodies that are connected by the springs. Addition-
ally, in order to simulate point (4), the natural length
of the spring used in the mass-spring model is utilized
in the proposed method to predict the swelling of the
particle with respect to time.

The proposed method of MSM-DF/IB with a
swelling scheme is applied to three applications. First,
the method’s capability to predict the swelling of a
hydrogel particle is checked. Several hydrogel par-
ticles are first observed and the diameter growth is
recorded. The relation between diameter and time is
obtained and used in the computation and the results
are compared with the experimental data. Second, the
proposed method is compared to the original DF/IB
for rigid body and references by calculating the sedi-
mentation of a single particle in the fluid. The swelling
scheme is then introduced and the results of the com-
putations are discussed. In the third application, the
proposed method is applied to lid-driven cavity flow
with non-swelling multiple deformable objects and
swelling multiple deformable swelling objects. The
results of the computations between two values of
spring constant are compared and the deformations
and basic swelling behaviors of the objects are dis-
cussed.

2. NUMERICAL METHODS

(1) Fluid Computations with DF/IB
DF/IB method proposed by Uhlmann21) is used for

the computation of the fluid-solid interactions. The
governing equations for incompressible fluids are first
solved to obtain the tentative fluid velocities assuming
that fictitious fluid exists inside the solid which is con-
sidered as deformable body in this study. The details
of the computations are also explained in details by
Guinea.19)

Firstly, the incompressible condition and the mo-
mentum equations of the fluid are given by

𝜕𝑢 𝑗

𝜕𝑥 𝑗
= 0, (1)

𝜕𝑢𝑖
𝜕𝑡

+
𝜕(𝑢𝑖𝑢 𝑗)
𝜕𝑥 𝑗

= − 1
𝜌 𝑓

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥2
𝑗

+ 𝑓𝑖 + 𝜆𝑖 , (2)

where 𝑢 𝑗 is the velocity component in 𝑥 𝑗 direction
in two-dimensional Cartesian coordinates. where 𝑡
is time, 𝑥𝑖 is the component of Cartesian coordinate
system, 𝜌 𝑓 is density, 𝜈 is kinematic viscosity, and 𝑝
is pressure. In addition, 𝑢𝑖 is the velocity component,
𝑓𝑖 and 𝜆𝑖 are the external and fluid interaction forces
in 𝑥𝑖 direction. Note that the equations are written in
Einstein notation. The governing equations are dis-
cretized with a finite volume method on the collocated
grid system and solved using SMAC method.23)

The deformable solid objects with circular shapes
in the initial condition are calculated in the 2D field.
The settings used in the computation of solid objects
are shown in Fig. 1. Figure 1 (a) shows the La-
grangian points used in DF/IB for the computations
of fluid-solid interactions. In the immersed boundary
method, the fluid cells are set on the whole compu-
tational domain that contains the solid domain. The
Lagrangian points that arranged on the swelling solid
boundary move on the fluid cells, and the solid domain
is fictitiously filled with fluid in the proposed method.
Figure 1 (b) shows the multiple mass points of the
objects, and Fig. 1 (c) shows the contact detection
spheres used in contact calculation between multiple
objects.

In DF/IB calculation, tentative velocities on the Eu-
lerian cells in the prediction stage are first interpolated
into Lagrangian points arranged on the solid surface
using a discrete delta function. The fluid interaction
force is then calculated on each Lagrangian point and
spread back into Eulerian cells. The value of tentative
velocity on Eulerian cells are then updated with the
fluid interaction forces. As the computations of the
DF/IB are the same with the previous study,19) the
details will be omitted on this paper. The flowchart
for the fluid computations with DF/IB can be seen on
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(a) Lagrangian points arrangement
for DF/IB

support spring and dashpot

spring and dashpot
mass points

(b) Mass points arrangement for
MSM

(c) CDS arrangement for DEM,
with CDS outer line (red)

Fig. 1 Schematic of (a) fluid cells and Lagrangian points for
DF/IB, (b) mass-spring model, and (c) CDS19)

Fig. 2 Flowchart of the fluid computations with DF/IB

Fig. 2. The white blocks indicate that the computa-
tions are taking place on Eulerian cells and the grey
blocks indicate that the computations are taking place
on Lagrangian points.

