
International Journal of Pharmaceutics: X 4 (2022) 100135

Available online 18 October 2022
2590-1567/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Classification of scanning electron microscope images of pharmaceutical 
excipients using deep convolutional neural networks with transfer learning 

Hiroaki Iwata a,1, Yoshihiro Hayashi a,b,1,*, Aki Hasegawa a, Kei Terayama c, Yasushi Okuno a,d,** 

a Graduate School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan 
b Pharmaceutical Technology Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1, Shimoumezawa Namerikawa-shi, Toyama 936-0857, Japan 
c Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan 
d RIKEN Center for Computational Science, Kobe 650-0047, Japan   

A R T I C L E  I N F O   

Keywords: 
Convolutional neural networks 
Machine learning 
Scanning electron microscope 
Excipients 
Powder 
Artificial intelligence 

A B S T R A C T   

Convolutional Neural Networks (CNNs) are image analysis techniques that have been applied to image classi
fication in various fields. In this study, we applied a CNN to classify scanning electron microscopy (SEM) images 
of pharmaceutical raw material powders to determine if a CNN can evaluate particle morphology. We tested 10 
pharmaceutical excipients with widely different particle morphologies. SEM images for each excipient were 
acquired and divided into training, validation, and test sets. Classification models were constructed by applying 
transfer learning to pretrained CNN models such as VGG16 and ResNet50. The results of a 5-fold cross-validation 
showed that the classification accuracy of the CNN model was sufficiently high using either pretrained model and 
that the type of excipient could be classified with high accuracy. The results suggest that the CNN model can 
detect differences in particle morphology, such as particle size, shape, and surface condition. By applying Grad- 
CAM to the constructed CNN model, we succeeded in finding particularly important regions in the particle image 
of the excipients. CNNs have been found to have the potential to be applied to the identification and charac
terization of raw material powders for pharmaceutical development.   

1. Introduction 

In the pharmaceutical design of solid dosage forms, it is important to 
observe particles of raw materials on the nano- and microscales. This is 
because particle morphology such as particle size, particle shape, and 
surface condition has a strong influence on process performance and 
quality attributes of pharmaceutical products (Horio et al., 2014; Kudo 
et al., 2020; Paul et al., 2018). For instance, Horio et al. evaluated the 
effect of particle shape on powder flowability using eight types of 
microcrystalline cellulose (Horio et al., 2014). They showed that elon
gated particles tend to increase the strength of interactions between 
particles and resulted in poor flowability. After tablets are produced, 
elongated particles tend to have a greater hardness than spherical par
ticles. Alyami et al. evaluated particle roughness and content uniformity 

of five excipients (Alyami et al., 2017). They showed that surface 
roughness affects homogeneity and content uniformity of fine and low- 
dose active pharmaceutical ingredients (APIs). 

A scanning electron microscope (SEM) is a device that uses an 
electron beam to observe the surface of a sample. SEMs have high res
olution and can produce magnified images of tens to millions of times 
magnification. SEMs are widely used to evaluate particle morphology of 
raw material powders of solid dosage forms because they can observe 
details of particles. Image analysis techniques for SEM images of parti
cles have been developed to evaluate particle morphology quantitatively 
(Hamishehkar et al., 2010; Holgado et al., 1996; Myshkin et al., 1992; 
Passerini et al., 2002), but when observing particles, only qualitative 
evaluation of SEM images is often performed. This is mainly due to the 
need to measure individual particles manually, which requires an 
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enormous amount of time for image analysis. Because the particle shape 
and distribution of many APIs and excipients are nonuniform, it is 
necessary to evaluate many particles to obtain accurate characterization 
values (Silva et al., 2013). However, the shape of API and excipient 
particles is rarely simple, such as a perfect sphere, and they often have 
cohesive properties. Thus, it is difficult automatically to obtain the 
contours of individual particles. Shekunov et al. reported that SEM is the 
most essential technique for particle size analysis but that it is not very 
reliable for sizing by itself and should always be used in combination 
with other techniques (Shekunov et al., 2007). There are large statistical 
errors and biases associated with preferential particle orientation and 
particle agglomeration that are difficult to control and minimize. 
Therefore, image analysis techniques for SEM images of particles are not 
considered practical at present. 