(2) Mass-Spring Model for Deformable Swelling
Solid

The motions of each Lagrangian point are solved
separately considering the addition of spring-damping
forces, contact forces, and external forces. Since each
point on the surface can move freely, we can predict

the deformation of the objects. where𝑼𝑠 is the vector
of the mass point velocity, and the dot sign represents
the time derivation. 𝑀 is the mass of each Lagrangian
point given by 𝑀 = 𝜌𝑠𝑉𝑠/𝑁𝑙, where 𝜌𝑠 is the solid
density, 𝑉𝑠 is the volume of the solid object, and 𝑁𝑙 is
the number of mass points (Lagrangian points). 𝑭𝑠 is
the vector of the force calculated by the spring-dashpot
model, 𝑭 𝑓 is the vector of the fluid forces calculated
with DF/IB, 𝑭𝑐 is the vector of the contact force cal-
culated with contact detection spheres and DEM, and
𝑭𝑒 is the vector of the external forces.

Black and red lines in Fig. 1 (b) represent springs
and dashpots between mass points. As a swelling
model is proposed, the computation of the spring
forces is a little bit different than the previous study.
The spring and damping forces 𝑭𝑠,𝐴𝐵 between two
points A and B are calculated as shown in

𝑭𝑠,𝐴𝐵 = −𝑘𝑠
(
𝜉𝑛𝐴𝐵 − 𝐿𝑛

𝐴𝐵

)
𝒏𝐴𝐵

+𝑐𝑠
(
𝑼𝑠,𝐴 −𝑼𝑠 ,𝐵

)
.

(3)

Here, 𝜉𝐴𝐵 is calculated as ∥𝑿𝐴 − 𝑿𝐵∥ and 𝐿𝐴𝐵 is
the natural length of the spring between two points 𝐴
and 𝐵. The details of 𝐿𝐴𝐵 will be explained in the
next subsection. Furthermore, 𝑘𝑠 is the spring stiff-
ness constant and 𝑐𝑠 is the damping coefficient. The
damping coefficient used in the proposed method is
calculated using

𝑐𝑠 = 2

√(
𝑀𝑘𝑠 (ln 𝑒𝑏)2

𝜋2 + (ln 𝑒𝑏)2

)
, (4)

where 𝑒𝑏 is the coefficient of restitution which rep-
resents the ratio of relative velocity after and before
collision. Additionally, 𝒏𝐴𝐵 is the unit normal vector
given by

𝒏𝐴𝐵 =
𝑿𝐴 − 𝑿𝐵

∥𝑿𝐴 − 𝑿𝐵∥
. (5)

The swelling of an object is modeled by increasing
the natural spring length 𝐿𝐴𝐵 used in the mass-spring
model in Eq. (3). As it can be seen in Fig. 3 (a),
the natural length of the spring 𝐿𝑛+1

𝐴𝐵 is a function of
time, which depends on the characteristics of the solid
object.

As the value of 𝐿𝐴𝐵 increases, the restoring force
of the spring works and pull the position of the mass
points to the new location as shown in Fig. 3 (b). In
the proposed method, the objects are assumed to ab-
sorb surrounding water at the same rate as the swelling
process. In addition, the objects are completely sub-
merged within a closed system. The density of the
object is assumed to be constant. Another important
point to be noted is that as the objects swell, the dis-
tances between CDS increase and create empty spaces
which allow objects to infiltrate each other during con-
tact. In order to avoid this condition, the CDS radiuses
are set to increase in the same rate as the increase of the
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(a) Swelling scheme of an object (b) Free body diagram of the
spring forces due to swelling

Fig. 3 (a) Proposed swelling scheme of an object and (b) its free
body diagram

Fig. 4 Flowchart of the swelling deformable solid computation

natural spring length. The flowchart for the swelling
deformable solid computations can be seen on Fig. 4.

3. APPLICATIONS

(1) Experiment and Computation on Swelling Be-
havior of Hydrogel Particles
In this section, the diameter growth of hydrogel

particles is experimentally observed and implemented
into the proposed method. The computation is con-
ducted to confirm that as the swelling function is intro-
duced, the used mass-spring model will not affect the
swelling of the solid object. The hydrogel particles
are spherical and made of a type of superabsorbent
polymer (SAP) called sodium polyacrylate. A total
of twenty hydrogel particles with three colors are put
inside the water as shown in Fig. 5.

The particles are allowed to swell for around 10
[hrs] until they are saturated and reach their maximum
sizes. The black colored hydrogel particles are eas-
ier to be seen, and, the distribution on the maximum
sizes is more uniform than the other colors. For those

(a) 𝑡 = 0.0 [hrs] (b) 𝑡 = 9.7 [hrs]
Fig. 5 Experiment of hydrogel particles in water

Fig. 6 Observed size growth of hydrogel particles (different col-
ors indicate different black particles)

reasons, the swelling behavior of the black hydrogel
particles are chosen to be used in the computation.
The diameter of black particles are measured, and the
growths are recorded as shown in Fig. 6.

As it can be seen, the black hydrogel particles grow
more than triple in size from the initial diameter of
around 3 [mm] within 2 [hrs] and the growth rate
slowly decreases and the particles reach a stable size
at around 13.5 [mm] after around 9 [hrs]. In addi-
tion, a regression analysis is performed using com-
puter software (KaleidaGraph 4.5) and the relation
between time (𝑡) and diameter of the particles (𝐷) is
found. The equation for the relation of 𝑡 and 𝐷 for
0.0 ≤ 𝑡 ≤ 9.7 [hrs] is shown in the Eq. (6).

𝐷 = −4.38 × 10−26𝑡6 + 5.88 × 10−21𝑡5

−3.36 × 10−16𝑡4 + 1.04 × 10−11𝑡3

−1.85 × 10−7𝑡2 + 0.002𝑡 + 2.98
(6)

The obtained Eq. (6) is used to calculate the change
of the natural length of the spring 𝐿𝑛

𝐴𝐵. In the com-
putation, a stationary particle with the initial diameter
of 3 [mm] is set up within a computation area of 30
[mm] ×30 [mm]. Since the focus is on the swelling
computation, the fluid and contact forces computa-
tion is omitted. The mass points number 𝑁𝑙 as 20 is
used, with the spring constant of mass-spring model
𝑘𝑠 = 106 [N/m] and coefficient of restitution 𝑒𝑠 = 1.0.
Additionally, the solid density 𝜌𝑠 as 1500 [kg/m3] is
used. The model is calculated with Δ𝑡 = 5 × 10−3 [s].
Figure 7 shows the computation of a single hydrogel
particle with the proposed method.
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(a) 𝑡 = 0.0 [hrs] (b) 𝑡 = 9.7 [hrs]
Fig. 7 Computation of a single hydrogel particle (outline of the

particle, with additional single line to check for rotation)

Fig. 8 Computed diameter of hydrogel particle (cal) compared
to experiments (exp) and predicted results (reg)

The 20 mass points used in the computation are
connected to represent the surface of the object, with
the additional line to the center point to distinguish the
rotation movements of the objects in the computation.
The figures show the initial (𝑡 = 0.0 [hrs]) and final
(𝑡 = 9.7 [hrs]) diameter of the hydrogel particle as 3
[mm] and 13.5 [mm] respectively. Additionally, no
rotation on the particle can be observed.