Convolutional neural networks (CNNs) are a type of deep learning 
structure designed for the classification and analysis of digital images 
and have recently attracted much attention in the field of computer 
vision and image processing (Abbas et al., 2019). CNNs have been 
applied in a wide range of fields including disease diagnosis (Lu et al., 
2019), cell cycle phase classification (Nagao et al., 2020), plant classi
fication (Onishi and Ise, 2021), and egg quality prediction (Ienaga et al., 
2021). In the fields of pharmaceutical sciences, powder technology, and 
similar fields, several applications of CNNs have been reported (Cal
deron et al., 2018; Ficzere et al., 2022; Gambe-Gilbuena et al., 2020; 
Hirschberg et al., 2020; Lu et al., 2021; Ma et al., 2020; Probst et al., 
2020; Yu et al., 2021). Ma et al. have developed an analysis program that 
incorporates a CNN to fully automate X-ray computed tomography 
image analysis of oral tablets for internal crack detection (Ma et al., 
2020). Ficzere et al. showed that CNN can be used to detect defects in 
tablet film coatings in real time and further classify the defects into five 
categories (Ficzere et al., 2022). Lu et al. employed a CNN to identify, 
classify, and quantify three different physical mechanisms of emulsion 
in microscopy images automatically (Lu et al., 2021). They showed that 
the CNN achieved good performance with high classification accuracy. 
CNNs have also been applied to SEM images to classify morphological 
features (Azimi et al., 2018; Ge et al., 2020; Modarres et al., 2017; Yu 
et al., 2021). For instance, Modarres et al. applied a CNN to multiple 
SEM images and successfully classified 10 categories including particles, 
nanowires, fibers, coated surfaces, and pillars (Modarres et al., 2017). 
Yu et al. applied CNN to SEM images of spray-dried microcapsules and 
successfully classified two morphological characteristics (aggregated or 
nonaggregated, and intact or broken) (Yu et al., 2021). 

Because CNNs have been widely applied as an image analysis tech
nique, it could be applied to SEM images of pharmaceutical raw material 
powders. In other words, there is a possibility that particle classification 
and feature extraction can be performed by applying a CNN to SEM 
images. However, to our knowledge, there are still few examples of the 
application of CNNs to SEM images of raw materials of solid dosage 
forms, and it is unclear whether CNNs can classify types of particles and 
identify the characteristics of particles. If we can construct a classifica
tion model of SEM images of several particles, we can show that a CNN 
can recognize differences in particle size, particle shape, and surface 
roughness from SEM images, which may be applied to the development 
of a quality evaluation system for raw material powder. That is, an 
identification system for the type of sample and an evaluation system for 
lot-to-lot variation. For example, if the CNN model can classify lot dif
ferences in excipients for the same product, it may be possible to 
determine the particle morphology changes from lot to lot. Conversely, 
if the CNN model cannot classify lot differences, it may provide some 
assurance that there are no significant differences in particle 
morphology. Furthermore, if features related to differences in particles 
could be extracted, CNNs may be helpful in elucidating the cause. In 
pharmaceutical manufacturing, lot-to-lot variation in excipients is one 
of the factors that significantly affect quality attributes, and identifying 
the factors contributing to the variation is important for stable 
manufacturing (Thoorens et al., 2015; Wang et al., 2013). 

The purpose of this study was to assess if a CNN can classify SEM 
images of pharmaceutical raw material powder used in oral solid dosage 
forms. Fig. 1 shows the experimental flow in this study. First, we selected 
10 excipients with widely different particle morphologies as model raw 
material powders. Next, powder classification models were constructed 
by applying transfer learning to pretrained CNN models. Thus, a model 
trained on a large number of images was used as the initial structure, 
fully connected layers were replaced, and only the weights of the deeper 
layers were trained on our data set. The classification accuracy of the 
constructed model was then evaluated using a confusion matrix and 
statistical indices. Finally, we visualized the image regions that are 
important for the classification of the constructed CNN model. 