Figure 8 shows the comparison between experimen-
tal data (exp), expected growth from regression analy-
sis (reg), and the calculated results (cal). The diameter
in the calculated results is obtained by averaging the
distances of mass points on the boundary to the mass
point on the center. The calculated results show that
the object grows quickly with a smooth curve from
the initial diameter until around 2 [hrs], then slow-
ing down until it reaches the stable size of around
13 [mm], showing a good agreement with the exper-
imental data and the expected growth from Eq. (6).
In addition, two values of 𝑁𝑙 are computed to check
the convergences. Between the two values of 𝑁𝑙 = 10
and 𝑁𝑙 = 20, it can be seen that there are almost no
differences as shown in Fig. 9.

(2) Sedimentation of a Single Particle in Fluid
It is to be emphasized that the proposed method

is using a different DF/IB computation. Compared
to the original DF/IB for rigid bodies, in which the
total force of the Lagrangian points is calculated, and
used to update the movement of the center point, the
proposed method uses the interaction forces on each

Fig. 9 Effects of Lagrangian Points number 𝑁𝑙 on the time his-
tories of diameter of hydrogel particle

Fig. 10 Computational area for sedimentation of a single parti-
cle

point to update the motion separately. This method
allows the deformations of the objects to be predicted.
As the first step, it is important to confirm that the pro-
posed method will give the same results as the original
DF/IB for rigid bodies. the proposed method is ap-
plied to a case of sedimentation of a single particle in
fluid.24), 25)

A single particle with diameter 𝐷 = 0.25 and den-
sity 𝜌𝑠 = 1.25 is set inside a 2× 6 area from the initial
position of (1, 4) and falls freely with the gravity ac-
celeration of -980 as shown in Fig. 10. The number
of fluid cells 𝑁 𝑓 used in the computation is 200× 600
and the number of Lagrangian points 𝑁𝑙 is 70. The
surrounding sides are treated as non-slip boundaries.
The fluid density 𝜌 𝑓 and kinematic viscosity 𝜈 are 1.0
and 0.1 respectively, The spring constant and coeffi-
cient of restitution of mass-spring model 𝑘𝑠 and 𝑒𝑠
used are 4×106 and 1.0. A large enough 𝑘𝑠 is used so
that the solid doesn’t deform and acts similar to a rigid
body. The spring constant for the DEM calculation
𝑘𝐷,𝑛 = 𝑘𝐷,𝑡 = 1 × 104 and coefficient of restitution
for the DEM calculation 𝑒𝐷 = 1.0 are used. The
value of DEM parameters for contact between multi-
ple gravel particles in the previous study by Ushijima
is used as reference.26) The radius of the contact de-
tection spheres is 0.2𝐷. The model is calculated with
Δ𝑡 = 5 × 10−3. It is to be noted that non-dimensional
parameters are used.
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(a) 𝑡 = 0 (b) 𝑡 = 0.25 (c) 𝑡 = 0.50 (d) 𝑡 = 0.75 (e) 𝑡 = 1.00
Fig. 11 Sedimentation of a single particle with MSM-DF/IB

(velocity vectors and particle outline)

Fig. 12 Time histories of 𝑣𝑠 with 𝐷 = 0.25 and references

Fig. 13 Effects of mesh sizes on the time histories of 𝑣𝑠

The calculated value of particle velocity in y-
direction 𝑣𝑠 is observed and compared to the com-
putation with original DF/IB for rigid body and past
references.24), 25) Figure 11 shows the computation of
the sedimentation of a single particle.
The object is shown in the initial position (1,4) and
falls straight to the bottom side of the computational
area. Some velocities inside the objects can be ob-
served. DF/IB method only overwrite the velocity of
the boundary, leaving the velocity of the imaginary
fluid inside the solid. It is to be noted that the ve-
locity inside of the fluid has no effects on the solid
movements.

Figure 12 shows the time histories of 𝑣𝑠. As the
particle falls from the initial position, the velocity in-
creases until it reaches the terminal velocity with |𝑣𝑠 |
around 5.5 at 𝑡 = 0.3 until the object moves closer

Fig. 14 Diameter of particles for case A, B, and C with respect
to time

to the bottom side of the computational area and the
|𝑣𝑠 | decreases until to zero and settles there. The time
histories of velocity from the proposed method give a
good agreement with the original DF/IB method and
references.