2. Materials and methods 

2.1. Materials 

Ten types of excipients, namely, microcrystalline cellulose (CEOLUS 
KG-802, KG-1000, PH-101, and PH-302, Asahi Kasei Chemicals Co. Ltd., 
Tokyo, Japan), lactose monohydrate (Pharmatose 100 M, 125 M, and 
200 M, DFE Pharma, Goch, Germany), mannitol (Mannit Q, Mitsubishi 
Life Science Institute, Tokyo, Japan; PEARLITOL 200SD, Roquette, 
Lestrem, France), and cornstarch (dried corn starch, Matsutani Chemical 
Industry Co., Ltd., Hyogo, Japan), were purchased commercially. 

These excipients are widely used in the pharmaceutical development 
of oral solid dosage forms. Microcrystalline cellulose is one of the most 
important tableting excipients thanks to its outstanding dry binding 
properties, enabling the manufacture of tablets by direct compression 
(Thoorens et al., 2014). Mannitol and lactose are brittle excipients 
frequently used as a filler (Janssen et al., 2021; Paul et al., 2018). Corn 
starch is used as a disintegrant (Desai et al., 2016). 

2.2. Image acquisition using a scanning electron microscope 

The 10 types of excipients were observed using an SEM on a Hitachi 
Miniscope TM1000 (Hitachi High-Technologies Co., Tokyo, Japan). The 
samples were prepared on carbon tape without evaporation coating. The 
magnification of the microscope was set to 150× for PEARLITOL 200SD, 
150× for Pharmatose 200 M, 250× for CEOLUS KG-802, KG-1000, PH- 
101, PH-302, and Mannit Q, and 500× for dried corn starch. Ten SEM 
images were captured for each excipient and a total of 100 original SEM 
images were obtained. The original SEM image properties were 1280 ×
960 pixels, horizontal and vertical resolution was 146 dpi, and 24 bits 
depth. 

2.3. Image segmentation 

The flow chart of image segmentation is shown in Fig. S1 (Supple
mentary Material). Ten original SEM images for each excipient were 
divided into training, validation, and test sets. The number of original 
SEM images in each dataset was set to 6, 2, and 2, respectively. Each 
original SEM image of 1280 × 960 pixels was sequentially divided, 
resulting in a total of 20 subimages of 224 × 224 pixels. As a result, the 
number of subimages in the training, validation, and test set was set to 
120, 40, and 40, respectively. Image augmentation methods such as 
rotation, height and width shift, or zoom were not applied because the 
original images needed to be preserved to ensure the authenticity of the 
features extracted from the training dataset. 

2.4. Construction of the CNN model using the pretrained model and 
transfer learning 

A CNN model for classifying particle images was constructed by 
applying transfer learning to a pretrained model. Transfer learning is a 
method that uses CNN models that have already been trained on a large 
set of image data called ImageNet (Lu et al., 2019; Yu et al., 2021). We 
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focused on two types of pretrained models, namely, VGG-16 (Simonyan 
and Zisserman, 2015) and ResNet50 (He et al., 2016). Both models have 
received excellent results in the ImageNet Large Scale Visual Recogni
tion Challenge, a contest for image classification accuracy (Russakovsky 
et al., 2015), and are among the commonly used CNN models for transfer 
learning (Morid et al., 2021). VGG16 has 13 convolutional layers and 
three fully connected layers for a total of 16 layers, whereas ResNet50 
has a deeper network structure with a total of 50 layers. Both pretrained 
models can classify images into 1000 object categories with high accu
racy. To use the pretrained model for our task, the fully connected layers 
of the pretrained model were replaced with the softmax classifier as the 
final layer, the ReLu activation as the hidden layer, and a dropout layer 
to suppress overfitting. Only the parameters of the fully connected and 
last convolution layer of the CNN model were trained on our data, while 
the other layers were frozen, i.e., the parameters of the pretrained model 
were used. To optimize training parameters, we examined various 
values (learning rate: 1 × 10− 1, 1 × 10− 2, 1 × 10− 3, 1 × 10− 4, and 1 ×
10− 5 and batch size: 16, 32, 48, and 64). The values that yielded the 
highest accuracy were selected. The epoch and momentum were fixed at 
100 and 0.9, respectively. 