In order to check for the mesh convergence, the
computation is checked for different 𝑁 𝑓 . In addi-
tion to the previous computation, a rougher resolu-
tion with 𝑁 𝑓 = 100 × 300 and finer resolution with
𝑁 𝑓 = 300 × 900 is computed. The results of the three
computations can be seen on Fig. 13. It is shown that
the computation is able to reach good results even at
rougher mesh resolution, with more accurate results
at mesh number 200 × 600 and the number of cells
inside solid at around 25.

In addition to the computation, the sedimentation
of a swelling particle is calculated. The diameter of
the object increases linearly from 𝐷 = 0.25 to the max-
imum size 𝐷 = 0.50 linearly with slope = 0.25 or can
be written as

𝐷 =

{
0.25𝑡 + 0.25, 0.0 ≤ 𝑡 < 1.0
0.50, 𝑡 ≥ 1.0.

(7)

In order to confirm the results of the maximum size
of the swelling particle, another case with constant 𝐷
= 0.50 is calculated. For convenience, the case with
𝐷 = 0.25 calculated previously will be called case A,
the case with 𝐷 = 0.50 as case B, and the case with a
swelling particle in which the diameter changes from
the 𝐷 = 0.25 to 0.50 as case C. The relation between
the time and diameter of the three cases can be seen in
Fig. 14. Other computational parameters used in the
additional two cases are the same as case A.

The velocity vector and particle outline of the three
cases can be seen in Figs. 15, 16 and 17. When
𝑡 = 0.00, the three particles are setup in the same po-
sition and dropped. At 𝑡 = 0.25, the particle in case B
with largest initial diameter size and mass is the clos-
est to the bottom than the particles in cases A and C. In
addition, in this time step, the position of the object in
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(a) 𝑡 = 0 (b) 𝑡 = 0.25 (c) 𝑡 = 0.50 (d) 𝑡 = 0.75 (e) 𝑡 = 1.00
Fig. 15 Sedimentation of a single particle in fluid for case A

(velocity vectors and particle outline)

(a) 𝑡 = 0 (b) 𝑡 = 0.25 (c) 𝑡 = 0.50 (d) 𝑡 = 0.75 (e) 𝑡 = 1.00
Fig. 16 Sedimentation of a single particle in fluid for case B

(velocity vectors and particle outline)

(a) 𝑡 = 0 (b) 𝑡 = 0.25 (c) 𝑡 = 0.50 (d) 𝑡 = 0.75 (e) 𝑡 = 1.00
Fig. 17 Sedimentation of a single particle in fluid for case C

(velocity vectors and particle outline)

cases A and C is similar as only small swelling occur
to the particle in case C. At 𝑡 = 0.50, the particle in
case B almost hits the bottom. The diameter of the
particle in case C is larger than the previous time step,
and the position is closer to the bottom than in the
case A. In the next time step at 𝑡 = 0.75, the particles
on cases B and C hit the bottom. The diameter of the
particle in case C is around 0.438. At 𝑡 = 1.0, all three
particles settle on the bottom. The particle in case C
can be seen on the bottom with diameter 𝐷 = 0.50.

The 𝑣𝑠 obtained in the three cases are compared in
Fig. 18. The time history of 𝑣𝑠 shown by the black
solid line for the case A is the same as the one com-

Fig. 18 Time histories of particle velocity 𝑣𝑠 for case A (𝐷 =
0.25), case B (𝐷 = 0.5), and case C (𝐷 = 0.25 to 0.50)

Fig. 19 Computational area with swelling deformable objects

puted previously in Fig. 12 In case B, as the size and
mass of particle are larger than the case A, the termi-
nal velocity is larger, obtained at |𝑣𝑠 | around 8.3 at t =
0.2.

In the case C, the particle falls from the initial po-
sition with initial diameter 𝐷 = 0.25. As the particle’s
diameter and mass increase, the |𝑣𝑠 | also increases
continuously without reaching the terminal velocity.
The swelling particle hits the bottom side with a di-
ameter 𝐷 = 0.438. From Fig. 12, the time history
of the velocity for the swelling particle at case C fits
between cases A and B where the minimum and max-
imum diameter of the swelling particle is used, show-
ing reasonable results for the computation.

(3) Lid-Driven Cavity Flow with Multiple Swelling
Objects

Multiple deformable solid objects are arranged in-
side the 2D computational area filled with the fluid as
shown in Fig. 19.

The computational area is a square with the length
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𝐿 = 1.0. Initially, 16 objects with the initial diam-
eter 𝐷0 = 0.12 and solid density 𝜌𝑠 = 1500 are set
up inside the computational area with space between
objects and wall 𝑠 as 0.104. For the fluid, kinematic
viscosity 𝜈 = 0.01 and fluid density 𝜌 𝑓 = 1000 are
used. The surrounding walls are treated as non-slip
boundaries. The top wall moves in horizontal di-
rection with velocities 𝑢𝑡𝑜𝑝,1 = 0.1 and 𝑢𝑡𝑜𝑝,2 = 0
and other walls are stationary. The Reynolds number
Re = 𝑢𝑡𝑜𝑝,1𝐿/𝜈 is 10, and the number of fluid cells
𝑁 𝑓 used is 100 × 100. The number of mass points
(Lagrangian points) 𝑁𝑙 is 21. In this resolution, the
number of cells inside objects become around 12 be-
fore swelling, and 18 after swelling. This resolution is
similar to the previous application with rougher mesh.
Two different values of 𝑘𝑠 are used in this applica-
tion, 𝑘𝑠 = 1000 for case 1 and 𝑘𝑠 = 100 for case 2.
Additionally, coefficient of restitution 𝑒𝑠 for the two
cases are 1.0. For the DEM calculation, the values
of 𝑘𝐷,𝑛 and 𝑘𝐷,𝑡 in both cases are 1.0 × 104 with the
coefficient of restitution 𝑒𝐷 = 1.0, and the radius of
the contact detection spheres is 0.2𝐷. Time increment
Δ𝑡 = 5.0 × 10−3 is used.

The objects are set to swell linearly with the slope
of 6 × 10−4, until the maximum size 𝐷𝑚𝑎𝑥 of 0.18.
The relation between 𝑡 and 𝐷 can be written as Eq.
(8)

𝐷 =

{
6 × 10−4𝑡 + 0.12, 0 ≤ 𝑡 < 100
0.18, 𝑡 ≥ 100.

(8)

The computations of swelling deformable objects on
two cases with two spring constant values of mass-
spring model 𝑘𝑠 = 1000 and 𝑘𝑠 = 100 can be seen in
Figs. 20 and 21.

At first, the horizontal velocity to the right side on
the top wall causes the circulating flow in the clock-
wise direction on the top half of the computation area.
The solid objects are transported by the fluid flows
while rotating individually. The fluid flow causes de-
formations on the objects as it can be seen on the area
closer to the moving top wall where the fluid force is
stronger. As the objects move, they also make con-
tact with the surrounding objects and the walls. The
solid-solid and solid-wall contacts causes further de-
formations on the solid objects. Larger deformations
can be observed on the case 2 where smaller 𝑘𝑠 value
is used. Additionally, as the objects are moving, the
diameter of the objects increases with the introduced
swelling condition. As the objects swell, the com-
putational area is filled with the objects and slower
movements can be observed as seen in the flow ve-
locity vector distribution on Figs. 20 and 21 when
𝑡 = 110. In both cases, the fluid flow do not reach a
steady state.