2.5. Performance evaluation of the CNN model 

A confusion matrix was used to describe the achieved model classi
fication showing true positive (TP), false negative (FN), false positive 
(FP), and true negative (TN). Then, the values from the confusion matrix 
were used to measure performance by calculating accuracy, precision, 
recall, and F-measure defined by the following equations (Fawcett, 
2006). 

Accuracy =
TP + TN

TP + FP + TN + FN
(1)  

Precision =
TP

TP + FP
(2)  

Recall =
TP

TN + FP
(3)  

F − measure = 2×
Pecision × Recall
Precision + Recall

(4) 

The performance of the CNN model was evaluated by 5-fold cross- 
validation as shown in Fig. S2 (Supplementary Material). The 10 SEM 

images were divided so that the training set, validation set, and test set 
contained 6, 2, and 2 SEM images, respectively. Note that the 10 SEM 
images were acquired so as not to overlap the area captured when the 
SEM images were taken. Therefore, the test set was used as external 
validation data to evaluate the prediction accuracy for unknown images 
that were not used for training and validation. In addition, five datasets 
were created with different combinations of SEM images included in 
each dataset. The CNN model was iteratively constructed using these 
datasets, and the classification accuracy with respect to the test set was 
evaluated five times repeatedly. Finally, the average value of each sta
tistical index was calculated. 

2.6. Feature visualization 

Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju 
et al., 2020) was used to verify which parts of the SEM image the trained 
CNNs focused on for classification. Grad-CAM is a method that uses the 
gradient information input to the last all-junction layer of a CNN to 
identify the regions most involved in class prediction. In other words, it 
is possible to visualize the basis for the decision. 

2.7. Computer software 

All of the basic algorithmic operations concerning the CNN ap
proaches and the Grad-CAM technique were implemented using the 
TensorFlow and Keras deep learning libraries for Python (Abadi et al., 
2016). 

3. Results and discussion 

3.1. SEM images and particle properties of model excipients 

SEM images and characteristics of the ten excipients are summarized 
in Fig. 2 and Table 1. Because the size of the particles varies greatly from 
excipient to excipient, the magnification was taken at different settings 
for each excipient. In our opinion, for the CNN model to learn SEM 
images of particles, the particles must be present in the image at an 
appropriate size so that their characteristics can be identified. Therefore, 
the magnification was set low enough so that at least one or more par
ticles were present in the divided image and the approximate outline of 
the particles could be determined. Moreover, for excipients with smaller 
particles, the magnification was set high enough to allow humans to 

Fig. 1. Flow chart of this research.  
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grasp the characteristics of the particles. For example, PEARLITOL 
200SD was a very large particle, so the magnification was low, while 
dried corn starch was a small particle, so the magnification was high. 
However, for the four types of CEOLUS and three types of Pharmatose, 
the magnification was standardized within each brand so that compar
isons could be made between grades. Since the background of the SEM 
image could affect the learning and prediction of the CNN model, plain 
carbon tape, which is commonly used in SEM photography, was used in 
this study. 

3.2. Construction of a CNN model for classifying the 10 excipients 

To optimize the CNN model parameters, the classification accuracy 
on the test set of 20 types of CNN models built with different batch sizes 

and learning rates was evaluated in each pretrained model (Fig. 3). The 
classification accuracy showed widely varying values depending on 
batch size and learning rate. The classification accuracy was extremely 
poor when the learning rate was high, suggesting that the relationship 
between batch size and classification accuracy is nonlinear. Batch size 
had little effect on classification accuracy, but when the learning rate 
was high on ResNet50, classification accuracy increased with lower 
batch size. The highest classification accuracy was found at a batch size 
of 48 and a learning rate of 1 × 10− 3 when the pretrained model was 
VGG16. On the other hand, for a ResNet50, a model with a batch size of 
16 and a learning rate of 1 × 10− 2 had the highest classification accu
racy. Therefore, subsequent studies focused on the best models for this 
condition. 

A typical example of the training progress of the CNN models is 
shown in Fig. S3 (Supplementary Material), including classification ac
curacy and loss for each epoch of training and validation. The results 
show that the accuracy of a training set improves with increasing epochs 
and converges without significant change after about the 20th epoch, at 
most. Similarly, the model loss of training set decreased with increasing 
epochs and did not change significantly after the 20th epoch. By 
contrast, the validation set required more epochs to converge than the 
training set due to greater variability in model accuracy and model loss. 
Model accuracy and model loss were seen to vary widely in some cases 
up to about the 40th epoch. In some cases, the model accuracy improved 
slightly after about the 70th epoch (Fig. S3b). Finally, the CNN model 
converged with high classification accuracy and low loss on all datasets, 
indicating that it can learn features to distinguish between excipient 
types. Furthermore, the high accuracy of classification not only on the 
training set but also on the validation set suggests that the CNN model is 
well trained, with little overfitting. 

Fig. 2. Original SEM images of the 10 model excipients.  

Table 1 
Characteristics of the ten model excipients.  

Excipients Component Particle shapes 

CEOLUS KG-802 
Microcrystalline 
cellulose 

Fibrous elongated CEOLUS KG-1000 
CEOLUS PH-101 

Fibrous elongated and round 
CEOLUS PH-302 
Dried corn starch Corn starch Nearly spherical but with angles 
Mannit Q 

Mannitol 
Spherical 

PEARLITOL 
200SD Round but rugged shape 

Pharmatose 100 
M 

Lactose monohydrate 
Angular and slightly elongated in 
shape 

Pharmatose 125 
M 

Pharmatose 200 
M  
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3.3. Evaluation of the constructed CNN model using the test set 

To assess the accuracy of the model in more detail quantitatively, we 
used a confusion matrix and four statistical indices: classification ac
curacy, precision, reproducibility, and F-measure (Figs. 4 and 5). As for 
both pretraining models, all four statistical indices were higher than 
0.860, indicating that the 10 excipients could be classified with high 
accuracy. These results also suggest that our CNN model is capable of 
automatically extracting particle features from SEM images. In other 
words, we found that the CNN can automatically extract the size, shape, 
and surface condition of particles. In fact, because Pharmatose 100 M, 
125 M, and 200 M are used as grades with different particle sizes, the 
fact that they could be classified suggests that CNN can evaluate dif
ferences in particle size. Moreover, the nominal mass median diameter 
of CEOLUS PH-101, KG-802, and KG-1000 are all equally 50 μm (Horio 
et al., 2014), suggesting that CNNs can also recognize information about 
particle shape and surface conditions. 

Focusing on the classification accuracy of individual excipients, the 
CEOLUS series had slightly lower classification accuracy than the other 
excipients (Figs. 4 and 5). The results of the confusion matrix show that 
CEOLUS grades are often mistaken for the other CEOLUS grades 
although they are not mistaken for other excipients (Fig. 4). In partic
ular, the classification accuracy of CEOLUS PH-101 and KG-802 was 
lower than that for CEOLUS PH-302 and KG-1000 for both models. KG- 
1000 has the most elongated filamentous particles, whereas PH-302 
features the most highly rounded particles of the CEOLUS grades. In 
contrast, CEOLUS PH-101 and KG-802 are intermediate grades, so it is 
assumed that they were more easily mistaken. This is partly because 
CEOLUS is a mixture of elongated and round particles, and the particle 
morphology is less uniform. In other words, if the particles are biased in 
the split image, the likelihood of misclassification will increase. For 
example, in the case of CEOLUS KG-802, if there happen to be many 
elongated string-like particles in the split image, the probability of 
misclassification to KG-1000 will increase. To prevent this, it is neces
sary to adjust the measurement magnification and the number of 
segmented pixels so that more particles are present in the segmented 
image. 