(a) 𝑡 = 0 (b) 𝑡 = 10

(c) 𝑡 = 20 (d) 𝑡 = 30

(e) 𝑡 = 40 (f) 𝑡 = 50

(e) 𝑡 = 60 (f) 𝑡 = 70

(e) 𝑡 = 80 (f) 𝑡 = 90
Fig. 20 Cavity flow with deformable swelling objects (velocity

vectors (blue), object outlines (black), and CDS outer
line (red)) with 𝑘𝑠 = 1000
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(a) 𝑡 = 0 (b) 𝑡 = 10

(c) 𝑡 = 20 (d) 𝑡 = 30

(e) 𝑡 = 40 (f) 𝑡 = 50

(e) 𝑡 = 60 (f) 𝑡 = 70

(e) 𝑡 = 80 (f) 𝑡 = 90

Fig. 21 Cavity flow with deformable swelling objects (velocity
vectors (blue), object outlines (black), and CDS outer
line (red)) with 𝑘𝑠 = 100

4. CONCLUSIONS

In this study, a method has been proposed to sim-
ulate the interactions between fluid and deformable
swelling solid using DF/IB and the mass-spring
model.

The proposed method was applied to several differ-
ent computations. First, an experiment on several hy-
drogel particles was conducted and the time histories
of the diameter growth were recorded. A regression
analysis was then conducted on the data and the equa-
tion for the relation between time and diameter was
obtained and used in the proposed method to calcu-
late a single hydrogel particle. The calculated results
were then compared back to the experimental data and
the regression equation. It is confirmed that the pro-
posed method is able to give a good agreement to the
observed swelling of hydrogel particles.

In the second application, the proposed method with
a large spring stiffness value was compared to the orig-
inal DF/IB method for rigid bodies by calculating the
sedimentation of a single particle in fluid. By com-
paring the calculated particle velocity in y-direction
𝑣𝑠 to the original DF/IB method for rigid bodies and
references, it is confirmed that the proposed method
gives a good agreement with the original DF/IB for
rigid body and references. In addition, a case of sedi-
mentation of a single swelling particle was calculated.
A particle was dropped from the initial position with
the minimum diameter inside fluid and as it fell to the
bottom side of the computational area, the diameter
𝐷 increases from 0.25 to 0.50. The value of 𝑣𝑠 for
the swelling particle was compared with the 𝑣𝑠 of two
cases of the sedimentation of a non-swelling particle
with constant 𝐷 = 0.25 and 𝐷 = 0.50. Reasonable
results can be observed as the time history of 𝑣𝑠 in the
computation of swelling object fits between the two
other cases. It can also be observed that the computa-
tion with swelling particle never reached its terminal
velocity as the object did not swell to the maximum
diameter before hitting the bottom side of the compu-
tational area.

Finally, the proposed method is applied to the
computation of lid-driven cavity flow with multiple
swelling objects. In the computation, two values of 𝑘𝑠
were investigated. The solid objects are transported
by the fluid flows while rotating individually while
the diameter slowly increases. Strong fluid flow, espe-
cially which can be seen close to the top wall causes
the objects to deform. In addition, the solid-solid
and solid-wall contacts causes further deformations.
Larger deformations can be observed on the second
case with smaller 𝑘𝑠. Furthermore, slower movements
of the objects can be observed from the fluid velocity
vector distribution as the size of the objects increases
and filled the computational area. It was demonstrated
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that the proposed method allows us to calculate defor-
mations and swelling within fluid-solid interactions
with reasonable results.

A detailed study on the deformation is considered
for future works. Even though the proposed method
are able to give reasonable results, there are several
limitations and points that need to be improved. The
spring parameters used in the applications are intro-
duced to observe whether the proposed method are
able to simulate the deformation on the objects. In
addition, the spring constant of the solid objects are
set to be constant in this paper. In reality, as objects
size increase, it is possible that the stiffness change.
Several experiments focusing on the deformations on
the objects will be conducted and the acquired phys-
ical parameters such as spring constants 𝑘𝑠, and the
change of 𝑘𝑠 due to swelling will be used in the next
step computations.
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