For both pretraining models, the mean value of the F-measure was 
0.970, indicating that the classification accuracy was comparable. 
ResNet50 has deeper layers than VGG16, and ResNet50 has higher 
classification accuracy for the ImageNet classification dataset (He et al., 
2016). In both cases, training set converged in relatively few epochs on 
our dataset, suggesting that the task was too simple for either model to 
show any difference in classification accuracy. In the future, when the 
task is made more difficult by increasing the number of SEM images of 
excipients, the classification accuracy will likely differ depending on the 
pretrained model. 

3.4. Visualization of particle features used in the CNN classification 

Grad-CAM is one of the algorithms that visualize features of CNN 

models and has been developed for interpreting the deep learning 
classification (Selvaraju et al., 2020). It can highlight particular image 
regions that provide meaningful information for model prediction. This 
algorithm helps us to discover the features that deep learning used, 
which means we can know whether deep learning used detailed fea
tures, and it can provide understandable visual information about model 
performance. 

Fig. 6 shows the attention map visualized by Grad-CAM. The Grad- 
CAM analysis showed that in most cases, the CNN model appropri
ately focused on the regions in the image where particles were present, 
rather than on the regions where no particles were present. The excep
tion to this was Pharmatose 100 M, where the model using ResNet50 
gave greater importance to regions without particles. The details are 
unknown, although they appear to indicate the contours of the particles. 
The results of the Grad-CAM analysis also showed that there were dif
ferences in the degree of importance among the particles. For instance, 
Mannit Q appeared to focus on smaller spherical particles rather than 
larger spherical particles. In addition, the critical areas of the image 
differed slightly depending on the pretraining model. For example, 
focusing on Pharmatose 200 M, particles near the center were more 
important in VGG16, whereas those in the lower right were more 
important in ResNet50. The difference in Grad-CAM can be attributed to 
differences in the model structure. For example, VGG16 has a structure 
consisting of 16 layers, with successive convolutional layers with small 
filters, and the filters are repeatedly reduced to half their size by pooling 
layers (Simonyan and Zisserman, 2015). By contrast, ResNet50 consists 
of 50 layers deeper than VGG16 and has a structure called skip 
connection that adds a given signal to the output of a layer slightly 
higher than it (He et al., 2016). Therefore, because the internal structure 
of the CNN models of VGG16 and ResNet50 is very different, it is likely 
that the important image regions will also be observed to be different in 
some cases. 

Our study is the first to show that Grad-CAM can visualize important 
parts of the image, even in SEM images of excipient particles. How the 
CNN model classifies images is a black box that is difficult for humans to 
understand. Even so, Grad-CAM is a useful tool because it can show the 
criteria the CNN model uses to classify images in a way that humans can 
comprehend, at least partially. However, even with Grad-CAM it was 
difficult for us to fully understand which particles were of particular 
importance. To clarify this, it is necessary to quantify the size, shape, 
and surface properties of individual particles and evaluate their corre
lation with importance, which is considered a future task. 

4. Conclusions 

In this study, a CNN was introduced to classify SEM images of 
pharmaceutical raw material powders. Specifically, a method of VGG16 
or ResNet50 with transfer learning was proposed to classify 10 different 
excipients with different particle morphology automatically. We 
demonstrate that CNN achieved good performance with high classifi
cation accuracy, indicating that CNN can detect differences in particle 

Fig. 3. Relationship between CNN model parameters and classification accuracy. Shaded conditions indicate optimal conditions.  
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Fig. 4. Confusion matrix of the test set showing the classification accuracy of each excipient: (a) VGG16 and (b) ResNet50.  
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morphology such as particle size, shape, and surface condition. More
over, Grad-CAM analysis enabled us to visualize particle features as 
good classifiers for the excipients. In summary, the CNN has been found 
to have the potential to be applied to the identification and character
ization of raw material powders for pharmaceutical development. 
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